Relationship between Displacement and Pressure Amplitude—C.E. Mungan, Fall 2000

Consider amonochromatic plane sound wave traveling down the length of atube of gas of
ambient density p, at a phase speed u,. Find an expression for the relationship between the
amplitude of the molecular displacement and that of the pressure oscillations.

Asis proven below in three different ways, the answer is

P = poUsUnmgl (1

where P is the gauge pressure and u,,,, 1S the longitudinal molecular speed due to the sound wave
(i.e., averaged over all molecules within athin transverse slice so that their random thermal
motions can be neglected). Since the maximum longitudinal speed is equal to Awwhere A isthe
displacement amplitude of the molecules from their (average) equilibrium position and wisthe
angular frequency of the sound, we conclude that the pressure amplitudeis

Priax = PoUsWA, 2
in agreement with Serway EqQ. 13.24.
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Proof #1 (Marion and Hornyak): Suppose the sound wave is generated by a piston which fits
snugly in the left end of along tube of cross-sectional area S, which is open at the right end to the
ambient surroundings, as sketched in Fig. 1 above. Initially, let the piston be in static
equilibrium. Now consider applying arightward force F to the piston. Thiswill generate a
compression whose wavefront will move some distance dx to the right of the original position of
the piston during asmall interval of time dt. Since this wavefront moves at the speed of sound, it
followsthat dx = v dt. The molecules themselves, however, move at the lower speed v,
imparted by the piston. Since the distance from the piston to the wavefront is differentially small,
we can assume that all of the moleculesin this volume have the same speed. Clearly, the total
mass of gas moving to theright is dm = pySdx, with a corresponding linear momentum of

dp = PoSUSAtU - 3

But by Newton’s second law, this must result from a pressure in excess of ambient of
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Proof #2: Thisis merely areworking of the first proof but isinstructive for students who
have been introduced to the definition of the adiabatic bulk modulus B,

ap=-g2Y (5)
Vv

The original volume of the gas which isdotted in Fig. 1is V = Sugdt, and the change in this
volume due to the compression by the piston is AV = —Su,,,, dt. The increase in pressure on the
piston necessary to accomplish thisisjust the gauge pressure, AP = P. Finally, the speed of

sound is well-known to be given by
Ug = Boe PoU2. (6)
Po

This can be derived from the wave equation, for example. Substituting these expressions for V,
AV, AP, and B into Eq. (5) gives Eq. (1).

Proof #3 (Resnick, Halliday, and Krane): Consider one compressional pulse out of a square
wave traveling with speed ug down atube from left to right. View it in the rest frame of the
pulse, as sketched in Fig. 2 below. (Thisis the same frame that was used to find the speed of a
transverse wave on a string in Serway Sec. 13.6.) In this frame, the region of compression is
stationary, while fluid moves through it from right to left. Consider a dlice of fluid of thickness
dx moving toward the compressed region at speed v, The right edge of the slice enters the
compression atime dt after the left edge does, where dx = v dt. During the time interval dt
while the dlice is entering the compression, the pressure on the leading face of the fluid element
exceeds that on the trailing face by the gauge pressure P. Consequently the leading edge of the
diceisdecelerated, asit must be in order to get compressed. Inside the compression, the fluid
travels at the lower speed of vg — U, , SiINCE the molecules inside the pulse are traveling to the
right at a speed of v, in the lab frame. We now apply Newton’s second law to find

F=ma O PS (pOSUSdt)US_(U;t_UmO'), ©

which is Eq. (1) when simplified.
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