Derivations of Stirling’s Approximation—C.E. Mungan, Spring 1998
Method 1. By Taylor Series

Begin with
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and for convenience defing(x) = nInx — x. By graphingf(x), you can convince yourself that it
peaks ak =nsince f'(n) = 0. Hence, we can approximd(®g) by expanding it around=n. (By

expanding around the maximum, the integral will include most of the area.) We get
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since f"(n) = =1/ n. Recalling the normalization of a Gaussian of meand standard deviation
~'n, we immediately obtain
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which is Boas Eq. (11.11.1). | extended the lower limit in evaluating the integralgmeen is
assumed to be large.

Method 2: Using Infinite Series, Products, and Limits

This method due to Mermin is longer, but enlightening. By inspection we see that
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Let’s define a constam such that
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which is meaningful because the infinite product can easily be shown to converge using Eq. (1b)
below. It follows that
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and we can show that the infinite product in this equation is negligible fordahggarticular,

each term in this product haslarge and
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where use was made of Boas Eq. (1.13.4) in the second step, which applies since it is always true
that% <1. But for sufficiently largem, the argument of the exponential is negligibly small and it

follows that
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which actually converges quite rapidly (e.g., try it on a calculatanferl, 10, 100) and is in

and of itself a very useful result. Thus, Eq. (2a) becomes
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even for merely moderately large
The last and hardest step is to prove Fhatrr, so that Eq. (2b) gives the desired result. For

this purpose, we first derive Wallis’ formula farstarting from
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since for largen, sin°" @ is nonzero on (072) only for 6 nearn2, in which casecos(% - 6) =

However,
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using the intermediate result of Boas Problem 11.5.1. Hence, in the limit.as we have
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which is Wallis’ formula. Finally, consider the following quantity
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so that
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using Wallis’ formula. (Compare Boas Problem 11.11.4.) On the other hand, Eq. (2b) implies
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for largen, and by comparing the last two equations we see that we mud® bkawas required.
See Mermin for a discussion of how we can go on to refine Stirling’s approximation by
substituting Eq. (1b) into Eq. (2a).




