
Potential Energy of Stretched Springs—C.E. Mungan, Fall 2003

Suppose that we join a set of point masses into a line interconnected by springs, as in the
usual coupled oscillators configuration. The two end springs will be attached to fixed walls,
between which the whole arrangement will be stretched. We wish to find expressions for the
elastic potential energy of the system, both for longitudinal displacements of the masses (i.e.,
along the line of the springs) and for transverse displacements (i.e., perpendicular to the line of
the springs). For simplicity, I will specifically consider the case of three identical springs. The
generalization to inequivalent springs and to a different number of springs will be clear in the
end.

Let’s begin with the more common longitudinal case sketched below.
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Each spring has stiffness constant k, relaxed length l, and equilibrium length L = l + u , where u
is the amount by which each spring had to be initially stretched (or compressed, if u is negative)
to get the arrangement to extend from the left wall to the right wall. Next consider an arbitrary
longitudinal displacements of the two masses by x1 and x2, as drawn. Since the potential energy
of a spring is determined by the total stretch of the spring from its relaxed length, the elastic
potential energy of the system is thus found to be
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where the second line follows from expanding the squares in the first line, and where U0 is a
constant equal to 3ku2 / 2 , as can be obtained by putting x1 = x2 = 0 in the first line. That is, U0

has the physical meaning of the potential energy at equilibrium, which we can conveniently
redefine as our zero-energy reference configuration, so that U0 = 0. We therefore conclude that
the potential energy of a longitudinally displaced set of n springs can be written as
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where ki is the stiffness constant of the i-th spring and δix is the difference in the longitudinal
displacements of the two ends of the i-th spring from their equilibrium positions (i.e., it is the
stretch of the spring compared to its equilibrium length). It is important to note that Eq. (2) is
exact (assuming Hookean springs) regardless of the values of xi, l, and u. This is not true of the
transverse configuration, which is diagrammed below.
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In this case the elastic potential energy of the system is
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since the terms in the square brackets are the stretches of the springs from their relaxed length l.
If we assume the transverse displacements y1 and y2 are both small compared to the equilibrium
stretch L − l ≡ u  of each spring, then we can Taylor expand first the square roots and then the
squares as follows,
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We again redefine the equilibrium energy U0 = 3ku2 / 2 to be zero, since it is merely an
uninteresting additive constant. Finally if the springs start out highly stretched (u >> l ), then
u / L = u / (u + l) ≈1, and Eq. (4) becomes, when generalized,
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where δiy is the difference in the transverse displacements of the two ends of the i-th spring from
their equilibrium positions (or equivalently, to within an uninteresting constant, δiy

2  is the square
of the total length of the i-th spring). But it is important to notice that Eq. (5) is only valid
provided that both yi and l are small compared to u, UNLESS all of the springs have zero relaxed
length (l = 0), in which case we see from Eq. (3) that Eq. (5) is exact for any values of yi and u.



In contrast, note from Eq. (4) that U = 0 to quadratic order if the springs start out unstretched
(u = 0). This makes sense intuitively because small transverse displacements hardly stretch these
floppy springs.


