Riemann Zeta of 4 as Needed for Stefan-Boltzmann Law— C.E. Mungan, Spring 2010

The purpose of this note is to derive the fact that
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The derivation proceeds in two steps.

First we find the Fourier series (FS) for a unit antisymmetric triangular wave f(¢). Since the
wave has zero average value, there is no constant term in the FS. Also, since the wave is
antisymmetric, the FS is a pure sine series and it suffices to consider half a cycle from # =0 to
t =T /2 .Finally, since the wave is symmetric about t =7 /4 , the FS only contains odd
harmonics and we can restrict attention to a quarter cycle from t=0 to t =T /4,
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where the coefficients are 4 times the integral over one quarter cycle,
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where f(¢) is defined to equal 1 when # =T /4 . We integrate by parts to get
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Inserting this result in Eq. (2) and switching dummy summation index using m =2n+1 gives
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The second step is to apply Parseval’s relation in the form pertinent to the present FS,
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where the angle brackets denote the average of the wave over a period. In our case, that is
equivalent to finding the average of the parabola y = x> over the range from x=0 to x=1,
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since our triangular wave amounts to a linear ramp from zero up to unity over a quarter cycle.
Substituting this result into the left-hand side of Eq. (6) and the coefficients from Eq. (5) into the
right-hand side, we have
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Finally we equate this sum over only odd integers to the desired sum over all integers minus the
sum over only even integers,
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where the last equality came from factoring 1/2% =1/16 out of the sum over even integers.
Rearranging Eq. (9) now gives Eq. (1).



