
Derivations of Stirling’s Approximation—C.E. Mungan, Spring 1998

Method 1: By Taylor Series

Begin with
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and for convenience define f x n x x( ) ln= − . By graphing f(x), you can convince yourself that it
peaks at x = n since ′ =f n( ) 0 . Hence, we can approximate f(x) by expanding it around x = n. (By

expanding around the maximum, the integral will include most of the area.) We get
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since ′′ = −f n n( ) /1 . Recalling the normalization of a Gaussian of mean n and standard deviation

n , we immediately obtain
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which is Boas Eq. (11.11.1). I extended the lower limit in evaluating the integral to –∞ since n is
assumed to be large.

Method 2: Using Infinite Series, Products, and Limits

This method due to Mermin is longer, but enlightening. By inspection we see that

  

n n n

n

n n

e

e

n
n

n n

n

m
m

m

n

n

n

m
m

m n

! ( )

/

/ / / / /

/

/

/
/

= × × × × − ×

= ( ) × ( ) × ( ) × ×( ) ×

=
+( )

=
+( )

− − +

+

+

=

−

+

−

+

=

∞

∏

∏

1 2 3 1

1

1

1
2

3 2 2
3

5 2 3
4

7 2 1 1 2 1 2

1 2

1 1 2

1

1

1 2

1

1 1 2

L

L

11 1 1 2

1

+( ) +

=

∞

∏ m
m

m

e
/

/

Let’s define a constant P such that
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which is meaningful because the infinite product can easily be shown to converge using Eq. (1b)
below. It follows that
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and we can show that the infinite product in this equation is negligible for large n. In particular,
each term in this product has m large and
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where use was made of Boas Eq. (1.13.4) in the second step, which applies since it is always true
that 1 1m ≤ . But for sufficiently large m, the argument of the exponential is negligibly small and it

follows that
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which actually converges quite rapidly (e.g., try it on a calculator for m = 1, 10, 100) and is in
and of itself a very useful result. Thus, Eq. (2a) becomes
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even for merely moderately large n.

The last and hardest step is to prove that P = π, so that Eq. (2b) gives the desired result. For

this purpose, we first derive Wallis’ formula for π starting from
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since for large n, sin2n θ  is nonzero on (0,π/2) only for θ near π/2, in which case cos π θ2 1−( ) ≈ .

However,
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using the intermediate result of Boas Problem 11.5.1. Hence, in the limit as n → ∞  we have
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which is Wallis’ formula. Finally, consider the following quantity
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using Wallis’ formula. (Compare Boas Problem 11.11.4.) On the other hand, Eq. (2b) implies
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for large n, and by comparing the last two equations we see that we must have P = π as required.

See Mermin for a discussion of how we can go on to refine Stirling’s approximation by
substituting Eq. (1b) into Eq. (2a).


