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Consider the matrix equation  
!
A
"
x =
"
d  where  

!
A  is an n ! n  matrix, and  

!
x  and  

!
d  are n !1  

column vectors. A standard math problem is to find  
!
x  given  

!
A  and  

!
d . The solution is 

 

!
x =
"
A

!1
!
d , which exists and is unique provided that  

!
A  is nonsingular, i.e.,  det

!
A ! 0 . 

But now suppose we are interested in finding  
!
A  given  

!
x  and  

!
d . Right-multiplying the 

matrix equation by  
!
x
t , a solution is the (singular) matrix  

!
A !
"
d
"
x
t
/ x
2  where the superscript “t” 

denotes the transpose and where the dot product of vector  
!
x  with itself is  

!
x
t !
x ! x

2 , the square of 
its magnitude. (We assume that x ! 0 , as otherwise the only possibility is the trivial case 
 

!
x =
!
d =
!
0 , the null vector, so that  

!
A  is completely arbitrary.) In particular, for the eigenvalue 

problem  
!
d = !

!
x , this solution becomes the symmetric matrix  

!
A = !

"
x
"
x
t
/
"
x
t "
x  whose trace is λ 

and whose determinant is zero. 
However, it is easy to see that this solution is not unique. The first row of the matrix equation 

 

!
A
"
x =
"
d  is 

 A1i xi

i=1

n

! = d1 . (1) 

By assumption, not all of the xi can be zero; if say x j ! 0 , then we can freely choose A1i  for all 
i ! j , and only the value of A1 j  is constrained; namely it must be 

 A1 j = x j
!1

d1 !
"A1i xi

i=1

n

#
$

%
&
&

'

(
)
)

 (2) 

where the prime on the summation indicates that we exclude the case of i = j . This fact means 
that n !1  of the coefficients in the first row of matrix  

!
A  are arbitrary. Since this is true for 

every row, n(n !1)  of the coefficients in the matrix overall are arbitrary; only n of their values 
are constrained by the matrix equation. 

Noting that the following solution for the matrix has n(n !1)  independent coefficients, it is 
therefore the general solution, 

 
 

!
A !

"
d
"
x
t

x
2
+

!
B with

!
B !

"
ck
"
x"k
t

k=1

n#1

$ , (3) 

where 
 
{
!
ck}  is a set of arbitrary n !1  column vectors and 

 
{
!
x!k}  is any fixed set of linearly 

independent vectors spanning the space perpendicular to vector  
!
x  (so that 

 

!
x!k
t !
x = 0  for all k 

from 1 to n !1 ). 
Another way to understand Eq. (3) is that  

!
B  is the general solution to the equation  

!
B
"
x =
"
0  

(for the given vector  
!
x ). Consider the following diagonal matrix of zeroes and ones, 

 

 

!
D =

0

1

"

1

!

"

#
#
#
#

$

%

&
&
&
&

, (4) 



and the matrix of column vectors 

 
 

!
U =

"
x
"
y1 #

"
y
n!1[ ]  (5) 

where 
 
{
!
yk}  is any arbitrary set of vectors in the space perpendicular to vector  

!
x . (This matrix 

is unitary if the set is linearly independent.) Now compute  
!
B  from the similarity transform 

 

!
B =

!
U
!
D
!
U
t . Then by construction 

 
{
!
x,
!
yk}  is a set of eigenvectors (incomplete if 

 
{
!
yk}  is linearly 

dependent) that satisfies the equation  
!
B
"
z = !

"
z  with eigenvalues ! = 0  when  

!
z =
!
x  and ! = 1  

when 
 

!
z =
!
yk . It has n(n !1)  arbitrary coefficients (specifying the vectors 

 

!
yk ) and thus  

!
B  is the 

required general solution. This solution for  
!
B  becomes equal to that defined in Eq. (3) for the 

special choice 
 

!
ck =

!
yk =

!
x!k . 

To illustrate, let’s write out a couple of examples of Eq. (3) for the simple case of n = 2 . If 
we choose  

!
c =
!
0 , then the matrix solution becomes 

 

 

!
A =

d1x1

x1
2
+ x2

2

d1x2

x1
2
+ x2

2

d2x1

x1
2
+ x2

2

d2x2

x1
2
+ x2

2

!

"

#
#
#
#

$

%

&
&
&
&

(one solution) . (6) 

Another solution, valid if say x1 specifically is nonzero, is 

 

 

!
A =

d1

x1

0

d2

x1

0

!

"

#
#
#
#

$

%

&
&
&
&

(another solution) , (7a) 

obtained by choosing 

 
 

!
c =

x2

x1

d1

d2

!

"
#

$

%
& and

!
x' =

1

x1
2
+ x2

2

x2

(x1

!

"
#

$

%
& . (7b) 

Note for both solutions (6) and (7) that 

 A11 =
d1 ! A12x2

x1

and A21 =
d2 ! A22x2

x1

, (8) 

in accordance with Eq. (2). 


