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Consider a blackbody which uniformly emits radiation from a plane area A. We suppose that
the emission is spectrally filtered using a narrow-bandpass filter of center frequency f and
bandwidth Δf. We further suppose the emission is angularly filtered into a cylindrical cone of
half-angle θmax. A power P is measured for this filtered beam. The problem is to find the
temperature T of the blackbody from these parameters.

We start from the Planck formula for the spectral energy density of a blackbody,

u f =
8πhc−3 f 3

exp(hf / kT ) −1
, (1)

which we integrate across the transmitted spectrum to get the energy density,

u =
8πhc−3 f 3

exp(hf / kT ) −1
df

Δf
∫ . (2)

To get the emitted power P let’s imagine that the blackbody is a cavity with a small hole in it of
area A. (For example, this cavity could be a gas-filled laser tube, to make contact with the
examples discussed at the end of this document.) Then what we need to do is integrate Eq. (2)
over two factors: a volume element dV at some point inside the cavity (which we write in
spherical coordinates) located a distance r = ct  away from the hole such that a photon would just
reach the hole in time t, and the fraction F of photons starting at the volume element that are
traveling in a direction that would enable them to escape through the hole. The volume element
is

dV = r2 sinθdrdθdφ = r2 sinθcdtdθdφ . (3)

To get the escape fraction F, consider the following diagram.
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The vertical blue line is an edge view of area A. The dotted line extending leftward is a
perpendicular to it, which we will call the z-axis. The volume element is the small cube, located
at polar angle θ and radial distance r relative to the hole. Three photons are indicated, striking the
top, center, and bottom of the blue area. The red line is the projection of the blue area on to the
surface of a sphere of radius r centered on the volume element. We say that the red surface has
projected area A⊥ = Acosθ  relative to the actual emitting area A in blue. (The factor of cosθ



here is an expression of Lambert’s cosine law.) Photons are emitted uniformly across the surface
of a sphere of area Asphere = 4πr2  of which the red area is a portion. Therefore

F =
A⊥

Asphere
=
Acosθ
4πr2

. (4)

Multiplying Eqs. (2), (3), and (4) together, integrating over the two angles, and dividing by dt
gives the emitted power,

P =
A

4πr2
cosθ r2 sinθcdθ dφ

0

θmax

∫
0

2π

∫
8πhc−3 f 3

exp(hf / kT ) −1
df

Δf
∫

=
Acsin2θmax

4
8πhc−3 f 3

exp(hf / kT ) −1
df

Δf
∫ .

(5)

As a check on this expression, note that it reduces to the standard result PBB = AσT 4  if the
emission is not angularly or spectrally filtered, so that θmax = π / 2  and the limits on the
frequency integral are from 0 to ∞. Anyways, the last step is to approximate the integral for a
narrow passband, the sine for small cone half-angle, and the exponential for high brightness
temperature T (relative to hf / k ) so that we can expand it to first order,

P = 2πAc−2 f 2θmax2 kTΔf . (6a)

We can alternatively express the result in terms of the center wavelength λ = c / f  and
bandwidth Δλ ≈ dλ / df Δf = cΔf / f 2  as

P = 2πAcλ−4θmax2 kTΔλ . (6b)

Now let’s apply these results to a red HeNe laser (λ = 632.8 nm ) with an output aperture of
A = 1 mm2 . First, suppose that P = 1 mW , Δf = 1 GHz , and that the solid angle of the emitted
beam is

Ω = sinθ dθ dφ
0

θmax

∫
0

2π

∫ = 2π 1− cosθmax( ) = 1 µsr ⇒ θmax = 0.56 mrad . (7)

In that case, Eq. (6) implies that T = 1.5 ×1010  K , in agreement with Phys. Teach. 33, 497
(1995) after correcting a presumed typo in the exponent for the temperature. Second, suppose
that P = 0.5 mW , Δλ = 1 pm , and θmax = 0.5 mrad . Then Eq. (6) implies T = 1.2 ×1010  K  as
the solution to Baeirlein problem 6.15.


