Modified Taylor Series— C.E. Mungan, Spring 2008

A 1D Taylor series for the function f(y) expanded about the point y is
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Although y, is normally considered a constant, this formula is valid for any y, and so we can
certainly treat it as a variable x. Notice that the derivative is therefore of the function with respect
to its argument and is then evaluated at x. For brevity, we can therefore write it as f M (x).

Equation (1) can therefore be rewritten as
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We now let y = x+ h(x) to obtain the desired series,
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Proper convergence of this series for given functions f(y) and A(x) should be checked using a
standard method such as the ratio test.

As an example of the application of this result, suppose that f(y)= y_1 and that h(x)=¢e".
Noting that
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Eq. (3) becomes
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It is easy to verify that this result is correct. Multiplying both sides by x we get
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which then becomes immediately recognizable as a geometric series, convergent provided
¢* <|x| which is true for approximately x <—-0.57.

If one substitutes h(x)= g(x)— x into Eq. (3), one obtains
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For example, if g(x)=sinx and f(y)=siny, then since
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it follows that
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so that Eq. (7) can be used to derive some unusual identities.



