
Relationship between Displacement and Pressure Amplitude—C.E. Mungan, Fall 2000

Consider a monochromatic plane sound wave traveling down the length of a tube of gas of
ambient density ρ0 at a phase speed υs. Find an expression for the relationship between the
amplitude of the molecular displacement and that of the pressure oscillations.

As is proven below in three different ways, the answer is

P s mol= ρ υ υ0 (1)

where P is the gauge pressure and υmol is the longitudinal molecular speed due to the sound wave
(i.e., averaged over all molecules within a thin transverse slice so that their random thermal
motions can be neglected). Since the maximum longitudinal speed is equal to Aω where A is the
displacement amplitude of the molecules from their (average) equilibrium position and ω is the
angular frequency of the sound, we conclude that the pressure amplitude is

P Asmax = ρ υ ω0 , (2)

in agreement with Serway Eq. 13.24.
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Proof #1 (Marion and Hornyak):  Suppose the sound wave is generated by a piston which fits
snugly in the left end of a long tube of cross-sectional area S, which is open at the right end to the
ambient surroundings, as sketched in Fig. 1 above. Initially, let the piston be in static
equilibrium. Now consider applying a rightward force F to the piston. This will generate a
compression whose wavefront will move some distance dx to the right of the original position of
the piston during a small interval of time dt. Since this wavefront moves at the speed of sound, it
follows that dx dts= υ . The molecules themselves, however, move at the lower speed υmol

imparted by the piston. Since the distance from the piston to the wavefront is differentially small,
we can assume that all of the molecules in this volume have the same speed. Clearly, the total
mass of gas moving to the right is dm Sdx= ρ0 , with a corresponding linear momentum of

dp S dts mol= ρ υ υ0 . (3)

But by Newton’s second law, this must result from a pressure in excess of ambient of
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Proof #2:  This is merely a reworking of the first proof but is instructive for students who
have been introduced to the definition of the adiabatic bulk modulus B,
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The original volume of the gas which is dotted in Fig. 1 is V S dts= υ , and the change in this
volume due to the compression by the piston is ∆V S dtmol= − υ . The increase in pressure on the
piston necessary to accomplish this is just the gauge pressure, ∆P P= . Finally, the speed of
sound is well-known to be given by
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This can be derived from the wave equation, for example. Substituting these expressions for V,
∆V, ∆P, and B into Eq. (5) gives Eq. (1).

Proof #3 (Resnick, Halliday, and Krane):  Consider one compressional pulse out of a square
wave traveling with speed υs down a tube from left to right. View it in the rest frame of the
pulse, as sketched in Fig. 2 below. (This is the same frame that was used to find the speed of a
transverse wave on a string in Serway Sec. 13.6.) In this frame, the region of compression is
stationary, while fluid moves through it from right to left. Consider a slice of fluid of thickness
dx moving toward the compressed region at speed υs. The right edge of the slice enters the
compression a time dt after the left edge does, where dx dts= υ . During the time interval dt
while the slice is entering the compression, the pressure on the leading face of the fluid element
exceeds that on the trailing face by the gauge pressure P. Consequently the leading edge of the
slice is decelerated, as it must be in order to get compressed. Inside the compression, the fluid
travels at the lower speed of υ υs mol− , since the molecules inside the pulse are traveling to the
right at a speed of υmol in the lab frame. We now apply Newton’s second law to find
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which is Eq. (1) when simplified.
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