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Define a free wheel to be an isolated disk (i.e., having no axle) which therefore can have
neither a drive nor a brake mechanism and for which air resistance is negligible. It is well known
that if such a wheel were rigidly circular and rolled on a rigidly flat surface (which combination
we might refer to as an “ideal wheel”) that its free-body diagram would consist of only two
forces, its weight and the normal force due to the road, as sketched below.
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The frictional force must be zero because it cannot logically point either forward or backward. If
it were in the forward direction, it would translationally accelerate the wheel; if it pointed
rearward, it would rotationally accelerate the wheel. To see this another way, suppose the wheel
rolled from pavement onto a slick ice patch. It would continue to both translate and spin (i.e., roll
without slipping) without interruption, demonstrating that friction plays no role.

Clearly the above scenario cannot hold for a real wheel, which gradually slows down and
comes to rest on flat ground. In general, a wheel deforms from a perfectly circular figure—there
must be a finite, flattened area of contact which when multiplied by the average internal and
sidewall pressure (if we think of a tire) couples the weight and the normal force. (Increasing the
weight primarily changes the contact area not the pressure. You may wish to verify this using a
tire gauge before and after filling your car with passengers.) In addition, a wheel digs somewhat
into a road, so the pavement is not perfectly flat. (Loaded 18-wheelers, for example, are
particularly harsh on asphalt highways.) Regardless of whether the asphericity of the wheel or
the nonplanarity of the road dominates, the effect is the same. The effective contact force on the
wheel shifts to an average position located forward of the center line and is inclined toward the
rear. (The leading portion of the wheel and surface are compressed more than the trailing
portion, resulting in a larger Hookean response. Energy is lost as heat by two mechanisms:
slippage of the leading and trailing edges of the wheel—which unlike the bottom-most point of
the wheel are not at rest relative to the pavement—resulting in kinetic friction, and the fact that
neither the wheel nor road are perfectly elastic so that there is hysteresis associated with the
compression and relaxation cycles.) We can resolve this contact force into a vertical and a
horizontal component. I will refer to the vertical component as the average normal force Nave and
the horizontal portion as the rolling frictional force fr. We can now define a coefficient of rolling
friction in the usual manner as

µr r avef N≡ / . (1)



(Note that many authors choose to multiply the right-hand side of this expression by the radius R
of the wheel. In the model I will develop, such a scaling factor does not naturally arise.) Young
and Freedman cite typical values for µr of 0.01–0.02 for rubber tires on concrete and
0.002–0.003 for steel wheels on steel rails, thereby explaining the greater potential efficiency of
locomotive travel. Hence a free-body diagram for a real free wheel rolling to the right is
something like the following.

 Nave

 mg

 fr

 θ

 a

 υ
 ω

 α

The frictional force provides the translational deceleration,

f N mar r ave≡ =µ . (2)

Note from the vertical force balance that N mgave = , and hence µr can be directly measured as
the fractional acceleration relative to gravity, i.e., µr a g= / . On the other hand, the torque about
the center due to the normal force is larger than that due to the frictional force and thus results in
the rotational deceleration,
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using Eq. (2) twice in the second step. I have assumed the wheel rolls without slipping to relate a
to α, and have introduced the dimensionless coefficient γ ≡ I mR/ 2 . Assuming θ is small, we
therefore obtain

θ µ γ≅ +r ( )1 . (4)

This relationship could alternatively have been derived by equating the torque about the bottom-
most point of the wheel (about which pure rotations occur), which is approximately N Rave sinθ ,
to α multiplied by I mR+ 2 using the parallel-axis theorem. For example, if γ = 0 5.  (as for a
uniform disk) and µr = 0 015. , then θ =1 3. ˚. This gives a measure of the deformation of the
wheel and road.

Note that if a wheel is driven by a motor providing a torque τmotor about the axle, or retarded
by a brake producing a torque τbrake, that it is not necessary to take into account the preceding
non-ideal deformations. In the driven case, we can assume there is a static frictional force fs at



the bottom-most point which is in the forward direction (since the wheel has a tendency to slip
backward as it presses against the pavement) to provide the translational acceleration a, while
τ αmotor sf R I= +  is in the direction of rotation of the wheel to generate the rotational
acceleration α. Since there is a maximum magnitude for the static friction (depending on the
coefficient µs), the wheel will not slip provided one does not accelerate it too hard. In the case of
the braked wheel, we reverse the directions of both fs and the applied torque.


