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The perpendicular-axis theorem for a thin flat plate is well known to be 

 Ix + Iy = Iz , (1) 

where (x, y, z)  are three mutually orthogonal axes with x and y in the plane of the lamina and z 

normal to it. A generalization of this theorem to three-dimensional objects is 

 Ix + Iy + Iz = 2 r2dm , (2) 

where (x, y, z)  are any set of three orthogonal axes and r is the spherical radial distance of mass 

element dm from the origin (not to be confused with the cylindrical radius typically used in 

moment-of-inertia calculations). 

The proof of Eq. (2) follows from the definition of the moments, 

 Ix + Iy + Iz = (y2 + z2 )dm + (x2 + z2 )dm + (x2 + y2 )dm , (3) 

which simplifies to Eq. (2) since r2 = x2 + y2 + z2 . For the special case of a lamina in the xy-

plane, z = 0  so that the right-hand side of Eq. (3) becomes 2 (x2 + y2 )dm = 2Iz  and Eq. (1) 

immediately follows. 

Equation (2) has two useful applications. First and most obviously, it provides a quick way to 

compute the moment of inertia of a spherically symmetric object. In this case, Eq. (2) reduces to 

 3I = 2 r2dm  (4) 

provided the origin of the axes is chosen to be at the center of the object. For example, for a 

uniform spherical shell, the right-hand side is trivially 2R2M  so that we obtain the familiar 

result, 

 I(spherical shell) = 2
3 MR

2 . (5) 

One should note that no calculus is required to obtain this result (since the integral can be 

replaced by a summation of ri
2mi ), making this a good way to derive this moment in an 

introductory algebra-based physics course. As a second example, Eq. (4) for a uniform solid 

sphere becomes 



 I(solid sphere) = 2
3 r2dm =

2M

R3
r4dr

0

R

=
2
5 MR

2  (6) 

since 

 dm = dV =
M

V
dV =

M
4
3 R3

4 r2dr =
3M

R3
r2dr . (7) 

The other application of Eq. (2) follows from the fact that it implies that the sum of the 

moments of inertia (i.e., the trace of the inertia tensor) is invariant under a rotation of the 

coordinate axes. This eliminates at least one recalculation of the moments for a rotated set of 

axes. In fact, in special cases it can eliminate any necessity to reintegrate at all. For example, 

consider again a lamina in the xy-plane. Suppose we have integrated Ix and Iy from their 

definitions, and summed them to find Iz from Eq. (1). Now suppose we wish to find the moments 

about the axes (x , y , z )  obtained by rotating the z-axis 45˚ into the direction of the y-axis. By 

symmetry Iy = Iz I  so that 

 Ix + Iy + Iz = Ix + Iy + Iz  

  2(Ix + Iy ) = Ix + 2I  (8) 

  I =
1
2 Ix + Iy . 

For example, for a uniform circular hoop (for which Ix = Iy =
1
2 Iz =

1
2 MR

2 ), this equation 

implies that I =
3
4 MR

2 , midway in value between Iy and Iz. 


