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Radiative Coupling Between an Object and its Surroundings—C.E. Mungan, Spring 1999

The following situation arises in laser cooling and many other contexts. A sample (denoted
here by a subscript “s”) is suspended inside an enclosed, constant-temperature cavity (denoted by
a subscript “c”). The suspension is assumed to be by vanishingly thin, low thermal conductivity
supports and the cavity is evacuated, so that there is no significant conductive or convective heat
transfer between the sample and the cavity. Furthermore, we will assume the facing surfaces of
the sample and cavity are each made of an opaque, homogeneous graybody, so that each has a
single well-defined surface area (As and Ac) and emissivity (εs and εc), and that the radiative heat
transfer between the two is sufficiently slow that each always has a single well-defined
temperature (Ts and Tc) which are not necessarily equal because the sample is being laser cooled.

What is the radiative heat load Pload on the sample from the cavity in watts? We cover this
every year in General Physics, University Physics, and Optics. The well-known answer is given
by, for example, Eq. (13.3) of Cutnell & Johnson,

Pload = εsAsσ Tc
4 − Ts

4( ) (1)

obtained by subtracting the sample’s emission from its absorption and using Kirchhoff’s law,
which states that the absorptivity α s of the sample is equal to its emissivity,

α s = εs . (2)

All very straightforward, right? It was therefore with a shock that while reading a recent paper, I
learned that Eq. (1) is wrong! The correct expression is

Pload = σ
R

Tc
4 − Ts

4( ) (3)

where R is the surface thermal resistance given by

R = 1 − εs

εsAs
+ 1

AsFsc
+ 1 − εc

εcAc
. (4)

Here Fsc is known as the configuration factor and is defined as the fraction of the radiosity
leaving the sample and striking the cavity walls directly; it depends solely on geometrical
quantities and is calculated for a variety of standard geometries in engineering handbooks such
as Schaum’s Outline Series in Heat Transfer. Note that the radiosity J, in turn, is defined as the
total (i.e., over all wavelengths and directions) radiant thermal energy leaving a surface per unit
time per unit area of the surface (with units of W/m2)—it is the sum of the emitted and reflected
intensities. The corresponding total incident radiant power per unit area of the surface is called
the irradiance G.

Although Eq. (4) appears asymmetric in the sample and cavity variables, it is not in fact,
since

AsFsc = AcFcs , (5)

which is known as the reciprocity theorem and is easily proved in Schaum’s. Now, for simplicity
let’s assume that the sample and cavity consist of two concentric cylinders. It is then clear that
Fsc = 1 because every ray leaving the sample surface must strike the cavity walls. (In contrast,
Fcs < 1 because a ray leaving one point on the cavity walls can miss the sample and strike
another point on the walls. The cavity “sees itself” while the sample does not.) In that case,
Eq. (4) can be simplified and substituted into Eq. (3) to obtain the final result

Pload = εsAsσ
1 + εsAs (1 − εc ) / εcAc

Tc
4 − Ts

4( ). (6)

This reduces to Eq. (1) only if εc = 1 (i.e., the cavity walls are black and not merely opaque) or if
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the emissivity or surface area of the sample is much smaller than that of the cavity. A perusal of
introductory physics texts reveals no hint of these limitations in the use of Eq. (1) however.

Well perhaps that is because these books are too introductory, you might think. Surely a
higher level book such as Hecht (3rd edition) would take into account the emissivity of the cavity
walls. Sure enough, he does on page 577. Unfortunately he takes it into account in an
egregiously incorrect manner. He balances the sample’s emission εsAsσTs

4  against its absorption

which he writes as α sAs ⋅ εcσTc
4 under the equilibrium condition Ts = Tc to conclude that

α sεc = εs (7)

in violation of Kirchhoff’s law, as expressed by Eq. (2). The fact that this result implies that the
absorptivity and/or emissivity of the sample and cavity depend on each other and could thus not
be intrinsic quantities is passed over in silence, despite the fact that he subsequently tabulates
typical values of emissivity for various materials!

Clearly then, both our introductory and our intermediate level textbooks are confused on the
topic of radiative heat transfer. So perhaps it is useful to review the derivation of Eq. (4).
Schaum’s uses a three-resistor analogy to obtain it. (As far as I can tell, if the holy grail of
physics is the unification of the 3 fundamental forces, the highest goal of engineering is to reduce
all practical problems to parallel and series electrical circuits.) The net heat load on the sample is
given by

Pload / As = Gs − Js (8)

where, as already mentioned, the radiosity is the sum of the emitted and reflected terms,
Js = εsσTs

4 + (1 − εs )Gs (9)

using the fact that, by energy conservation, the sum of the reflectance and absorptance must be
unity for an opaque sample, so that the reflectance equals 1 − εs . Eliminating Gs between Eqs. (8)
and (9) and rearranging, we obtain

Js = σTs
4 + Pload

1 − εs

εsAs
. (10)

Similarly, by shifting focus to the cavity and noting that the net heat gained by the sample must
equal the net heat lost by the cavity walls, we have

Jc = σTc
4 − Pload

1 − εc

εcAc
. (11)

Finally, Fsc is the configuration factor relating the radiosity from the sample surface to that of the
cavity walls,

Pload / As = Fsc(Jc − Js ) . (12)

For example, in the present case where Fsc = 1, this simply says that Gs = Jc, i.e., the radiant
intensity incident on the sample came from the cavity walls since the sample does not see itself.
Substituting Eqs. (10) and (11) into (12) results in (3) and (4), as desired.

It is interesting to consider another important geometry: two infinite planes. For convenience,
let’s continue to denote the two surfaces by the subscripts “s” and “c” although we no longer
have a cavity per se. Now As / Ac = 1, Fsc = 1, and Fcs = 1, so that Eq. (5) is still satisfied, and
Eq. (6) simplifies to

Pload / A = εeff σ Tc
4 − Ts

4( ) (13)

for the heat load per unit area of the surface, where
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1
εeff

= 1
εs

+ 1
εc

−1, (14)

again reducing to Eq. (1) only if εc = 1. This result is also derived in Schaum’s another way,
bolstering our confidence. The rate P(c → s)  at which radiant energy is emitted by plane “c” and
absorbed by plane “s” is given by an infinite geometric series, as can be seen from the following
diagram

where I Tc c≡ ε σ 4 and I’ve used the fact that the sample’s absorptivity equals εs and its reflectance
equals 1 − εs , as discussed earlier. Thus,

P(c → s)
A

= εsI (1 − εc )n(1 − εs )n

n=0

∞

∑ = εsεcσTc
4

1 − (1 − εc )(1 − εs )
= εeff σTc

4 (15)

and likewise,
P(s → c)

A
= εeff σTs

4. (16)

Subtracting Eqs. (15) and (16) gives the net heat load as Eq. (13). What is instructive about this
derivation, in addition to its obvious analog to the derivation of the Airy function for Fabry-Perot
interference, is that it clearly indicates the error in Hecht’s deduction of Eq. (7). Equation (15)
can be rewritten as

P(c → s) = α sAs ⋅ εcσTc
4

1 − (1 − εc )(1 − εs )
(17)

from which we see that the sample’s absorption is not α sAs ⋅ εcσTc
4 unless εc = 1, in which case

Eq. (7) is trivially consistent with (2). It is also worth noting that the sample’s total emission is
not εsAsσTs

4 ; Eq. (16) says that we must replace εs by εeff.

Let’s end this discussion with a consideration of two practical matters. First, consider
Kirchhoff’s law, Eq. (2), in a bit more detail. As is well-known, this equation can be derived by
inserting a sample into a constant-temperature cavity (say by running water coils through its
walls) whose internal surface we now realize must be a blackbody (say by coating it with carbon
black) and waiting for the sample to thermally equilibrate with the cavity walls. It is also well-
known that the equality of Eq. (2) holds not only for the total emissivity and absorptivity but also
for the spectral values,

α (λ ) = ε(λ ) (18)
i.e., the emission and absorption of the sample are equal wavelength by wavelength. This can be

c

s
εs(1–εc)(1–εs)I

(1–εc)(1–εs)
2I

(1–εc)(1–εs)I

εs I

(1–εs)I

I

εc(1–εs)I
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seen by imagining that an interference filter with a very narrow passband is interposed between
the sample and the cavity walls. To avoid distorting the blackbody radiation filling the cavity, we
imagine the filter to be ideal, meaning it perfectly reflects all wavelengths except the passband,
which it perfectly transmits; it thus absorbs nothing and consequently emits nothing either. It is
now clear that the sample could not remain in equilibrium with the black cavity unless it absorbs
and emits equally at the pass wavelength. This could also be seen from a modern viewpoint by
taking into account the fact that photons of different wavelength carry different amounts of
energy. Less well-known is the fact that equality also holds for the directional emissivity and
absorptivity and not just the usual hemispherical values,

α (θ,φ) = ε(θ,φ) (19)
i.e., a sample emits as much thermal radiation into a particular direction as it absorbs from that
same direction. The reasoning is similar to that used to obtain Eq. (18). This time we interpose a
perfect mirror between the sample and the black cavity walls, and then punch a small hole in it.
(In order to fix the direction for the entire sample and to prevent escape of emitted rays by
multiple reflections, the geometry should consist of a small laminar sample at the center of a
large spherical mirror.) An important consequence of Eq. (19), recalling once again that the
absorptivity of an opaque sample equals unity minus the reflectance, is that the thermal radiation
emitted by an object is polarized (as the complement of the Fresnel equations). Another way to
see this result is to consider the emitting centers to be slightly below the sample surface so that
the rays escape only if they do not reflect off this surface on their way out.

A second practical matter is the relaxation of a cooled sample back to the ambient
temperature after the laser is shut off. Since the heat capacity of the sample is C ≡ dQ / dTs ,

dQ = Pload dt = CdTs = −Cd(∆T ) (20)

where ∆T ≡ Tc − Ts . Assuming ∆T is small (compared to the constant ambient temperature Tc),
Eq. (3) can be expanded to first order to obtain

P
T

R
T

dt d T

Tload
c≅ ⇒ = −4 3σ

τ
∆ ∆

∆
( )

(21)

from Eq. (20), where τ σ≡ RC Tc/ 4 3 is the time constant. This can be integrated to obtain

∆T(t) = ∆T(0)e−t / τ . (22)
An exponential with the same time constant similarly describes the approach to the final cooling
temperature (found by balancing the heat load against the cooling power) if the laser is abruptly
turned on. Now observe that if εc → 0 then R → ∞  from Eq. (4) and hence τ → ∞ , so that the
radiative coupling rate becomes negligible. This is of course the reason that thermos bottles,
cryostats, and the like are silvered or polished to a mirrorlike finish. Although this may also seem
like an ideal situation for laser cooling (using tiny windows to permit the laser to enter and exit
the chamber), it is in fact disastrous because it means that the fluorescence (which is carrying
away heat from the sample) will be repeatedly reflected back to the sample! It is just such
repeated reflections that make laser cooling difficult in GaAs, because its high index of
refraction tends to prevent the fluorescence from escaping.


