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We treat a tsunami as a sinusoidal wave with period T whose wavelength λ is much larger 
than the ocean depth D. Consider a single crest, whose height h is equal to the amplitude of the 
tsunami and whose length is half a wavelength. A tube of water at the base of this crest with 
cross-sectional area A therefore has mass m = !A" / 2  and is pushed forward by the water gauge 
pressure p = !gh , where ρ is the density of water. The water molecules composing this tube are 
accelerated from an initial speed of zero up to some horizontal particle speed υH during the time 
T/2 that the crest hits it. Consequently Newton’s second law can be written as 

 F = ma ! "ghA = "A# / 2
$H
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ghT

#
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This is the horizontal speed of water molecules in the crest. At the same time, water molecules 
are also driven upward to some vertical speed υV. Specifically, molecules move vertically a 
distance on the order of the amplitude in each period, so that 

 !V =
h

T
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Now consider a block of water that is one wavelength long in the ocean before the tsunami 
arrives. It has a lateral area of !D . But once the tsunami arrives, that same quantity of water 
becomes a pulse of height D + h  and length ! " #x . By continuity (conservation of mass), the 
lateral area must remain unchanged, 
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A water molecule at the top leading corner of this block moves upward a distance h in time T 
with speed υV, and inward a distance Δx in time T with speed !H = "x /T , so that 
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using Eqs. (1) to (3). Therefore the phase speed of the tsunami wave is 

 c =
!

T
= gD , (5) 

which establishes the well-known result that shallow water waves move with a speed 
proportional to the square root of the water depth. In a more exact treatment, this follows from 



the small k limit of the dispersion relation ! 2
= gk tanh(kD) , where ! = 2" /T  is the angular 

frequency and k = 2! / "  is the angular wavenumber. 
It is easy to see that as the tsunami approaches shore, it piles up into a narrower, taller pulse. 

The narrowing follows from the fact that ! " D
1/2 . This occurs because ! f " D

1/2  according to 
Eq. (5) and the wave frequency f is a constant as it travels into water of different depths (just as a 
light wave has constant frequency but variable speed and wavelength as it travels from one 
medium into another). On the other hand, the power of a wave is proportional to its amplitude 
squared times its speed, h2c . (This follows from the fact that the particles oscillate vertically 
with an energy proportional to the amplitude squared while the wave propagates horizontally 
with speed c. See for example Giancoli Eq. 15-6.) Neglecting dissipative losses, we conclude 
that h ! c

"1/2
! D

"1/4  so that the wave gets taller as it approaches shore. The piling up is even 
more dramatic and becomes nonlinear when we account for viscous interactions with the beach 
bottom and resonances with coastal basins. 


