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Suppose we want to expand the reciprocal of a polynomial in x for small x. There are many
ways to do that, of which I present four methods here. To be specific, let’s suppose the
polynomial is a + bx + cx2  where a, b, and c are all nonzero. (There are simpler techniques one
can use if there are fewer nonzero terms. On the other hand, the methods I present here can be
generalized if there are more than 3 nonzero terms or if different powers of x are present.) The
goal is to represent the reciprocal of that polynomial in the form of the power series

 
a0 + a1x + a2x

2 +  provided that x is small.
To begin, we may as well divide a out of our polynomial, so that we are trying to expand

f (x) = a−1 1
1+ Ax + Bx2

(1)

where A ≡ b / a  and B ≡ c / a .1 In stating that x is small, what I mean is that both bx  and cx2

are smaller in magnitude than a, or in other words that x  is much less than the smaller of A −1

and B −1/2 , say at least 10 times smaller.
The first method is brute long-hand division,

 

1− Ax + (A2 − B)x2 +
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so that
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A second method is to collect the two small terms in x together and expand in a geometric
series,
                                                  
1One could eliminate a second coefficient by defining X ≡ Ax  and α ≡ B / A2  so that one seeks
the reciprocal of 1+ X +αX2 . But that does not make the math much easier and it requires an
extra step to rewrite the final answer back in terms of x.
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(4)

in agreement with Eq. (2).
A third method is to factor out the first two terms and then expand in two different geometric

series,
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which again agrees with the previous methods.
Finally, one can directly apply the standard formula for a Maclaurin series,

 

f (x) = f (n)(0)
n!

xn
n=0

∞

∑ = f (0) + ′f (0)x + ′′f (0)
2

x2 + (6)

to again get the same result, as is left for the reader to verify.


