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Rod Cross presents experimental data for the deformation distance x and time t when a steel 
ball (of mass m = 2 kg) is dropped (from a height of few centimeters so its impact speed is 0.75 
m/s) onto a cylinder of silly putty (which is 35 mm in height and 20 mm in diameter). The 
cylinder is on top of a piezoelectric disk to measure the impact force F during the collision. The 
ball is observed to bounce off as we see in the left panel of Fig. 1 below, but there is some 
hysteresis as evidenced in the right panel. Mechanical energy is lost during the inelastic collision, 
corresponding to a coefficient of restitution of 45% determined by measuring the rebound speed 
using a video camera. 

 
Fig. 1. The left-hand graph of F versus t is from Fig. 4 of the AJP paper, while the 
right-hand graph of F versus x is from Fig. 2 of the TPT paper. 

 
Silly putty is a viscoelastic solid, so we can model it as a series combination of a Hookean 

spring of stiffness constant k and elongation xs with a dashpot of drag constant b and 
displacement xd, as sketched in Fig. 2. 
 

 
Fig. 2. A series combination of a spring and a dashpot exerting force F on a mass m. 



Since the force F equals the tension which is everywhere the same along the combination 
(neglecting the masses of the spring and dashpot), we can write 
 

 
Fx = !kxs = !b !xd . (1) 

Introducing the damping coefficient ! " k / 2b  (to be contrasted with the usual expression 
! " b / 2m  when the spring and dashpot are in parallel) and natural frequency ! " k / m  (both 
in rad/s), Eq. (1) implies 

 
 
!xd = 2! xs  (2) 

whose time derivative is 
 

 
!!xd = 2! !xs . (3) 

Noting from Fig. 2 that the total compression of the silly putty is x = xs + xd  and that the force 
on the ball is 

 
F
x
= m!!x , we conclude that 

 
 
m!!xs + m!!xd = !kxs  (4) 

using the first equality in Eq. (1). Substituting Eq. (3) into (4) gives 

 
 
!!xs + 2! !xs +"

2
xs = 0  (5) 

which we recognize as the standard equation of a damped undriven oscillator with solution 

 xs(t) = Ae
!" t
sin #$ t  (6) 

assuming underdamping (! <" ) where the amplitude is A, the damped frequency is 
!" = (" 2 # $ 2 )1/2 , and a sine solution has been chosen to match the initial conditions xs = 0  and 

xd = 0  at t = 0 . We substitute this solution into Eq. (2) to find 

 xd(t) = 2! A e
"! t
sin #$ t dt

0

t

% = 2! A
#$ 1" e"! t cos #$ t( ) " ! e"! t sin #$ t

#$ 2
+ ! 2

. (7) 

Adding together Eqs. (6) and (7) gives 

 x = A
!" 2 # $ 2( )e#$ t sin !" t + 2$ !" 1# e#$ t cos !" t( )

!" 2
+ $ 2

 (8) 

whereas Eq. (6) substituted into the first equality in Eq. (1) gives 

 F = kAe
!" t
sin #$ t  (9) 

in magnitude, limited to the range of times 0 ! t ! T / 2  while the ball is in contact with the silly 
putty, where the period is T ! 2" / #$ . 

In Excel, I computed F and x versus t and plot the results in Fig. 3 after varying the 
parameters to obtain a good match to Fig. 1. Specifically the coefficients are k = 20 kN/m  (so 
that ! = 100 rad/s ), b = 600 kg/s  (so that ! = 16.7 rad/s  and !" = 98.6 rad/s ), and A = 9 mm . 



The peak force is on the order of kA, the maximum value of x is on the order of A, and the 
collision time is / = 31.9 ms . 

Fig. 3. Predicted force versus time or compression for the parameters given in the text. 
 

So far the agreement between theory and experiment has been good. Less satisfactory 
however is the calculation of the coefficient of restitution, COR, which was experimentally 
found to be 45%. Integrating the area under the left-hand graph in Fig. 3 gives an impulse of 
I = 2.82 N s . Given that the incident speed is i = 0.75 m/s , the final speed is predicted to be 

 f =
I

m i = 0.66 m/s COR =
f

i
= 88% . (10) 

An alternative is to compute the nonconservative work W done on the silly putty, by integrating 
the area enclosed by the hysteretic curve in the right-hand graph in Fig. 3, to get W = 519 mJ . 
Then 

 Kf = Ki W f = 0.21 m/s COR =
f

i
= 28% . (11) 

These results are very sensitive to the exact value of the incident speed; changing i by a few 
tenths of m/s leads to values of COR that equal 45%. Note that if we turn off the dashpot by 
letting b , the hysteresis is correctly observed to become zero so that Eq. (11) predicts COR 
= 100%. However, Eq. (10) does not predict a COR of 100% unless the incident speed equals the 
maximum speed of the oscillator, max = A = 0.9 m/s , which again disagrees by a few tenths 
from the actual incident speed. It is possible that better agreement with the observed COR would 
be found by using a pair of spring-dashpot systems in parallel, as Rod Cross suggests in the AJP 
paper. 




