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A 1D Taylor series for the function f (y)  expanded about the point y0 is 
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Although y0 is normally considered a constant, this formula is valid for any y0 and so we can 
certainly treat it as a variable x. Notice that the derivative is therefore of the function with respect 
to its argument and is then evaluated at x. For brevity, we can therefore write it as f (n)(x) . 
Equation (1) can therefore be rewritten as 
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We now let y ! x + h(x)  to obtain the desired series, 
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Proper convergence of this series for given functions f (y)  and h(x)  should be checked using a 
standard method such as the ratio test. 

As an example of the application of this result, suppose that f (y) = y!1  and that h(x) = ex . 
Noting that 
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Eq. (3) becomes 
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It is easy to verify that this result is correct. Multiplying both sides by x we get 
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which then becomes immediately recognizable as a geometric series, convergent provided 
e
x
< x  which is true for approximately x < !0.57 . 
If one substitutes h(x) ! g(x) " x  into Eq. (3), one obtains 
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For example, if g(x) = sin x  and f (y) = sin y , then since 
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it follows that 
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so that Eq. (7) can be used to derive some unusual identities. 


