
Two Problems of Rotational Equilibrium—C.E. Mungan, Summer 2000 
 

1.  An example problem in most algebra and calculus based textbooks is the following. A 
ladder of uniform mass density leans against a wall, making an angle  with the floor. What is 
the minimum value of  if the ladder is not to slip? 

Without exception, every introductory textbook on my shelf adds the stipulation that the wall 
is to be considered smooth, so that its coefficient of static friction is μwall = 0 . Marion and 
Hornyak comment, “If friction exists between the top of the ladder and the wall, the system 
becomes indeterminate.” Sears and Zemansky similarly say, “Such a problem is statically 
indeterminate. The difficulty is that it’s no longer adequate to treat the body as being perfectly 
rigid.” (To be fair, it’s not clear if S&Z are referring to the more general problem of finding the 
forces when the ladder is at an arbitrary angle or specifically to the case of the ladder on the 
verge of slipping. No such confusion exists in M&H however.) In fact, the problem is perfectly 
soluble even when the coefficients μfloor and μwall are both nonzero. 

Since the ladder is on the verge of slipping, the frictional forces at both the wall and floor 
must be at their maximum values: if they were not, the ladder could not slip. A free-body 
diagram is thus as follows. 
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Balancing the horizontal forces gives 

 N floor = Nwall /μfloor , (1) 

while the vertical force balance is 

 N floor = mg μwallNwall . (2) 

Equating the right-hand sides of Eqs. (1) and (2) and rearranging gives a solution for Nwall. 
Finally, the torque balance about the point of contact between the ladder and floor implies 

 mg 12 Lcos = NwallLsin + μwallNwallLcos . (3) 



Dividing this expression through by mgLcos  and substituting our solution for Nwall gives the 
answer,1 
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This reduces to the usual textbook solution when μwall = 0 . In particular, the ladder can stand 
only at 90˚ if the floor is smooth, μfloor = 0 . Notice now however that the ladder is stable at any 
angle if the geometric mean of μfloor and μwall is greater than or equal to unity. 

 
2.  Demo 03–26 “Toppling Cylinders” in the Video Encyclopedia of Physics Demonstrations 

consists of a hollow right cylinder having a top cap. When the cap is removed, the cylinder falls 
over. The secret to this surprising behavior is that there are two balls inside the cylinder stacked 
on top of each other whose diameters are less than that of the cylinder. When the cap is removed, 
the cylinder’s mass is sufficiently reduced so that it topples. 

Suppose that the cylinder has mass M and radius R, the lower ball has mass M1 and radius R1, 
and the upper ball has mass M2 and radius R2. We can construct a force diagram as follows, 
where forces on the upper ball are thin lines, those on the lower ball are thick lines, and those on 
the cylinder are dashed lines and with F indicating normal forces and f denoting frictional forces. 
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1Footnote added Dec 2006: See K.S. Mendelson, “Statics of a ladder leaning against a rough wall,” Am. J. Phys. 63, 
148 (1995) for a discussion of the fact that slipping begins at the wall and then occurs at the floor due to the elastic 
loading of the ladder. 



Here I have used Newton’s third law to write all action-reaction pairs of forces. By 
considering the torque balance about the center of the upper ball, we see that f1 = f2. The only 
way these can always be equal regardless of the nature of the surfaces is if both are zero. This 
makes sense because the ball has no tendency either to slip or to spin even if it is greased. 
Similarly we see that f3 = f4  and so again both must be zero. Next, suppose that a line joining 
the centers of the two balls together makes an angle  with respect to the vertical. By considering 
the horizontal force balance on each ball we see that 

 F2 sin = F1 = F3 , (5) 

while the vertical force balance on the upper ball gives 

 F2 cos = M2g . (6) 

Dividing Eq. (5) by (6) gives an expression for the normal force exerted by either ball on the 
cylinder walls. These two normal forces constitute a couple displaced vertically from each other 
by a distance equal to the vertical displacement between the centers of the two balls, namely 

 y = (R1 + R2)cos . (7) 

The cylinder will thus topple provided its mass is less than some maximum value Mmax whose 
value is obtained by considering the torques about the lower right-hand corner of the cylinder, 

 MmaxgR = F1y . (8) 

Finally, the angle  is obtained from the geometrical restriction that the two balls span the 
diameter of the cylinder, 

 (R1 + R2)(1 + sin ) = 2R D . (9) 

Substituting our solutions for the normal force and vertical displacement into Eq. (8) and using 
(9) gives 
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=
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where the arithmetic mean diameter of the two balls is D (2R1 + 2R2 ) / 2 . 
If the balls have equal diameters, there are two obvious limits to their diameters. On the high 

side, the cylinder will never topple if the diameter of the balls matches that of the cylinder. The 
other limit is when the balls have a diameter equal to the radius of the cylinder. In that case the 
two balls will lie on the bottom side by side and the cylinder again can never topple. While the 
former limit is evident from Eq. (10), the latter is not but is implicit in the preceding equations 
such as (9). Hence the limits are 1 < D /R < 2 . 

If the balls have unequal diameters, say R R2 R1 > 0 , it is possible for the two balls to 
lie on the bottom even if the sum of their diameters is greater than the diameter of the cylinder. 
Furthermore, on the high side, the larger ball will not fit in by the time their average diameter 
equals that of the cylinder. The revised geometrical limits are straightforward albeit messy to 



derive. The result is 

 1 +
r2

4
<

D 
R

< 2 r  (11) 

where r R / R . In order for there to be any positive solution for Mmax at all, we require that the 
fractional difference in radii of the balls be no more than rmax = 2( 2 1) = 0.828 . 

In the graph below the final results are plotted for r = 0 (solid curve), 0.4 (dashed curve), and 
0.8 (dash-dotted curve). The sharp corners in the plots assume rigid, smooth objects and would 
presumably be rounded off in a real experiment. 

 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

D /R

Mmax /M2


