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Abstract

In this paper we show that the Plebanski theory of gravity implies a
theory dual to the Ashtekar variables where the antiself-dual Weyl cur-
vature is the fundamental momentum space variable. The dual theory
implies the Einstein equations modulo the initial value constraints, and
appears to be consistent in the Dirac sense. Using the dual theory we
have obtained a reduced phase space for gravity through implementa-
tion of the initial value constraints. Additionally we have computed the
classical dynamics and have performed a quantization on this space,
constructing a Hilbert space of states for vanishing cosmological con-
stant. Finally, we have clarified the canonical structure of the dual
theory in relation to the Ashtekar theory.
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1 Introduction

The canonical formulation of the metric representation of general relativity
produces a totally constrained system as a consequence of diffeomorphsim
invariance. The Hamiltonian consists of a linear combination of first class
constraints Hµ = (H,Hi), respectively the Hamiltonian and diffeomorphism
constraints. These constraints Hµ have thus far turned out to be intractable
in the metric representation due to their nonpolynomial structure in the
basic variables. A major development occured in 1988 with the introduction
of the Ashtekar variables (see e.g. [1],[2],[3]), which led to the simplification
of the initial value constraints into polynomial form. The Ashtekar variables
can be seen as a result of enlarging the metric phase space Ω, essentially
by embedding it into the phase space of a SO(3) Yang–Mills theory. A
remnant of this embedding is the inclusion of the Gauss’ law constraint Ga
in the list of constraints Hµ → (Hµ, Ga). The projection to the constraint
shell has been problematic in the full theory also in the Ashtekar variables
due to the presence of this additional constraint Ga

1 In the attempt to
express the Ashtekar theory in covariant form it was shown by Jacobson et.
al. in [4], [5], and [6] that the Ashtekar formulation of GR is essentially
the 3+1 decomposition of an action where self-dual two forms are the basic
variables. One also has the Ashtekar connection as well as the antiself-dual
part of the Weyl curvature tensor as variables, the latter regarded as an
auxilliary field. This covariant form of the Ashtekar action as noted was
actually discovered earlier by Plebanski (See e.g. [7]), and the equations of
motion of the Plebanski theory imply the Einstein equations.

In this paper we will show that there are actually two theories of gravity
which can arise from the starting Plebanski theory. One of these theories
is the Ashtekar theory, which has been well studied in the literature. The
second theory to the best of the author’s knowledge appears to be unknown,
and will be referred to in this paper as the ‘dual’ theory. This theory is dual
to the Ashtekar theory in a sense that we will make precise in this paper.
The organization of this paper is as follows. Section 2 provides a review
of the Plebanski theory of gravity, and shows the manner in which the
Ashtekar formulation is obtained by elimination of the CDJ matrix. The
CDJ matrix Ψae is the antiself-dual part of the Weyl curvature expressed as
a 3 by 3 matrix, and in the Plebanski formulation is regarded as an auxilliary
field. In section 3 we derive the dual theory, which eliminates the Ashtekar

1The spin network states of loop quantum gravity solve the Gauss’ law constraint by
construction, and provide a kinematic Hilbert HKin space for GR. However, they have
not yet to the author’s knowledge been shown to solve the Hamiltonian constraint, which
encodes the dynamics of the theory. Still, many insights have resulted from the application
of the Ashtekar variables at the classical and at the quantum level.
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densitized triad σ̃ia from the starting Plebanski theory in favor of the CDJ
matrix Ψae. In the dual theory it is Ψae which is now the momentum space
variable, with the remaining Ashtekar variables along with their physical
interpretations left intact. Having changed the canonical structure of the
theory, we verify closure of the algebra of constraints on the phase space
of the dual theory. The final results of this algebra are provided, though
the details of the calculation and their physical interpretation have been
relegated to a separate paper [8] for considerations of brevity. A main result
is that the Hamiltonian constraint forms a subalgebra. This is different from
the case in the Ashtekar theory, and allows for the possibility to eliminate
the kinematic constraints (Hi, Ga) by Dirac brackets while preserving Dirac
consistency. The implication is that one may now obtain a reduced phase
space constrained by the dynamics only of the Hamiltonian constraint (e.g.
the kinematic phase space) and perform a quantization of this space.

In section 4 we perform a reduction to the kinematic phase space of the
dual theory, defined as the phase space after implementation of the diffeo-
morphism and Gauss’ constraints and prior to the Hamiltonian constraint.
We compute the Lagrangian and Hamiltonian dynamics on this space, in-
cluding the verification of the closure of the Hamiltonian constraint algebra.
It is clear that the momentum space of the dual theory is naturally adapted
to the implementation of the initial value constraints.2 In section 5 we re-
produce the Einstein equations, using the dual theory as the starting point.
More precisely, we show that the Einstein equations follow in the same sense
that the original Plebanski theory implies the Einstein equations, but now
modulo the initial value constraints. The implication for the dual theory is
that the solution to the Einstein equations is directly linked to the solution
of the initial value constraints. In this section we show that the canonical
structure of the dual theory is different from that of the Ashtekar variables
for generic phase space configurations. For the remainder of the sections to
follow we specialize to the case of a vanishing cosmological constant. Sec-
tion 6 computes the Lagrangian and Hamiltonian dynamics on the kinematic
phase space for Λ = 0, and as well the dynamics of the spacetime metric.
The metric in the dual theory is a derived quantity, constructable from a
CDJ matrix Ψae solving the initial value constraints.

Section 7 performs a quantization of the kinematic phase space for Λ = 0,
constructing a Hilbert space of normalizable states solving the Hamiltonian
constraint. We also provide a prescription for explicitly computing expec-
tation values and observables. The measure of normalization for the states

2The usual method to obtain the reduced phase space of a constrained system is to
quotient the constraint surface by the gauge orbits generated by the constraints. But the
initial value constraints of the dual theory constrain only the momentum part of the phase
space. This leaves considerable freedom in the selection of the reduced configuration space
ΓKin. A judicious selection of ΓKin can be based on the requirement of globally holonomic
coordinates, which yields quantizable configurations, as shown in [9].
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is Gaussian, which is reminiscent of the Bargmann representation on holo-
morphic functions. Since the wavefunctions have been constructed on the
kinematic phase space, then they solve the kinematic constraints by con-
struction, in addition to the Hamiltonian constraint. The Hilbert space
thus constructed is the Hilbert space of the dual theory, which arises from
the Plebanski action and has been shown to imply the Einstein equations.
The form of the wavefunctions constructed mimic that of a Hamilton–Jacobi
functional on the reduced phase space, obtained by holographic projection.
Section 8 establishes the conditions under which the dual theory is canon-
ically equivalent to the Ashtekar theory. Recall that on the unconstrained
phase space the two theories are not canonically related. Canonical equiv-
alence is established precisely upon solution of the initial value constraints
and projection to the reduced phase space, which we demonstrate in two
ways. Essentially, the canonical commutation relations of the Ashtekar vari-
ables transform into affine commutation relations, which in turn transform
into canonical commutation relations on the kinematic phase space of the
dual theory upon the re-designation of variables. Since this space is read-
ily accessible and quantizable in the dual theory, this provides a recourse
to addressing the aforementioned issues for the Ashtekar variables. In es-
sense, it is now possible to obtain a quantization of gravity subject to initial
value constraints. This result extends from the dual to the Ashtekar the-
ory precisely on nondegenerate configurations. The remainder of section 8
shows the manner in which the initial value constraints correspondingly map
between the unconstrained and the physical phase spaces.
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2 Plebanski theory of gravity

It has been shown by Plebanski in [7] that general relativity may be written
using two forms in lieu of the metric as the basic variables. We adapt the
starting action to the language of the SO(3, C) gauge algebra as

IP leb =
1

G

∫

M
δaeΣ

a ∧ F e − 1

2
(δaeϕ+ ψae)Σ

a ∧ Σe, (1)

where ϕ is a numerical constant. We have defined SO(3, C)-valued two
forms Σa and curvature two forms F a, given by

Σa =
1

2
Σaµνdx

µ ∧ dxν ; F a =
1

2
F aµνdx

µ ∧ dxν . (2)

The quantity F a is the curvature two form of an SO(3, C)-valued connection
one form Aa = Aaµdx

µ, written in component form as

F aµν = ∂µA
a
ν − ∂νA

a
µ + fabcAbµA

c
ν (3)

with structure constants fabc = ǫabc. There are three equations of motion
resulting from (1). The first equation

δI

δψae
= Σa ∧Σe − 1

3
δaeΣg ∧ Σg = 0 (4)

implies that the two forms Σa can be derived from a set of tetrad one forms
eI = eIµdx

µ occuring in a self dual combination

Σa = ie0 ∧ ea − 1

2
ǫafge

f ∧ eg, (5)

which enforces the equivalence of (1) to general relativity. The volume form
for the spacetime corresponding to (5) is given by

i

2
Σa ∧ Σe = δae

√−gd4x, (6)

which fixes the conformal class of the spacetime metric gµν = ηIJe
I
µ ⊗ eJν .

The second equation of motion

δI

δAg
= DΣg = dΣg + ǫgfhA

f ∧ Σh = 0, (7)
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where D is the exterior covariant derivative with respect to Aa, states that
the connection Aa is the self-dual part of the spin connection compatible
with the tetrad implicit in Σa through (5). Moreover, Aa is uniquely fixed
by Σa. The third equation of motion is given by

δI

δΣa
= F a −Ψ−1

ae Σ
e = 0 −→ F aµν = Ψ−1

ae Σ
e
µν (8)

where we have defined (for this article we will assume that Ψae is nondegen-
erate so that its inverse exists)

Ψ−1
ae = δaeϕ+ ψae. (9)

Equation (8) states that the curvature of Aa is self-dual as a two form, which
implies that the metric derived from the tetrad one-forms eI satisfies the
vacuum Einstein equations. The starting action (1) is equivalent to metric
general relativity when the equations of motion (4), (7) and (8) are satisfied.
However, a canonical analysis shows that the theory (1) in its present form is
a second class constrained system (see e.g. [10] and [11]), whereas the metric
theory of gravity is first class due to closure of the hypersurface deformation
algebra. Note that (1) is expressed in terms of three different fields Aa, Σa

and ψae, written in component form as

IP leb[Σ
a, Aa,Ψ] =

1

4

∫

M
d4x

(
ΣaµνF

a
ρσ −

1

2
Ψ−1
ae Σ

a
µνΣ

e
ρσ

)
ǫµνρσ (10)

where ǫ0123 = 1, whereas in metric general relativity there is only one field,
namely the spacetime metric gµν . This implies that to re-establish the link
to metric GR, some fields must be eliminated from (10).

2.1 Derivation of the Ashtekar theory of gravity

The 3+1 decomposition of (10) is given by

1

2

∫
dt

∫

Σ
d3xǫijkΣajkȦ

a
i +Aa0Di(ǫ

ijkΣajk) + Σa0iǫ
ijk

(
F ajk −Ψ−1

ae Σ
e
jk

)
, (11)

where we have integrated by parts, using F a0i = Ȧai −DiA
a
0 from the temporal

component of (3).3 Let us rename the variables, defining the spatial parts
as

3As with the convention of this paper, lowercase symbols from the Latin alphabet
a, b, c, . . . will denote internal SO(3, C) indices, and those from the middle i, j, k, . . . will
denote spatial indices.
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ǫijkΣajk ≡ 2σ̃ia; ǫijkF ajk ≡ 2Bi
a, (12)

where Bi
a is the SO(3, C) magnetic field. Then (11) becomes4

IP l =

∫
dt

∫

Σ
d3xσ̃ai Ȧ

a
i +Aa0Diσ̃

i
a +Σa0i

(
Bi
a −Ψ−1

ae σ̃
i
e

)
. (13)

Rather than repeat the canonical analysis of [10] and [11], we will use (4) and
(5) to redefine the two form components in (13). Making the identification

eai =
1

2
ǫijkǫ

abcσ̃jb σ̃
k
c (detσ̃)

−1/2 =
√
detσ̃(σ̃−1)ai , (14)

we see that σ̃ia in (12) takes on the interpretation of a densitized spatial
triad. In a special gauge e0i = 0, known as the time gauge, the temporal
components of the two forms (5) are given by

Σa0i =
i

2
Nǫijkǫ

abcσ̃jb σ̃
k
c + ǫijkN

j σ̃ka , (15)

where N = N(detσ̃)−1/2 and N i are a set of four nondynamical fields (See
e.g. [12],[13]).

Substituting (15) into (13), we obtain the action

I =

∫
dt

∫

Σ
d3xσ̃iaȦ

a
i +Aa0Ga −NµHµ[σ̃, A,Ψ]. (16)

The fields Aa0 and Nµ = (N,N i) are auxilliary fields whose variations yield
respectively the following constraints. First we have the constraint Ga, given
by

Ga = Diσ̃
i
a = 0, (17)

and constraints Hµ = (H,Hi) given by

Hi = ǫijkN
iσ̃jaB

k
a + ǫijkσ̃

j
aσ̃

k
eΨ

−1
ae (18)

and

4We have omitted a factor of 1
G

from the action. We will insert this factor when we
are ready to proceed to the quantum theory.
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H = (detσ̃)−1/2
(1
2
ǫijkǫ

abcσ̃iaσ̃
j
bB

k
c −

1

6
(trΨ−1)ǫijkǫabcσ̃

i
aσ̃

j
b σ̃

k
c

)
. (19)

Having redefined the auxilliary fields, (16) is still expressed in terms of
three variables σ̃ia, A

a
i and Ψ−1

ae . This situation, which implies the existence
of second class constraints, can be rectified by eliminating Ψ−1

ae , seen as an
auxilliary field. The result is an action in terms of the variables (σ̃ia, A

a
i )

while preserving the equivalence of (16) to general relativity. This can be
accomplished by imposition of the following conditions on Ψ−1

ae

ǫbaeΨ−1
ae = 0; trΨ−1 = −Λ (20)

where Λ is the cosmological constant. Equation (20) eliminates the antisym-
metric part of Ψae and fixes its trace. The physical interpretation of (20)
arises from the following decomposition

Ψ−1
ae = −Λ

3
δae + ψae, (21)

where ψae is the self-dual part of the Weyl curvature tensor expressed in
SO(3, C) language. The consequence of (20) is that ψae has five D.O.F. at
the level prior to implementation of the constraint Ga.

When (20) holds, then Ψ−1
ae becomes eliminated and equation (16) re-

duces to the action for general relativity in the Ashtekar variables ([1],[2],[3])

IAsh =
1

G

∫
dt

∫

Σ
d3xσ̃iaȦ

a
i +Aa0Diσ̃

i
a

−ǫijkN iσ̃jaB
k
a +

i

2
Nǫijkǫabcσ̃

i
aσ̃

j
b

(
Bk
c +

Λ

3
σ̃kc

)
, (22)

where N = N(detσ̃)−1/2 is the lapse density function. The action (22) is
expressed in terms of two canonically conjugate dynamical variables with
Poisson bracket relations

{Aai (x, t), σ̃jb (y, t)} = Gδab δ
j
i δ

(3)(x, y), (23)

and the offending variable Ψ−1
ae has been eliminated. The auxilliary fields Aa0,

N and N i respectively are the SO(3, C) rotation angle, the lapse function
and the shift vector. Not only is (22) equivalent to metric general relativity,
modulo reality conditions on the phase space variables, by complex canonical
transformation, but also the algebra of constraints Ga, H andHi is first class
as shown in [2],[3]. So we will not requote it here.
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3 The dual theory to Ashtekar’s theory

By imposing the simplicity constraint and eliminating Ψ−1
ae , equation (1)

has been transformed from a second class into a canonically consistent first
class-constrained theory of general relativity in the Ashtekar variables. Note
also that σ̃ia in the original Plebanski theory was part of an auxilliary field
Σa, but upon elimination of Ψ−1

ae has now become promoted to the status
of a dynamical momentum space variable. But this is not the only way to
eliminate variables. We will show that there exists a theory of gravity based
on the field Ψae, which is dual to the Ashtekar formulation of gravity, which
can also be derived directly from (1). Let us, instead of eliminating Ψ−1

ae ,
eliminate the densitized triad σ̃ia from (16) by enforcing the initial value
constraints in the Ashtekar variables. Hence returning to the level of (18)
and (19), re-quoted here for completeness,

Hi = ǫijkN
iσ̃jaB

k
a + ǫijkσ̃

j
aσ̃

k
eΨ

−1
ae (24)

and

H = (detσ̃)−1/2
(1
2
ǫijkǫ

abcσ̃iaσ̃
j
bB

k
c −

1

6
(trΨ−1)ǫijkǫabcσ̃

i
aσ̃

j
b σ̃

k
c

)
, (25)

we will impose the Hamiltonian and diffeomorphism constraints from the
theory based on the Ashtekar variables

ǫijkǫabcσ̃
i
aσ̃

j
bB

k
c = −Λ

3
ǫijkǫabcσ̃

i
aσ̃

j
b σ̃

k
c ; ǫijkσ̃

j
aB

k
a = 0. (26)

Substitution of the second equation of (26) into (24) yields

Hi = ǫijkσ̃
j
aσ̃

k
eΨ

−1
ae , (27)

while substitution of the first equation of (26) into (25) yields

H = (detσ̃)−1/2
(
−Λ

6
ǫijkǫabcσ̃

i
aσ̃

j
b σ̃

k
c

−1

6
(trΨ−1)ǫijkǫabcσ̃

i
aσ̃

j
b σ̃

k
c

)
= −

√
detσ̃

(
Λ+ trΨ−1

)
. (28)

Hence substituting (27) and (28), into (16), we obtain an action given by

I =

∫
dt

∫

Σ
d3xσ̃iaȦ

a
i +Aa0Diσ̃

i
a

+ǫijkN
iσ̃jaσ̃

k
eΨ

−1
ae − iN

√
detσ̃

(
Λ+ trΨ−1

)
. (29)
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But (29) still contains σ̃ia, therefore we will completely eliminate σ̃ia by sub-
stituting the spatial restriction of the equation of motion (8)

σ̃ia = ΨaeB
i
e, (30)

into (29). This substitution, known as the CDJ Ansatz, yields the action5

IDual =

∫
dt

∫

Σ
d3xΨaeB

i
aȦ

a
i +Aa0B

i
eDiΨae

+ǫijkN
iBj

aB
k
eΨae − iN(detB)1/2

√
detΨ

(
Λ+ trΨ−1

)
, (31)

which depends on the CDJ matrix Ψae and the Ashtekar connection Aai , with
no appearance of σ̃ia. In the original Plebanski theory Ψae was an auxilliary
field which could be eliminated. But in (31) Ψae is clearly more than just
an auxilliary field. As shown in [15], [16] and [17] it is inappropriate to go
through the Dirac procedure to define primary and secondary constraints
for variables which are already part of the canonical structure in a first order
phase space action in canonical form. Therefore we will regard the dynamical
variables as Ψae and A

a
i , which satisfy elementary Poisson brackets6

{Abj(x, t),Ψae(y, t)} = δba(B
−1)ejδ

(3)(x, y). (32)

We refer to (32) as a phase space with globally holonomic coordinates with
an inhomogeneous symplectic structure, since the right hand side contains
field dependence. The (true) constraints in (31) arise from the fact that
the time derivatives of the fields (Aa0, N

µ) neither appear in the starting
action nor multiply fields whose velocities appear in the action. These fields
have vanishing conjugate momenta and according to the Dirac procedure
for constrained systems [18] yield primary constraints

πi =
δIDual

δṄ
= 0; π =

δIDual

δṄ
= 0; πa =

δIDual

δȦa0
= 0. (33)

The preservation of the primary constraints (33) in time yields the secondary
constraints (Ga,H,Hi). The Gauss’ law constraint Ga is given by

5The CDJ Ansatz is valid when Bi
a and Ψae are nondegenerate as three by three

matrices. Hence all results of this paper will be confined to configurations where this is
the case.

6One may attempt to treat the velocity of Ψae as a primary constraint, but one finds
that the corresponding secondary constraint is the Hamilton’s equation of motion for Ψae,
which could alternatively have been derived from the canonical structure on the same
footing as Aa

i .
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Ga = −π̇a =
δIDual
δAa0

= ve{Ψae}+ Cfga Ψfg = 0, (34)

which is distinguished by two structures. First there is a triple of vector
fields va = Bi

a∂i constructed from the SO(3, C) magnetic field Bi
a which

contracts one of the indices on Ψae as a kind of internal divergence operator.
The second structure is an object

Cfga =
(
fabf δge + febgδaf

)
Cbe, (35)

where Cbe = AbiB
i
e is defined as the ‘magnetic helicity density matrix’. The

effect of (35) in (34) is to act on Ψae, seen as a SO(3, C)-valued second-rank
tensor, in the tensor representation of the gauge group. The diffeomorphism
constraint is given by

Hi = −π̇i =
δIDual
δN i

= ǫijkB
j
aB

k
eΨae, (36)

which is distinguished by the fact that it is linear in the antisymmetric part
of Ψae. Lastly, the Hamiltonian constraint is given by

H = −π̇ =
δIDual
δN

= i(detB)1/2
√
detΨ

(
Λ+ trΨ−1

)
. (37)

As a note of caution, the solutions of the initial value constraints can only
be used subsequent to, and not before, computing the constraints algebra
and the equations of motion.

We argue that (31) is equivalent to general relativity, since it is dual to a
theory which is equivalent to GR, which was derived from a theory which is
on-shell implies GR. But we will rigorously prove this through the equations
of motion, and perform a quantization of (31). But first let us verify the
preservation of the secondary constraints of the theory.

3.1 Algebra of secondary constraints

We will now compute the algebra of secondary constraints for the dual the-
ory, by smearing the constraints with their respective smearing functions.
The smeared initial value constraints of the dual theory will retain the same
names as their counterparts in the Ashtekar variables. The smeared Gauss’
law constraint is given by

~G[~θ] =

∫

Σ
d3xθawe{Ψae} ≡ Ψae[W

ae(~θ)], (38)

10



the notation being designed to clearly depict its relationship to the smearing
function θa. We have made the definition

we{Ψae} = ve{Ψae}+ Cfga Ψfg (39)

for the unsmeared Gauss’ law constraint. The diffeomorphism constraint is
given by

~H[ ~N ] =

∫

Σ
d3xǫijkN

iBj
aB

k
eΨae ≡ Ψ[ae][V

ae( ~N )], (40)

and the Hamiltonian constraint is given by

H[N ] =

∫

Σ
d3xN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
. (41)

In verification of the closure of the secondary constraints, we will compute
the Poisson algebra of (34), (36) and (37) using the Poisson brackets

{f, g}NH =

∫

Σ
d3x

( δf

δΨbf
(B−1)fj

δg

δAbj
− δg

δΨbf
(B−1)fj

δf

δAbj

)
. (42)

The details of the calculations can be found in [8], and thus will not be
displayed here. The final result of the algebra is

{Ψ[ae][V
ae( ~N)],Ψ[bf ][V

bf ( ~M)]} = Ψ[ae][V
ae( ~N, ~M)];

{Ψ[ae][V
ae( ~N)],Ψbf [W

bf (~θ)]} = Ψ[hg][V
hg(~θ, ~N)] + Ψhg[W

hg(~θ, ~N)
]
;

{Ψae[W
ae(~θ)],Ψbf [W

bf (~λ)]} = Ψae[W
ae(~θ,~λ)];

{H[N ],Ψ[ae][V
ae( ~N)]} = V ae( ~N,N)Ψ[ae] +H[N, ~N ];

{H[N ],Ψae[W
ae(~θ)]} =W ae(N, ~θ)Ψae;

{H[M ],H[N ]} = ~m · ~V (M,N)H. (43)

According to the notation in (43), the bold quantities signify the correspond-
ing constraints in (38), (40) and (41) but containing momentum-dependent
structure functions. The physical interpretation of the initial value con-
straints for the theory dual to the Ashtekar theory is also provided in [8].
The main point that we wanted to illustrate is that the algebra of constraints
closes. This algebra can be summarized in the following notation
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{ ~H[ ~N ], ~H [ ~M ]} ∼ ~H[ ~N, ~M ];

{ ~H [ ~N ], ~G[~θ]} ∼ ~H[ ~N, ~θ] + ~G[ ~N, ~θ];

{~G[~θ], ~G[~λ]} ∼ ~G[~θ,~λ];

{H[N ], ~H [ ~N ]} ∼ ~H[ ~N,N ] +H[ ~N,N ];

{H[N ], ~G[~θ]} ∼ ~G[N, ~θ];

{H[M ],H[N ]} ∼ H[M,N ], (44)

which means that the dual theory to the Ashtekar theory contains no second
class constraints and is first class in the Dirac sense. To find the number of
physical degrees of freedom per point, we implement a first class system of
seven constraints7 on an eighteen (complex) dimensional phase space, which
leaves 2 × 9 − 2 × 7 = 4 complex phase space degrees of freedom. Note
that the initial value constraints are interpreted as constraints on the CDJ
matrix Ψae, which constitutes the momentum space of the dual theory. To
obtain the physical degrees of freedom of the configuration space, one must
select an equivalence class from the orbits generated by each constraint,
which amounts to the judicious imposition of restrictions on Aai .

8 Hence,
with a cotangent bundle structure on the reduced phase space, we should
have two momentum and two configuration degrees of freedom per point,
which matches the D.O.F. of complex GR. For this reason, the dual theory
is not a topological field theory.

Another main feature of the algebra (44) is that the Hamiltonian con-
straint forms a subalgebra. This means that the dual theory allows for the
possibility to eliminate the Gauss’ law and diffeomorphism constraints, leav-
ing behind a physical system on which the dynamics solely of the Hamilto-
nian constraint can be implemented. Note that this feature does not appear
in the Ashtekar variables since in the latter, the Poisson bracket of two
Hamiltonian constraints does not yield a Hamiltonian constraint.

7This is the Hamiltonian constraint (1), the diffeomorphism constraint (3) and the
Gauss’ law constraint (3).

8Reference [9] demonstrates the restriction of Aa
i to quantizable configurations of the

dual theory with respect to globally holonomic coordinates on configuration space ΓDual.
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4 Reduction to the kinematic phase space

Next we will reduce the dual theory to the kinematical level, defined as the
level where the diffeomorphism and the Gauss’ law constraint have been
implemented, leaving remaining the Hamiltonian constraint. The starting
action is given by

IDual =

∫
dt

∫

Σ
d3xΨaeB

i
eȦ

a
i +Aa0we{Ψae} −N iHi − iNH. (45)

Variation of (45) with respect to the shift vector N i yields the diffeomor-
phism constraint

δIDual
δN i

= (detB)(B−1)diψd = 0 −→ ψd = 0, (46)

where ψd ≡ ǫdaeΨae parametrizes the antisymmetric part of the CDJ matrix.
Since ψd vanishes, then Ψae on-shell must be symmetric. Accompanied with
the imposition of the diffeomorphism constraint we will gauge fix the shift
vector N i, using the equation of motion for ψd

δIDual
δψd

= ǫdaeB
i
eF

a
0i + 2N i(B−1)di (detB) = 0. (47)

Using the property of the determinant of nondegenerate 3 by 3 matrices Bi
a,

this yields the solution

N j =
1

2
ǫjikF a0i(B

−1)ak. (48)

Upon substitution of the solutions (46) and (48) into (45), we obtain an
action given by

IDual =

∫
dt

∫

Σ
d3xΨ(ae)B

i
eȦ

a
i +Aa0we{Ψ(ae)} − iNH

=

∫
dt

∫

Σ
d3xΨ(ae)B

i
eF

a
0i − iNH, (49)

where we have integrated by parts to transform the Gauss’ law constraint
and canonical term into the temporal component of the curvature. Since
Ψ(ae) is symmetric, then (49) can be written as

IDual =
1

8

∫

M
d4xΨaeF

a
µνF

e
ρσǫ

µνρσ − iN(detB)1/2
√
detΨ

(
Λ + trΨ−1

)
. (50)
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Equation (50) is the dual action at the level of implementation of the diffeo-
morphism constraint, with the Hamiltonian constraint effectively appended
to a term of the form ΨF ∧F . But this is not a topological field theory since
as we have shown, there are four physical degrees of freedom per point on
the reduced phase space. The first term of (50) by itself possesses three sym-
metries. It is invariant under spacetime diffeomorphisms due to contraction
of its world indices µ. It is invariant under simultaneous SO(3, C) rotations
of Ψ and the two curvatures. It is also invariant under the translations

Ψae → ǫaedmd; Ψae → Ψae + φae, (51)

where Dφae = 0. Note, of the three aforementioned invariances there is
only one invariance not broken by the Hamiltonian constraint term of (50),
namely the invariance under SO(3, C) rotations. This can be seen from
the fact that the Hamiltonian constraint depends completely on SO(3, C)
invariants, which will bring us to consider the Gauss’ law constraint.

Since Ψae is symmetric we can write it as a polar decomposition9

Ψae = (eθ·T )afλf (e
−θ·T )fe, (52)

using a SO(3, C) transformation (eθ·T )ae parametrized by three complex an-
gles ~θ = (θ1, θ2, θ3). This corresponds to a rotation of the diagonal matrix of
eigenvalues λe = (λ1, λ2, λ3) from the intrinsic frame, where Ψae is diagonal,
into an arbitrary SO(3, C) frame. The Hamiltonian constraint is given by

H = (detB)1/2
√
detΨ

(
Λ + trΨ−1

)
, (53)

which is invariant under SO(3, C) since it depends only on the SO(3, C)
invariants. Hence (53) can equally be written explicitly in terms of the
eigenvalues

H = (detB)1/2
√
λ1λ2λ3

(
Λ +

1

λ1
+

1

λ2
+

1

λ3

)
, (54)

which is the same for each ~θ in (52). Upon substitution of (52) into the first
term of (50) we have

I1 =
1

8

∫

M
d4xλf ((e

−θ·T )faF
a
µν [A])((e

−θ·T )feF
e
ρσ[A])ǫ

µνρσ , (55)

9We assume that Ψae is diagonalizable, which requires the existence of three linearly
independent eigenvectors [19].
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where Aaµ is a four dimensional connection with curvature F aµν [A] given by

F aµν [A] = ∂µA
a
ν − ∂νA

a
µ + fabcAbµA

c
ν . (56)

The internal index on each curvature in (55) is rotated by e−θ·T , which
corresponds to a SO(3, C) gauge transformation. Therefore there exists a
gauge transformed version of F aµν , given by curvature faµν such that

I1 =

∫

M
d4x

(1
8
λff

f
µν [a]f

f
ρσ[a]ǫ

µνρσ − iNH
)

(57)

for some four dimensional connection aaµ. The relation between aaµ and faµν ,

which contains no explicit reference to the SO(3, C) angles ~θ, is given by

faµν [a] = ∂µa
a
ν − ∂νa

a
µ + fabcabµa

c
ν . (58)

It then follows that the connection aaµ is a SO(3, C) gauge transformed
version of Aaµ related by

aaµ = (e−θ·T )aeA
e
µ −

1

2
ǫabc(∂µ(e

−θ·T )bf )(e
−θ·T )cf , (59)

which corresponds to the adjoint representation of the gauge group [20].
Next, perform a 3+1 decomposition of (57), which yields

IDual =

∫

M
d4x

(1
8
λff

f
µν [a]f

f
ρσ[a]ǫ

µνρσ − iNH
)

=

∫
dt

∫

Σ
d3x

(
λf b

i
f ȧ

f
i − λfwf{af0}

−N(detb)1/2
√
λ1λ2λ3

(
Λ+

1

λ1
+

1

λ2
+

1

λ3

)
. (60)

We have defined bia =
1
2ǫ
ijkfajk as the spatial part of (58). Additionally, the

following identifications have been made

detB = detb; bia = (e−θ·T )aeB
i
e. (61)

The first equation of (61) is a result of the special orthogonal property that
det(eθ·T ) = 1, and the second equation corresponds to a SO(3, C) rotation of
the internal index. Integration of (60) by parts with discarding of boundary
terms yields
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IDual =

∫
dt

∫

Σ
d3x

(
λfb

i
f ȧ

f
i + af0wf{λf}

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1

λ1
+

1

λ2
+

1

λ3

)
. (62)

Variation of (62) with respect to af0 would yield

δIDual

δaf0
= wf{λf} = 0 (63)

with no summation over f which is unsatisfactory, since this would consti-
tute a premature restriction on λf which we would like to use for the physical
degrees of freedom. To preserve three D.O.F. in λf at the kinematical level

we must instead set af0 = 0, which corresponds to the choice of a gauge. For

Yang–Mills theory af0 = 0 is known as the temporal gauge [20].
The temporal gauge in Yang–Mills theory admits the residual freedom to

perform time independent gauge transformations. For gravity the infinites-
imal SO(3, C) gauge transformation of af0 would be given by

δξa
f
0 = ξ̇f + f fghag0ξ

h

∣∣∣∣
ag0=0

= ξ̇f . (64)

From (64), one sees that the gauge choice af0 = 0 is preserved only for ξ̇f = 0,
or ξf = ξf (x), namely gauge transformations which are independent of time.
Note that the SO(3, C) angles ~θ can still be chosen arbitrarily. Imposition
of a0 = 0 yields the action

IDual =

∫
dt

∫

Σ
d3x

(
λfb

i
f ȧ

f
i − iN(detb)1/2

√
λ1λ2λ3

(
Λ +

1

λ1
+

1

λ2
+

1

λ3

))
.(65)

Equation (65) seems a feasible starting point for describing the dynamics
of the physical D.O.F. for the dual theory to the Ashtekar theory, since
Dim(ΩKin) = 6,10 but in the process of setting a0 to zero we have eliminated
the ability to impose the Gauss’ law constraint Ga. This will bring us to
the alternate sequence of 3+1 decomposition.

Performing the 3+1 decomposition of (50) prior to the polar decompo-
sition leads to a first order action

10This refers to both the classical and the quantum dynamics. Additionally, by eliminat-
ing three D.O.F. from the Ashtekar connection we have also eliminated three unphysical
degrees of freedom, which should bring us a step closer toward metric general relativity.
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IDual =

∫
dt

∫

Σ
d3x

(
ΨaeB

i
eȦ

a
i +Aa0we{Ψae}

−iN(detB)1/2
√
detΨ

(
Λ+ trΨ−1

))
, (66)

which essentially is (62) with faµν replaced by F aµν . In constrast to (62),

there is no restriction on the angles ~θ and the Gauss’ law constraint upon
variation of Aa0

δIDual
δAa0

= we{λf (e−θ·T )fa(e−θ·T )fe} = 0 (67)

allows us to restrict the SO(3, C) angles θa in lieu of prematurely restricting
λf . Namely, for each configuration Aai and triple of eigenvalues λf , one must

invert (67) to solve for ~θ = ~θ[~λ;A], which defines a functional. The main
result is that the eigenvalues λf are preserved as the physical degrees of

freedom. The consistency of (66) with (62) requires that a0 = 0 and that ~θ
be fixed by (67).11 Hence, the implementation of the kinematic constraints
is equivalent to transforming from (45) directly to

IDual =

∫

M
d4x

(1
8
ΨaeF

a
µνF

e
ρσǫ

µνρσ − iN(detB)1/2
√
detΨ

(
Λ+ trΨ−1

))
,(68)

which resembles a kind of ‘generalized’ F ∧ F term modulo a Hamiltonian
constraint. In the manner of this section one may proceed to obtain the
physical degrees of freedom of the dual theory, which we will expand upon
in a later section.

11The procudure for solving (67) is treated in [21],[22] and [23] and therefore will not
be covered here.
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5 Verification of the Einstein equations of motion

To verify that the Einstein equations follow from the dual theory let us take
a step back to the level prior to implementation of the kinematic constraints.
The starting action of the dual theory is

IDual =

∫
dt

∫

Σ
d3xΨaeB

i
eF

a
0i + ǫijkN

iBj
aB

k
eΨae

−iN(detB)
√
detΨ

(
Λ+ trΨ−1

)
. (69)

The Hamiltonian constraint is given by the equation of motion for the lapse
function N

δI

δN
= H = (detB)1/2

√
detΨ

(
Λ+ trΨ−1

)
= 0. (70)

Since Bi
a and Ψae are nondegenerate by assumption, then the requirement

that the Hamiltonian constraint be satisfied is equivalent to the vanishing
of the term in brackets

Λ +
1

λ1
+

1

λ2
+

1

λ3
= 0. (71)

Equation (71) leads to the following relation

λ3 = − λ1λ2
Λλ1λ2 + λ1 + λ2

, (72)

which expresses λ3 explicitly as a function of λ1 and λ2, which in the dual
theory will be regarded as the physical degrees of freedom.

Since we have already examined the equations involving the antisymmet-
ric part of Ψae, we will now focus on the symmetric part. In what follows,
the reader should keep in mind that the symmetric part of the ΨaeB

i
eF

a
0i

term of (69) is the same as the first term of (68). We will now show that
(69) implies the same Einstein equations of motion arising from the orig-
inal Plebanski action (1). More precisely, we will verify consistency with
equations (4), (5) and (7) and (8). Using

√−g = N
√
detσ̃ = N

√
h = N(detB)1/2

√
detΨ, (73)

which writes the determinant of gµν in terms of its 3+1 decomposition and
uses the determinant of (30), we have
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δIInst
δΨ(bf)

=
1

8
F bµνF

f
ρσǫ

µνρσ + i
√−g(Ψ−1Ψ−1)bf = 0. (74)

Left and right multiplying (74) by Ψ, we obtain

1

4
(Ψbb′F b

′

µν)(Ψ
ff ′F f

′

ρσ)ǫ
µνρσ = −2i

√−gδbf . (75)

Note that this step and the steps that follow require that Ψae be nondegen-
erate as a 3 by 3 matrix. Let us make the definition

Σaµν = (Ψ−1)aeF eµν = Σaµν [Ψ, A], (76)

which retains Ψae and A
a
µ as fundamental, with the two form being derived

quantities. Upon using (76) as a re-definition of variables, which amounts
to using the curvature and the CDJ matrix to construct a two form, (75)
reduces to

1

4
ΣbµνΣ

f
ρσǫ

µνρσdxµ ∧ dxν ∧ dxρ ∧ dxσ = Σb ∧ Σf = −2i
√−gδbfd4x. (77)

Using (8) as a change of variables, namely that a CDJ matrix combined
with a curvature determines a two form, enables one to re-write (75) as

Σb ∧ Σf = −2i
√−gδbfd4x. (78)

One recognizes (78) as the condition that the two forms thus constructed,
which are now derived quantities as in (8), be derivable from tetrads, which
is the analogue of (4) and (5). To complete the demonstration that the
dual theory to the Ashtekar theory yields the Einstein equations, it remains
to show that the connection Aa is compatible with the two forms Σa as
constructed in (76).

The equation of motion for the connection Aaµ from (69) can be seen as
arising from the relevant covariant part encoded in (50), which is given by

δIDual
δAaµ

= ǫµσνρDσ(ΨaeF
e
νρ)−

δ

δAaµ

∫

M
d4x

(
ǫmnlN

mBn
b B

l
fΨbf

−iN
√
detB

√
detΨ

(
Λ+ trΨ−1

))
= 0. (79)

Since there is no occurrence of Aa0 in the NµHµ terms, then the equation of
motion for the temporal component is given by
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δIDual
δAa0

= ǫ0ijkDi(ΨaeF
e
jk) = Di(ΨaeB

i
e) = 0, (80)

which is the Gauss’ law constraint Ga upon use of the spatial restriction of
(76). The equations of motion for the spatial components Aai are given by

δIDual
δAai

= ǫiµνρDµ(ΨaeF
e
νρ)−

δIDual
δAai

∫

M
d4xǫmnlN

mBn
b B

l
fΨbf

+
δ

δAai

∫

M
d4xiN

√
detB

√
detΨ

(
Λ + trΨ−1

)
= 0. (81)

Let us consider the contributions to (81) due to the Hamiltonian and diffeo-
morphism constraints Hµ = (H,Hi). Defining

D
ji
ea(x, y) ≡

δ

δAai (x)
Bj
e(y) = ǫjki

(
−δae∂k + fedaA

d
k

)
δ(3)(x, y), (82)

the contribution due to the diffeomorphism constraint is given by

δHi[N
i]

δAai
=

δ

δAai

∫

M
d4xǫmnlN

mBn
b B

l
fΨbf

= 2D
ni
ba(ǫmnlN

mBl
fΨ[bf ]) + 2D

li
fa(ǫmnlN

mBn
b Ψ[bf ])

= 4D
ni
ba(ǫmnlN

mBl
fΨ[bf ]), (83)

and the contribution due to the Hamiltonian constraint is given by

δH[N ]

δAai
=

δ

δAai

∫

M
d4xiN(detB)1/2

√
detΨ

(
Λ+ trΨ−1

)

= iD
ki
da

(N
2
(detB)1/2(B−1)dk

√
detΨ

(
Λ + trΨ−1

))

= iD
ki
ba

(N
2
(B−1)bkH

)
. (84)

Hence the equation of motion for Aaµ is given by

ǫµνρσDν(ΨaeF
e
ρσ) +

1

2
δµi D

ki
ba

(
i(B−1)bkNH + 4ǫmklN

mBl
fΨ[bf ]

)
= 0, (85)

where we have used that Bi
a is nondegenerate. The first term of (85) when

zero implies (7) upon use of (76) to construct Σaµν . The obstruction to

this equality, namely the compatability of Aaµ with Σfµν thus constructed,
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arises due to the second and third terms of (85). These latter terms contain
spatial gradients acting on the diffeomorphism and Hamiltonian constraints
Hµ. In order that Aaµ be compatible with the two form Σaµ = ΨaeF

e
µν , we

must require that these terms of the form ∂iHµ must vanish, which can be
seen from the following argument. Since Hµ = 0 when the equations of

motion are satisfied, then the spatial gradients from D
ji
ea acting on terms

proportional to Hµ in (85) must vanish.
According to Dirac the constraints must be evaluated only subsequent

to taking derivatives, and not prior. Our interpretation is that this refers to
functional derivatives and time derivatives but not spatial gradients, which
are nondynamical. The vanishing of the spatial gradients can be seen if one
discretizes 3-space Σ onto a lattice of spacing ǫ and computes the spatial
gradients of the constraints Φ as ∂Φ = 1

2ǫ limǫ→0(Φ(xn+1) − Φ(xn−1)), and
uses the vanishing of the constraints Φ(xn) = 0 ∀n at each lattice point xn.
For another argument, smear the gradient of the Hamiltonian constraint
with a test function f

S =

∫

Σ
d3xf∂iH = −

∫

Σ
d3x(∂if)Hµ ∼ 0, (86)

where we have integrated by parts. The result is that (86) vanishes on
the constraint shell ∀f which vanish on the boundary of 3-space Σ. This
is tantamount to the condition that the spatial gradients of a constraint
must vanish when the constraint is satisfied.12 Of course, the constraints
Hµ follow from the equations of motion for Nµ = (N,N i).

This completes the demonstration of the Einstein equations. The Ein-
stein equations have arisen in the same sense as from (1) using (69) as the
starting point, which is defined on the phase space ΩDual = (Ψae, A

a
i ). These

equations are modulo the initial value constraints (46) and (71) and their
spatial gradients, which also have arisen from (69).

5.1 Verification of the canonical structure

Next, we will compare the canonical and the symplectic structures of the
dual in relation to the Ashtekar theory, in preparation for a quantization.
It is not hard to verify that substitution of

Ψ−1
ae = Bi

e(σ̃
−1)ai −→ σ̃ia = ΨaeB

i
e, (87)

the spatial restriction of (8), into (31) yields the Ashtekar action (22) for
nondegenerate Bi

a and σ̃ia. Additionally, the canonical structure can be

12The author is grateful to Chopin Soo for pointing out this latter argument.
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verified as follows. The Ashtekar phase space variables ΩAsh = (σ̃ia, A
a
i )

form a canonical pair with relations

{Aai (x, t), σ̃jb (y, t)} = δab δ
j
i δ

(3)(x, y) (88)

along with

{Aai (x, t), Abj(y, t), } = {σ̃ia(x, t), σ̃jb (y, t), } = 0. (89)

Substituting (87) into (88) in the form σ̃ia = ΨaeB
i
e, we have

{Aai (x, t),Ψae(y, t)B
i
e(y, t)} = {Aai (x, t),Ψae(y, t)}Bi

e(y, t)

+Ψae(y, t){Aai (x, t), Bi
e(y, t)} = δab δ

j
i δ

(3)(x, y) (90)

from the Liebniz rule. The second term on the right hand side of (90)
vanishes on account of (89). Transferring the magnetic field to the right
hand side, since it is nondegenerate by assumption, leads to (32). Note, in
the quantization of the full unreduced theory, that (90) corresponds to a
Schrödinger representation

σ̃ia ≡
δ

δAai
−→ Ψae ≡ (B−1)ie

δ

δAai
. (91)

The result is that the canonical relations of the dual theory transform di-
rectly into the those of the Ashtekar variables. While this may be the case,
there is one subtle difference. If (87) were a canonical transformation, then
the phase space structure of (29) would imply that the variable canonically
conjugate to Ψae is an object Xae whose time derivative is Bi

eȦ
a
i . However,

(87) is not a canonical transformation, which can be seen as follows. The
symplectic two form on the phase space ΩAsh is given by

ΩAsh =

∫

Σ
d3xδσ̃ia(x) ∧ δAai (x) = δ

(∫

Σ
d3xσ̃ia(x)δA

a
i (x)

)
= δθAsh, (92)

which is the exterior derivative of its canonical one form θAsh. Using the
functional Liebniz rule in conjuction with the variation of (87) we have
δσ̃ia = Bi

eδΨae +ΨaeδB
i
e, which transforms the left hand side of (92) into

ΩDual =

∫

Σ
d3xδΨae ∧Bi

eδA
a
i +

∫

Σ
ǫijkΨaeδ(DjA

e
k) ∧ δAai . (93)

Due to the second term on the right hand side of (93), the symplectic two
form in the dual theory is not in general exact. Therefore there is no variable
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canonically conjugate to Ψae such that the fundamental Poisson brackets do
not contain field dependence. If there are configurations where the second
term of (93) vanishes, then such a canonical relation may be established.13

13This corresponds to a restriction of the degrees of freedom of the theory. However,
in a few sections we will show that the remaining degrees of freedom are precisely the
physical degrees of freedom upon implementation of the initial value constraints of GR.
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6 Dynamics on the kinematic phase space

We will now compute the classical dynamics of the reduced theory, on the
kinematic phase space ΩKin.

14 Setting af0 = 0 in (62), we have

IDual =

∫
dt

∫

Σ
d3x

(
λf b

i
f ȧ

f
i − iN(detb)1/2

√
λ1λ2λ3

(
Λ+

1

λ1
+

1

λ2
+

1

λ3

))
.(94)

Note, since Bi
a and Ψae are nondegenerate, that the Hamiltonian constraint

can equivalently be written as

Φ = Λ+
1

λ1
+

1

λ2
+

1

λ3
= 0. (95)

From now on we will limit consideration in this paper to the Λ = 0 case.15

The canonical one form of (94) allows globally holonomic coordinates in the
full theory for six distinct configurations Aai , which is proved in [9].16 For
the purposes of this paper we will treat the diagonal case Aai = δai aa. This
corresponds to a canonical one form

θ =

∫

Σ
d3x

(
λ1a2a3δa1 + λ2a3a1δa2 + λ3a1a2δa3

)
(96)

where af = af (x, t) contain three independent degrees of freedom per point
(and therfore corresponds to the full theory). There is no globally holonomic
coordinate in (96), but we can transform it into a theory with globally
holonomic coordinates via the transformation

Πf = (a1a2a3)λf ; Xf = ln
(af
a0

)
; T = X1 +X2 +X3 (97)

where (detA) = a1a2a3 6= 0, which imposes the following ranges on the
configuration space

−∞ < |Xf | <∞ −→ 0 < |af | <∞. (98)

14The kinematic phase space is defined as the phase space at the level where the Gauss’
law and the diffeomorphism constraints have been implemented on the original full phase
space ΩDual, leaving remaining the Hamiltonian constraint.

15The theory for Λ 6= 0 is treated classically in [24] at the quantum level in [25].
16The special feature of these configurations is that the canonical one form (96) is

free of any terms containing spatial gradients, even though the variables are in general not
spatially homogeneous. Hence one is free to quantize the full theory on these configurations
with all the advantages of the simplicity of minisuperspace.
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Regarding Πf and Xf in (97) as the fundamental variables implies a sym-
plectic two form

Ω =

∫

Σ
d3xδΠf ∧ δXf = δ

(∫

Σ
d3xΠfδX

f
)
= δθ, (99)

which is the exact variation of the canonical one form θ. The starting action
(94) in terms of the new variables is given by

IDual =

∫
dt

∫

Σ
d3x

(
Πf Ẋ

f − iNa
3/2
0 eT/2U

√
Π1Π2Π3

( 1

Π1
+

1

Π2
+

1

Π3

))
,(100)

where U , which depends entirely on spatial gradients of Xf , is as defined
in Appendix A. Equation (100) is canonically well-defined and will form the
basis of the reduced classical theory and its quantization. For one example
of what can follow, consider the Hamiltonian constraint, which for Λ = 0
reduces to

1

Π1
+

1

Π2
+

1

Π3
= 0. (101)

Substitution of (101) into (100) and interchanging the order of spatial with
time integration implies the following Hamilton–Jacobi functional SHJ , where

δSHJ =

∫

Σ
d3x

[
Π1δX

1 +Π2δX
2 −

( Π1Π2

Π1 +Π2

)
δX3

]
, (102)

which is essentially (94) evaluated on the solution to the Hamiltonian con-
straint.17 Equation (102) preserves the form of the Hamiltonian constraint
solution on each spatial hypersurface Σ, and reflects two physical degrees
of freedom. We will show in this paper that the integrated form of (102)
resembles in form the argument of the exponential of the quantum states of
the dual theory to Ashtekar’s theory for Λ = 0.

6.1 Classical dynamics for Λ = 0

We will now formulate the classical dynamics of the kinematic phase space
of the dual theory for Λ = 0. For our starting action we will take the first
order action given by

17Since (94) is at the kinematical level, it then follows that (102) is also a Hamilton–
Jacobi functional evaluated on the solution of all of the initial value constraints, and
contains two degrees of freedom. Note that these D.O.F. have been projected holograph-
ically to the final spatial hypersurface Σ forming the boundary of spacetime M = Σ×R.
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SKin =
1

G

∫

Σ
d3x

(
ΠfẊ

f − iNa
3/2
0 eT/2U

√
Π1Π2Π3Φ

)
, (103)

where U , which contains spatial gradients of the configuration variables Xf ,
is as defined in Appendix A. Also we have defined

Φ =
1

Π1
+

1

Π2
+

1

Π3
. (104)

There are seven fields, Πf = (Π1,Π2,Π3) which we require to be nonvanish-
ing, Xf = (X1,X2,X3), and N and we have defined T = X1 + X2 + X3.
The Euler–Lagrange equations of motion from (103) are given by

d

dt

( δL
δṄ

)
=
δSKin
δN

. (105)

It is clear from the starting action (103) that the velocity Ṅ is absent.
Additionally, N does not multiply a velocity, therefore it is an auxilliary
field and (105) yields

a
3/2
0 eT/2U

√
Π1Π2Π3Φ = 0. (106)

We require that eT/2U
√
Π1Π2Π3 be nonzero, hence (106) reduces to

Φ =
1

Π1
+

1

Π2
+

1

Π3
= 0, (107)

which is a constraint on the variables Πf . Note that this constraint is
independent of the other variables Xf and N .

The equation of motion for Xf is given by

d

dt

( δL

δẊf

)
=

δL

δXf
, (108)

which is

Πf = −Na3/20 eT/2
δU

δXf
{
√

Π1Π2Π3Φ}. (109)

There are spatial gradients from U which act on the terms in curly brackets.
But since these terms are proportional to Φ, by the same argument as in
(86) they vanish on solutions to (107). This leads to
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Πf (x, t) = Πf (x), (110)

which are arbitrary functions of position, independent of time.
To find the equations of motion for Πf , we subtract a total time deriva-

tive d
dt(ΠfX

f ) from the starting action (103) an obtain18

d

dt

( δL

δΠ̇f

)
=

δL

δΠf
, (111)

which is

−Ẋf = −Na3/20 eT/2
δ(Π1Π2Π3)

1/2

δΠf
Φ−Na

3/2
0 eT/2U

√
Π1Π2Π3

( δΦ

δΠf

)
.(112)

The first term on the right hand side of (112) vanishes on account of (107),
and we are left with the following equations

Ẋ1 = −Na3/20 eT/2U
√

Π1Π2Π3

( 1

Π1

)2
;

Ẋ2 = −Na3/20 eT/2U
√

Π1Π2Π3

( 1

Π2

)2
;

Ẋ3 = −Na3/20 eT/2U
√

Π1Π2Π3

( 1

Π3

)2
. (113)

It will be convenient to make the following definitions

η = a
3/2
0

√
Π1Π2Π3

(( 1

Π1

)2
+

( 1

Π2

)2
+

( 1

Π3

)2)
;

ηf = a
3/2
0

√
Π1Π2Π3

(( 1

Πf

)2
; η = η1 + η2 + η3. (114)

Then defining T = X1 +X2 +X3, then (113) is given by

Ẋf =
(ηf
η

)
Ṫ ; Ṫ = −NUeT/2η. (115)

We have to integrate the equation for T

−e−T/2Ṫ = 2
d

dt
e−T/2 = NUη (116)

18In analogy to the arguments of Jackiw as applied to the case in the unreduced dual
theory, it would be inappropriate to treat Π̇f as a primary constraint.
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which yields

e−T/2 = e−T0/2 +
η(x)

2

∫ t

0
N(x, t′)U(x, t′;T )dt′, (117)

where we have defined T0 = T (x, 0). Equation (117) is a nonlinear relation
between T and itself. This can be written as

T = ln
(
e−T0/2 +

η(x)

2

∫ t

0
N(x, t′)U(x, t′;T )dt′

)
−2
. (118)

One may proceed from (119) to perform a fixed point iteration procedure.
Define a sequence Tn(x, t) where T0(x, t) = T0, and the following recursion
relation holds

Tn+1(x, t) = ln
(
e−T0/2 +

η(x)

2

∫ t

0
N(x, t′)U(x, t′;Tn(x, t

′))dt′
)
−2
. (119)

For given initial data T (x, 0) on a 3 dimensional spatial hypersurface Σ and
a choice of the lapse function N(x, t) through spacetime, if the iteration
converges to a fixed point, then one has that

limn→∞Tn(x, t) = T (x, t). (120)

The motion of Xf is given by

Xf (x, t) = Xf (x, 0) +
(ηf
η

)
T (x, t), (121)

with T (x, t) given by (119). The variables Xf evolve linearly with respect
to T , seen as a time variable on configuration space Γ.19 The solutions
for Xf (x, t) in principle are directly constructible from (119) and (120),
combined with the specification of boundary data Xf (x, 0).

6.2 Hamiltonian formalism for Λ = 0

From (103), we will now perform a Legendre transformation into the Hamil-
tonian formalism. The momentum conjugate to Xf is given by

Πf (x, t) =
δS

δẊf (x, t)
. (122)

19This seems to be the nearest gravitational analogy to the motion of a free particle in
ordinary classical mechanics.
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Since (103) already appears in first order form, we can directly read off from
the canonical structure the following elementary Poisson brackets

{Xf (x, t),Πg(y, t)} = Gδfg δ
(3)(x, y). (123)

The momentum conjugate to N is given by

PN =
δL

δṄ
= 0, (124)

which leads to the primary constraint ΠN = 0. Conservation of this con-
straint under time evolution leads to the secondary constraint

ṖN = − δL

δN
= a

3/2
0 eT/2U

√
Π1Π2Π3Φ = 0. (125)

We must now check for preservation of (125). The smeared constraint is
given by

H[N ] =

∫

Σ
d3xNa

3/2
0 eT/2U

√
Π1Π2Π3

( 1

Π1
+

1

Π2
+

1

Π3

)
. (126)

The functional derivatives of (126) are of the form

δH[N ]

δΠf
= N

(
qfH + q

( 1

Πf

)2)
(127)

where q and qf are functions on phase space, whose specific forms are not
important for what follows. The variational derivative with respect to Xf

is of the form

δH[N ]

δXf
= QfNΦ+Qfi∂i(QNΦ) (128)

for some Q, Qf and Qfi which are phase space functions.
We will now compute the algebra of the constraint H using Poisson

brackets

{H[M ],H[N ]} =

∫

Σ
d3x

(δH[M ]

δXf

δH[N ]

δΠf
− δH[N ]

δXf

δH[M ]

δΠf

)

=

∫

Σ
d3xM

(
qfΦ+ q

( 1

Πf

)2)(
QfNΦ+Qfi∂i(QNΦ)−N ↔M. (129)

29



All terms which are proportional to Φ vanish on-shell on account of (107),
so we need only consider terms of the form

∫

Σ
d3xMq

( 1

Πf

)2
Qfi∂i(QNΦ)−N ↔M. (130)

Integrating by parts and discarding boundary terms, one sees that the only
nontrivial contributions to (130) are due to the spatial gradients acting on
the smearing functions M and N . This yields

∫

Σ
d3xqQ

( 1

Πf

)2
Qfi

(
M∂iN −N∂iM

)
Φ. (131)

The result is that

{H[M ],H[N ]} = {H[Qi
(
M∂iN −N∂iM

)
}, (132)

where Qi = Qi(Xf ,Πf ) are phase space dependent structure functions. The
Poisson bracket of two Hamiltonian constraints H on the phase space Ω0 =
(Xf ,Πf ) is proportional to a Hamiltonian constraint. Therefore H is first
class and there are no second class constraints. Since we started with a
phase space of 2 × 3 = 6 degrees of freedom, the degrees of freedom per
point subsequent to implementation of the Hamiltonian constraint are

D.O.F. = 2× 3− 2× 1 = 4. (133)

With four phase space degrees of freedom per point, this shows that the
reduced dual theory is not a topological field theory. This was also the case
in the unreduced dual theory.

6.3 The spacetime metric

The spacetime metric in the dual theory to the Ashtekar theory is not a
fundamental object and must be derived. The fundamental objects are Xf ,
or alternatively the corresponding connection components which are given
by exponentiation of (121)

af (x, t) = a0

(
(deta(x, 0)/a30)

−1/2 +
η(x)

2

∫ t

0
N(x, t′)U(x, t′;T )dt′

)
−2ηf/η

.(134)

Equation (134) provides the explicit time variation for the diagonal connec-
tion in the reduced full theory. Taking the product over i = 1, 2, 3 one finds
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that for t = 0 the condition deta = deta(x, 0) is satisfied, which can be cho-
sen arbitrarily on the initial spatial hypersurface Σ0. One must then choose
the lapse function N(x, t) to specify the manner in which the boundary
data becomes evolved for t > 0. The solutions are labelled by the conjugate
momenta Πf as encoded in ηf/η. Equation (134) can also be written as

af (x, t) =
( deta(x, t)

deta(x, 0)

)ηf/η
= a0e

(ηf /η)T , (135)

whence the variables evolve with respect to deta, seen as a time variable on
configuration space. We will illustrate the construction of the metric for a
simple example where the spatial gradients are zero. Recall in the original
Ashtekar variables that the contravariant 3-metric hij is given by

hhij = σ̃iaσ̃
j
a −→ hij = (detσ̃)−1σ̃iaσ̃

j
a. (136)

The covariant form in the variables of the dual theory is given by

hij = (detΨ)Ψ−1
ae Ψ

−1
af (B

−1)ei (B
−1)fj (detB). (137)

Restricted to the subspace of diagonal connection variables, which in the
dual theory admit the proper canonical relation to the densitized eigenvalues
of the CDJ matrix λf , this is given by

hij = (λ1λ2λ3)




(a1/λ1)
2 0 0

0 (a2/λ2)
2 0

0 0 (a3/λ3)
2




which upon the subsitution λi = Πi(deta)
−1 yields

hij = δij(Π1Π2Π3)
( a30
deta

)( aj
Πj

)2
(138)

with aj given by (134). For simplicity consider the case where the variables
are independent of spatial position and depend only on time. Then Πi are
numerical constants, ai(x, t) = ai(t), and moreover U = 1. As as special
case, take ai(x, 0) = a0, and take N(x, t) = 2, namely a constant lapse.
Then the metric evolves in time via

ds2 = dt2 + δij

(Π1Π2Π3

Π2
j

)
(1 + ηt)2(1−ηj/η)dxidxj , (139)

which has the same form as the Kasner solution, with a re-definition of
variables. One may compute the initial volume of the universe
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V ol(Σ0) =

∫

Σ
d3x

√
h = l3

(Π1Π2Π3

deta(0)

)
= l3(deta(0))−1

( (Π1Π2)
2

Π1 +Π2

)
(140)

at t = 0, where l is a characteristic length scale of the universe from in-
tegration over minisuperspace. Note that this volume is labelled by two
arbitrary constants Π1 and Π2 which determine the algebraic classification
of the spacetime, as well as deta(0). This provides a physical interpretation
for deta in terms of metric variables. A more in-depth analysis of minisuper-
space, as well as a generalization of the above procedure to the full theory,
is reserved for a separate paper.
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7 Quantization and Hilbert space structure for van-

ishing cosmological constant

We now proceed to the quantum theory on the kinematic phase space. We
have already eliminated the Gauss’ law and diffeomorphism constraints,
leaving behind a Dirac consistent phase space which admits a canonical
formulation and classical dynamics. This implies that we may proceed to
the quantum theory by promoting the dynamical variables to quantum oper-
ators Xf → X̂f and Πf → Π̂f , and Possion brackets (123) to commutators

[
X̂f (x, t), Π̂g(y, t)

]
= (~G)δfg δ

(3)(x, y). (141)

The operators in the functional Schrödinger representation act respectively
by multiplication and by functional differentiation of a wavefunctional

X̂f (x, t)ψ = Xf (x, t)ψ;

Π̂f (x, t)ψ = (~G)
δ

δXf (x, t)
ψ. (142)

Note that the following wavefunctionals are eigenstates of Π̂f

ψλ[X] = exp
[
(~G)−1

∫

Σ
d3xλ̃f (x)X

f (x, t)
]
, (143)

where λ̃f (x) are arbitrary continuous functions of position, which do not
contain any functional dependence on Xf (x, t). We will see that these play
the role of labels for the state. The following action ensues for the momen-
tum operator

Π̂f (x, t)ψλ[X] = λ̃(x)ψλ[X]. (144)

We will now search for states ψ ∈ Ker{Ĥ}. But prior to quantization let
us put the smeared constraint into polynomial form

H[N ] =

∫

Σ
d3xNa

3/2
0 eT/2U(Π1Π2Π3)

−1/2
(
Π1Π2 +Π2Π3 +Π3Π1

)
. (145)

To obtain a nontrivial solution it suffices for the operator in brackets in
(145) upon quantization to annihilate the state for each x. Hence

(
Π̂1(x)Π̂2(x) + Π̂2(x)Π̂3(x) + Π̂3(x)Π̂1(x)

)
ψλ[X] = 0 ∀x

−→
(
λ̃1(x)λ̃2(x) + λ̃2(x)λ̃3(x) + λ̃3(x)λ̃1(x)

)
ψλ[X] = 0 ∀x. (146)
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This leads to the dispersion relation

λ̃3 = −
( λ̃1λ̃2

λ̃1 + λ̃2

)
∀x. (147)

Conventionally in quantum field theory, when there are products of momenta
evaluated at the same point a regularization procedure is needed to obtain
a well-defined action on states. However, there exist states for which the
action of (128), is already well-defined without the need for regularization,
namely plane wave-type states annihilated by Φ̂. These are states for which
the momenta are functionally independent of the configuration variables and
act as labels. The solution is given by20

ψλ1,λ2 [X(x)] = exp
[
(~G)−1

∑

f

λ̃f (x)X
f (x)

)]∣∣∣∣∣
λ3=−λ1λ2/(λ1+λ2)

(148)

for each x ∈ Σ. Hence
∣∣λ
〉
=

∣∣λ1, λ2
〉
∈ Ker{Φ̂} defines a Hilbert space

of states annihilated by the Hamiltonian constraint, labelled by λ1 and λ2,
once the measure of normalization has been defined. The full Hilbert space
consists of a direct product of the Hilbert spaces ∀x ∈ Σ, since (147) must
be satisfied independently at each point x. If one regards each spatial hy-
persurface Σ as a lattice of finite lattice spacing xn+1 − xn = ∆x, then

H =
⊗

xn

H(xn) −→ ψλ1λ2 ∼
∏

xn

ψλ1λ2(xn). (149)

In the continuum limit ∆x→ 0, the product in (149) goes to a Riemannian
integral

ψλ1,λ2 [X] = exp

[
(~G)−1

∫

Σ
d3x

(
λ̃1X

1 + λ̃2X
2 −

( λ̃1λ̃2

λ̃1 + λ̃2

)
X3

)]
. (150)

Equation (150) solves the quantum Hamiltonian constraint by construction.
The momentum labels (λ1, λ2) correspond to two functions of spatial posi-
tion x ∈ Σ, which is consistent with the classical solution and also with the
Hamilton–Jacobi functional (102).

20We use the tilde notation to distinguish λ̃f , the eigenvalue of Π̂f on ψ, from the

(undensitized) eigenvalues λf of Ψ(ae). Since Πf = λf (deta) at the classical level, then λ̃f

can be seen as a ‘densitized’ version of λf . We do not include the tilde in the specification
of the state

∣∣λ1, λ2

〉
, since it would be redundant owing to the invariance of Φ under

rescaling of λf for Λ = 0.
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7.1 Measure on the Hilbert space

To formalize the Hilbert space structure we need square integrable wave-
functions for solutions to the constraints, which requires the specification of
a measure for normalization. If all variables were real, as for spacetimes of
Euclidean signature, one would be able to use delta-functional normalizable
wavefunctions.

DµEucl(X) =
∏

x

δX1(x)δX2(x)δX3(x). (151)

In (151) Xf is real and on the replacement λf → iλf , we have

〈
ψλ

∣∣ψζ
〉
Eucl

= DµEucl(ξ)exp
[
−i(~G)−1

∫

Σ
d3xλ̃f (x)X

f (x)
]

exp
[
i(~G)−1

∫

Σ
d3xζ̃f (x)X

f (x)
]
=

∏

x

∏

f

δ
(
λ̃f (x)− ζ̃f (x)

)
, (152)

or that two states are orthogonal unless their CDJ matrix eigenvalues are
identical at each point x ∈ Σ. This can be written more compactly as

〈
ψλ

∣∣ψζ
〉
Eucl

=

∫

Γ
DµEucl(ξ)e

−i(~G)−1λ̃·Xei(~G)−1 ζ̃·X = δλζ . (153)

For spacetimes of Lorentzian signature, the variables are in general com-
plex and a Euclidean measure does not produce normalizable wavefunctions.
One may then rather use a Gaussian measure to ensure square integrability
for the basis wavefunctions in this case. This Gaussian measure is given by

DµLor(X,X) =
⊗

x

ν−1δξe−ν
−1X·X

=
∏

x,f

δXf exp
[
−ν−1

∫

Σ
d3xXf (x)X

f (x)
]
, (154)

where ν is a numerical constant with mass dimensions [ν] = −3, needed to
make the argument of the exponential dimensionless. The inner product of
two un-normalized states is now given by

〈
λ
∣∣ζ
〉
Lor

=
∏

x,i

∫

Γ
νζ(0)δXf exp

[
−ν−1

∫

Σ
d3xXf (x)X

f (x)
]

exp
[
(~G)−1

∫

Σ
d3xλ̃∗f (x)ξf (x)

]
exp

[
(~G)−1

∫

Σ
d3xζ̃f (x)X

f (x)
]

= exp
[
ν(~G)−2

∫

Σ
d3xλ̃∗f (x)ζ̃f (x)

]
. (155)
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A necessary condition for the wavefunction to be normalizable, as for the
inner product to exist, is that the functions λ̃i(x) and ζ̃i(x) be square inte-
grable. In shorthand notation, (155) can be written as

〈
λ
∣∣ζ
〉
Lor

=

∫

Γ
DµLor(X,X)e(~G)−1λ̃∗·Xe(~G)−1 ζ̃·X = eν(~G)−2λ̃∗·ζ̃ . (156)

Note how the balance of the mass dimensions is ensured in spite of the
existence of infinite dimensional spaces.21 The norm of a state is given by

〈
λ
∣∣λ
〉
=

∫
DµLor(ξ, ξ)e

(~G)−1λ̃∗·ξe(~G)−1λ̃·ξ = eν(~G)−2λ̃∗·λ̃, (157)

and we define the normalized wavefunction by

∣∣ψλ
〉
= e−ν(~G)−2λ̃∗·λ̃

∣∣λ
〉
. (158)

The overlap of two states in the Lorentzian measure is given by

∣∣〈ψλ
∣∣ψζ

〉
Lor

∣∣ = exp
[
−ν(~G)−2

∫

Σ
d3x

∣∣λ̃i(x)− ζ̃i(x)|2
]
. (159)

where

λ̃3 = −
( λ̃1λ̃2

λ̃1 + λ̃2

)
; ζ̃3 = −

( ζ̃1ζ̃2

ζ̃1 + ζ̃2

)
. (160)

There is always a nontrivial overlap between any two states corresponding
to different functions for the eigenvalues.22

7.2 Expectation values and observables

The expectation value of the configuration variable Xf is given by

〈
ψλ

∣∣X̂f (x)
∣∣ψζ

〉
Lor

=
∏

x,i

∫

Γ
νζ(0)δXf exp

[
−ν−1

∫

Σ
d3xXf (x)X

f (x)
]

exp
[
(~G)−1

∫

Σ
d3xλ̃∗i (x)Xf (x)

](
Xf (x)exp

[
(~G)−1

∫

Σ
d3xζ̃f (x)X

f (x)
])
.

(161)

21The dimensionful constant ν remains a parameter of the theory. One may think that
such a measure cannot exist on infinite dimensional spaces unless ν = 1 with [ν] = 0. But
we have rescaled the measure by the same factor of νζ(0) to cancel out these factors arising
from the Gaussian integral.

22It is shown in [9] that the eigenvalues of Ψae encode the Petrov classification of space-
time, since Ψae is the antiself-dual part of the Weyl curvature tensor. This classification
is independent of coordinates and of tetrad frames.
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By replacing multiplication by Xf with functional differentiation with re-
spect to ζ̃f , one may simplify the matrix element to

〈
ψλ

∣∣X̂f (x)
∣∣ψζ

〉
Lor

=
∏

x,i

∫

Γ
νζ(0)δξiexp

[
−ν−1

∫

Σ
d3xXf (x)X

f (x)
]

exp
[
(~G)−1

∫

Σ
d3xλ̃∗i (x)Xf (x)

]( δ

δζ i(x)
exp

[
(~G)−1

∫

Σ
d3xζ̃f (x)X

f (x)
])
,(162)

whereupon commuting the functional derivative outside the integral we ob-
tain

〈
ψλ

∣∣X̂f (x)
∣∣ψζ

〉
Lor

=
δ

δζ̃f (x)

(
exp

[
ν(~G)−2

∫

Σ
d3xλ̃∗f (x)ζ̃f (x)

])

= ν(~G)−2λ̃∗f (x)exp
[
ν(~G)−2

∫

Σ
d3xλ̃∗f (x)ζ̃f (x)

]

=
(
ν(~G)−2λ̃∗f (x)

)〈
ψλ

∣∣ψζ
〉
Lor

. (163)

Going through a similar analysis for various operators, one obtains

〈
ψλ

∣∣X̂f (x)
∣∣ψζ

〉
Lor

=
(
ν(~G)−2ζ̃f (x)

)〈
ψλ

∣∣ψζ
〉
Lor

(164)

〈
ψλ

∣∣Π̂f (x)
∣∣ψζ

〉
Lor

=
〈
ψλ

∣∣(~G) δ

δXf (x)

∣∣ψζ
〉
Lor

= ζ̃f (x)
〈
ψλ

∣∣ψζ
〉
Lor

(165)

as well as

〈
ψλ

∣∣ δ

δXf

∣∣ψζ
〉
Lor

= (~G)−1λ̃∗f (x)
〈
ψλ

∣∣ψζ
〉
Lor

. (166)

Hence, with respect to the Lorentzian measure one has, schematically,

δ

δXf
∼ ~Gν−1Xf ;

δ

δXf

∼ ~Gν−1Xf . (167)

This property of the infinite generalization of a Bargmann-like representa-
tion, combined with generating functional techniques, enables an explicit
calculation of the matrix element of any observable O

〈
ψλ

∣∣Ô[X̃f ; λ̃f ]
∣∣ψζ

〉
Lor

= O[ν(~G)2λ̃∗f ; νλ̃f ]
〈
ψλ|ψζ

〉
Lor

. (168)

Hence, the existence of a function O signifies the existence the expectation
value or matrix element corresponding to O.
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8 Canonical equivalence to the Ashtekar variables

We have provided a direct map from the full phase space ΩDual = (Ψae, A
a
i )

of the dual theory to the nondegenerate sector of the full phase space of the
Ashtekar variables ΩAsh = (σ̃ia, A

a
i ) via the CDJ Ansatz σ̃ia = ΨaeB

i
e. By

implementation of the Gauss’ law and diffeomorphism constraints we have
reduced the dual theory to Ω0, its kinematic phase space where we have
computed the Hamiltonian dynamics. Subsequently, we have performed a
quantization of Ω0, obtaining a Hilbert space of states solving the quantum
Hamiltonian constraint for Λ = 0. In this section we will demonstrate
canonical equivalence of the dual theory to the Ashtekar theory via various
routes, which should imply that the results obtained in the dual theory
extend to certain regimes of the Ashtekar theory. Note that both theories at
the unconstrained level share in common the Ashtekar connection Aai as the
configuration space variable. In what follows we will exploit the preservation
of this property at all levels of reduction sequence.

8.1 Map from Ω0 to the reduced phase space of the Ashtekar

variables

First we will provide the map from Ω0 to the Ashtekar theory. Since the
dimension of the kinematic phase space isDim(Ω0) = 6 per point, then these
degrees of freedom must map to six corresponding D.O.F. of the Ashtekar
variables. We choose these D.O.F. on ΩA, the reduced Ashtekar phase space,
as the diagonal degrees of freedom. Starting from the commutation relations
on Ω0 (using units where G = 1)

[
Xf (x, t),Πg(y, t)

]
= δfg δ

(3)(x, t) (169)

with vanishing relations

[
Xf (x, t),Xg(y, t)

]
=

[
Πf (x, t),Πg(y, t)

]
= 0, (170)

perform the following change of variables

X1 = ln
(A1

1

a0

)
; X2 = ln

(A2
2

a0

)
; X3 = ln

(A3
3

a0

)
, (171)

where a0 is a numerical constant with [a0] = 1. Then (169) is given by

[
ln
(Aff (x, t)

a0

)
,Πg(y, t)

]
= (A−1)ff (x, t)

[
Aff (x, t),Πg(y, t)

]
= δfg δ

(3)(x, y),(172)
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where we restrict to nonvanishing Aff . Multiplying (172) by Aff we have the

following equivalent relations23

[
Aff (x, t),Πg(y, t)

]
= δfgA

f
f (x, t)δ

(3)(x, y) = δfgA
g
g(y, t)δ

(3)(x, y). (173)

In (173) we have used that the only nontrivial contribution comes from f = g
and x = y. We can now transfer Agg to the left hand side in the form

[
Aff (x, t),Πg(y, t)(A

−1)gg(y, t)
]
= δfg δ

(3)(x, y). (174)

Equation (174) is justified by application of the Liebniz rule to the commu-

tator, using [Aff , A
g
g] = 0, to obtain (173). Equation (174) will constitute

the starting point for mapping Ω0 into ΩA.
Starting from the full Ashtekar phase space ΩAsh = (Aai , σ̃

i
a), where A

a
i

is the self-dual Ashtekar connection and σ̃ia is the densitized triad, satisfying
commutation relations

[
Aai (x, t), σ̃

j
b (y, t)

]
= δab δ

j
i δ

(3)(x, y), (175)

let us perform the substitution

σ̃ia = ΨaeB
i
e, (176)

where Ψae ∈ SO(3, C) ⊗ SO(3, C) is in unreduced form. We will now de-
compose Ψae into its symmetric and its antisymmetric parts

σ̃ia = Ψ(ae)B
i
e +Ψ[ae]B

i
e. (177)

When diagonalizable, the symmetric part of Ψae can be written as the
SO(3, C) rotation of its eigenvalues in a polar decomposition, which brings
(176) into the form

σ̃ia = (eθ·T )agλg(e
−θ·T )geB

i
e + ǫaedB

i
eψ

′

d. (178)

We have parametrized the antisymmetric part of Ψae as a SO(3, C)-valued
3-vector ψ′

d. Performing a SO(3, C) rotation of both sides of (178), we have

23The concept of multiplication of canonical commutation relations (C.C.R.) by canoni-
cal variables is not new. This yields to affine commutation relations, which have also been
used by Klauder in [26]. In the present paper, the affine commutation relations (173) are
an intermediate stage in the re-establishment of the link from the C.C.R. (169) of the dual
theory back into to Ashtekar variables, whose commutation relations are canonical.
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(e−θ·T )gaσ̃
i
a = λg(e

−θ·T )geB
i
e + (e−θ·T )gaǫaedB

i
eψ

′

d. (179)

Let us now redefine the Ashtekar variables, adapted to the intrinsic SO(3, C)
frame, defined as the frame where Ψ(ae) is diagonal. Hence we have

P̃ ia ≡ (e−θ·T )gaσ̃
i
a; (e−θ·T )geB

i
e ≡ bie; ψd = (e−θ·T )dfψ

′

f . (180)

Then the following relation holds

(e−θ·T )gaǫaedB
i
eψd = (e−θ·T )ga(e

−θ·T )fe(e
−θ·T )hdǫaedb

i
fψh = ǫfghb

i
fψh.(181)

In (181) we have used the special orthogonal property that det(e−θ·T ) = 1.
Hence substituting (180) and (181) into (179), we have that

P̃ ig = λgb
i
g + ǫgfhb

i
fψh. (182)

The result is that we have expressed (176) with respect to the intrinsic
SO(3, C) frame. On the diagonal subspace of the Ashtekar variables, the
commutation relations (175) should be given by

[
Aff (x, t), P̃

g
g (y, t)

]
= δfg δ

(3)(x, y). (183)

We will now perform the following map from Ω0

Aai = δai A
a
a; λf = (A1

1A
2
2A

3
3)

−1Πf (184)

for f = 1, 2, 3. Then the diagonal part of (182) is given by

P̃ gg = λgb
g
g + ǫgfhb

g
fψh. (185)

Recalling the definition of the magnetic field (for deta 6= 0)

big = ǫijk∂ja
g
k + (deta)(a−1)ig (186)

one sees that for diagonal connections Aai = δai A
a
a, the diagonal terms bgg do

not contain any spatial gradients. Take the 1 component of (185) without
loss of generality, where the remaining components follow by cyclic permu-
tation of indices
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P̃ 1
1 = λ1b

1
1 + b12ψ3 − b13ψ2 = λ1(∂2A

1
3 − ∂3A

1
2 +A2

2A
3
3 −A2

3A
3
2)

+ψ3

(
∂2A

2
3 − ∂3A

2
2 +A3

2A
1
3 −A3

3A
1
2

)
− ψ2

(
∂2A

3
3 − ∂3A

3
2 +A1

2A
2
3 −A1

3A
2
2

)
.(187)

The phase space Ω0 = (λf ,Π
f ) already has a cotangent bundle structure,

with 6 degrees of freedom per point. The configuration space Γ0 maps
directly to the three diagonal components of the Ashtekar connection, which
in turn can be canonically conjugate only to the three diagonal components
of the densitized triad in the intrinsic SO(3, C) frame. Hence we will set the
off-diagonal components of Aai in (187) to zero, yielding

P̃ 1
1 = λ1A

2
2A

3
3 − ψ3(∂3A

2
2)− ψ2(∂2A

3
3). (188)

Equation (188) violates the commutation relations (183) even on the diago-
nal subspace, due to the spatial gradient terms. To avoid this contradiction
a necessary and sufficient condition that (188) is that ψ2 = ψ3 = 0. Setting
ψd = 0 for d = 1, 2, 3, we can now write (188) as24

P̃ 1
1

∣∣∣∣
~ψ=0

= λ1A
2
2A

3
3 = Π1

( 1

A1
1

)
. (189)

Hence we have that

[
Aff (x, t), P̃

g
g (y, t)

]
~ψ=0

= δfg δ
(3)(x, y) =

[
Aff (x, t),Πg(y, t)(A

−1)gg(y, t)
]
,(190)

which is the same as (174). The result is that Ω0, the reduced phase space of
the dual theory, is canonically equivalent to ΩAsh restricted to the diagonal
subspace.25

8.2 Map from the full Ashtekar variables to the kinematic

phase space of the dual theory

We will now prove, using the unconstrained Ashtekar theory as a starting
point, that the map to Ω0 requires as a necessary and sufficient condition
the implementation of the kinematic initial value constraints. The canonical
commutation relations for the Ashtekar variables are given by

24Recall that ψd = 0 is precisely the condition that the diffeomorphism constraint
be satisfied. Hence we have shown that this is consistent with the configuration space
reduction to diagonal Aa

i .
25Since the corresponding unreduced theories are also equivalent, then this implies that

the dual theory could serve as a mechanism for obtaining the reduced phase space for
Ashtekar’s gravity on the constraint shell.
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[
Aai (x), σ̃

j
b (y)

]
= δab δ

j
i δ

(3)(x, y), (191)

where we have omitted the time dependence to avoid cluttering up the no-
tation. Let us now substitute the CDJ Ansatz σ̃ia = ΨaeB

i
e into (191)

[
Aai (x),Ψbe(y)B

j
e(y)

]
= δab δ

j
i δ

(3)(x, y). (192)

We will now multiply (192) by Acj(y) in the following form

[
Aai (x),Ψbe(y)B

j
e(y)A

c
j(y)

]
= δabA

c
i (y)δ

(3)(x, y), (193)

which is allowed since [Aai , A
c
j ] = 0 for the Ashtekar connection. Define the

magnetic helicity density matrix Cce = AbjB
j
e , written in component form as

Cce = ǫijkAci∂jA
e
k + δce(detA), (194)

which has a diagonal part free of spatial gradients and an off-diagonal part
containing spatial gradients. Then the commutation relations read

[
Aai (x),Ψbe(y)Cce(y)

]
= δabA

c
i (y)δ

(3)(x, y). (195)

The kinematic configuration space ΓKin must have three degrees of freedom
per point.26 Let us choose, without loss of generality, for these D.O.F. to be
the three diagonal elements Aai = δai A

a
a. Then we can set a = i in (195) to

obtain

[
Aaa(x),Ψbe(y)Cce(y)

]
= δabA

c
a(y)δ

(3)(x, y). (196)

Since Aai is diagonal by supposition, then the only nontrivial contribution to
(196) occurs for a = c. Since a = b also is the only nontrivial contribution,
it follows that b = c as well. Hence the commutation relations for diagonal
connection are given by

[
Aaa(x),Ψbe(y)Cbe(y)

]
= δab δA

b
b(y)δ

(3)(x, y). (197)

Substituting (194) subject to a diagonal connection into (197) we have

26This is nine total degrees of freedom, minus three corresponding to Ga, and minus
three corresponding to Hi.
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3∑

e=1

[
Aaa(x),Ψbe(y)δbe(detA)

]

+

3∑

e=1

[
Aaa(x),Ψbe(y)ǫ

bjeAbb∂jA
e
e

]
= δabA

b
b(y)δ

(3)(x, y), (198)

which has split up into two terms. We have been explicit in putting in the
summation symbol to indicate that e is a dummy index, while a and b are
not. There are two cases to consider, e = b and e 6= b. For e 6= b the first
term of (198) vanishes, leaving remaining the second term. Since the right
hand side stays the same, then this would correspond to the commutation
relations for a CDJ matrix whose diagonal components are zero. For the
second possibility e = b the second term of (198) vanishes while the first term
survives, with the right hand side the same as before. This case occurs only
if the CDJ matrix Ψae is diagonal. Let us choose Ψae = Diag(λ1, λ2, λ3) as
the diagonal matrix of eigenvalues,27 then (198) reduces to

[
Aaa(x), λb(y)(detA(y))

]
= δabA

a
a(y)δ

(3)(x, y). (199)

The conclusion is that in order for (199) to have arisen from (191), that: (i)
The antisymmetric part of Ψae must be zero, namely, the diffeomorphism
constraint must be satisfied. (ii) The symmetric off-diagonal part of Ψae

is not part of the commutation relations on the diffeomorphism invariant
phase space Ωdiff . Given the eigenvalues λf on this space, the Gauss’ law
constraint can be solved separately from the quantization process. The
choice of diagonal Aaa is consistent with the implementation of the kinematic
constraints, which means that only the Hamiltonian constraint is necessary
to obtain the physical phase space ΩPhys.

Equation (199) are not canonical commutation relations owing to the
field-dependence on the right hand side.28 However, they can be transformed
into canonical commutation relations using the following change of variables
Aaa = a0e

Xa
for a = 1, 2, 3. This yields

[
eX

a(x), λb(y)(detA(y))
]
= eX

a(x)
[
Xa(x), λb(y)(detA(y))

]
= δab e

Xa(y)δ(3)(x, y).(200)

27This places one into the intrinsic SO(3, C) frame. Note that we may regard the Gauss’
law constraint Ga as already implemented in this frame, since it is a map from λf to the

SO(3, C) angles ~θ and not a constraint of λf .
28While (199) are not canonical commutation relations, they are affine commutation

relations which serve as an intermediate step in the formulation of canonical commutation
relations. Affine commutation relations have been used by Klauder in [26] in the affine
quantum gravity programme, and are viable as well in the present case.
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Since the only nontrivial contribution to (200) comes from x = y, we can
cancel the pre-factor of eX

a

from both sides. Defining densitized eigenvalues
Πb = λb(detA) as the fundamental momentum space variables, we have that
the canonical version of (199) is given by

[
Xa(x),Πb(y)

]
= δab δ

(3)(x, y), (201)

The coordinate ranges are ∞ < |Xf | < ∞, which corresponds to 0 <

|Aff | < ∞, which is a subset of the latter. To utilize the full range of Aai ,
which includes the degenerate cases, one may instead use (199). We have
shown that ΩKin of the instanton representation admits a cotangent bundle
structure with diagonal connection Aaa(x). It happens from (191) that Aaa(x)
is canonically conjugate to σ̃aa(x). Since the instanton representation maps
to the Ashtekar formalism and vice versa on the unreduced phase space for
nondegenerate Bi

a, it follows that (201) corresponds as well to the kinematic
phase space of the Ashtekar variables for (detA) 6= 0, six phase space degrees
of freedom per point, where the variables are diagonal. The bonus is that
all the kinematic constraints have been implemented, leaving behind the
Hamiltonian constraint which in the instanton representation is easy to solve.

We have shown that a nondegenerate and diagonal Aai admits globally
holonomic coordinates in the reduced theory. Since Aai serves also as the
configuration variable for the Ashtekar phase space ΩAsh, it follows that on
this subspace the densitized triad must also be nondegenerate. Hence

[
Aff (x, t), σ̃

g
g (y, t)

]
= δfg δ

(3)(x, y). (202)

The conclusion is that the kinematic phase space of the dual theory must cor-
respond the reduced phase under (Ga,Hi) of the Ashtekar theory, restricted
to nondegenerate triads. Note in both phase spaces that the cotangent bun-
dle structure has been preserved, and the two theories are equivalent when
restricted to these configurations. The bonus is that we have now imple-
mented the initial value constraints, computed the dynamics performed a
quantization, and have constructed a Hilbert space using the dual theory.

8.3 Verification of the initial value constraints

We will now prove that the Hamiltonian constraint on Ω0 maps directly into
the Hamiltonian constraint on ΩAsh.

29 The Hamiltonian constraint on the
kinematic phase space of the dual theory is given by

29Note that this is the full Hamiltonian constraint on the diffeomorphism constraint
shell.
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NH = NUa
3/2
0 eT/2

√
Π1Π2Π3

( 1

Π1
+

1

Π2
+

1

Π3

)

= NU(a1a2a3)
1/2

√
Π1Π2Π3

( 1

Π1
+

1

Π2
+

1

Π3

)
. (203)

Note that there are spatial gradients of the diagonal variables in the magnetic
field through the U dependence of (203). Putting the components aai into a
diagonal matrix

aai =




a1 0 0
0 a2 0
0 0 a3


 ; bia ≡ ǫijk∂ja

a
k +

1

2
ǫijkfabcabja

c
k,

where a = 1, 2, 3 are internal indices and i = 1, 2, 3 are spatial with af 6= 0,
and bia is the magnetic field for aai , seen as a gauge connection (note that
aai is not spatially constant and contains three degrees of freedom per point.
Therefore we are dealing with the full theory and not minisuperspace. Hence
(203) is given by

NH = N(detb)1/2
∣∣∣∣
Diag(a)

(a1a2a3)
−3/2

√
Π1Π2Π3

( 1

Π1
+

1

Π2
+

1

Π3

)
. (204)

The notation in (204) signifies that it is restricted to diagonal connec-

tions Aff = af . Note that this restriction does not affect the momentum-
dependent terms, which are the objects directly constrained by the Hamil-
tonian constraint. Substituting Πf = λf (a1a2a3) from (184) into (204), we
have

NH = N(detb)1/2
√
λ1λ2λ3

( 1

λ1
+

1

λ2
+

1

λ3

)
. (205)

Note that (205) is composed of the determinant and the trace of Ψ(ae), and
is therefore SO(3, C) invariant. So we can perform the following change of
variables

Ψ(ae) = (eθ·T )afλf (e
−θ·T )fe; Bi

a = (eθ·T )aeb
i
e (206)

where ~θ can be chosen arbitrarily. The Hamiltonian constraint at this level,
where the diffeomorphism constraint has already been implemented, is trans-
parent to the D.O.F. in ~θ. Using the cyclic property of the trace, (205) is
the same as
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NH = N
√
detB

√
detΨtrΨ−1

∣∣∣∣
Sym(Ψ);diag(a)

. (207)

The notation in (207) signifies that Ψae is restricted to symmetric matri-
ces and that Bi

a is restricted to those magnetic field obtainable from the
diagonal aai by SO(3, C) transformation. So we can define a connection Aai
corresponding to Bi

a = Bi
a[A], which is the gauge transformed version of aai

into the SO(3, C) frame ~θ

Aai ≡ (e
~θ·T )aea

e
i +

1

2
ǫabc(e

~θ·T )bf∂i(e
~θ·T )cf . (208)

Note at the level of (206) that both Ψae and Aai contain six degrees of

freedom per point. Three of those D.O.F. are due to the angles ~θ, which
are unphysical. These three D.O.F. can be eliminated by imposition of the
Gauss’ law constraint, reducing us back to the kinematic phase space Ω0.
The restrictions on Ψae and A

a
i can be lifted to bring us from 6 to 9 D.O.F.

each by appending to Ψae an antisymmetric part

Ψae = (e
~θ·T )af




λ1 0 0
0 λ2 0
0 0 λ3




fg

(e−
~θ·T )ge + ǫaedψ

d

and replacing aai by an arbitrary symmetric matrix

aai =




a11 a12 a31
a12 a22 a23
a31 a23 a33


 ; Aai ≡ (e

~θ·T )aea
e
i +

1

2
ǫabc(e

~θ·T )bf∂i(e
~θ·T )cf .

This is a polar decomposition of Ψae, where ψd is a SO(3, C) 3-vector
parametrizing the antisymmetric part, as well as a polar decomposition of
Aai , which is the gauge transformation of aai . Having increased the phase
space to 18 D.O.F., we must now impose constrain it in order to obtain
the kinematic phase space. This can be accomplished by requiring that the
antisymmetric part of Ψae vanish using a constraint

Hi[N
i] =

∫

Σ
d3xǫijkN

iBj
aB

k
eΨae = 0. (209)

The to obtain the reduced phase space under just diffeomorphisms, one in
conjunction with (209) must remember to set a12 = a23 = a31 = 0 and then
one is left with the Gauss’ law and Hamiltonian constraints. The Gauss’
law constraint is given by
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we{Ψae} = 0, (210)

which is used to eliminate the degrees of freedom in ~θ. This simultaneously
reduces Ψae and A

a
i by another three D.O.F. to obtain the kinematic phase

space.
We can now go back and rephrase the above in the language of the

Ashtekar variables. Using the CDJ Ansatz (177) subject to a diagonal CDJ
matrix and a diagonal baseline connection, then (207) becomes

NH = N
√
detσ̃(σ̃−1)aiB

i
a =

N√
detσ̃

(detσ̃)(σ̃−1)aiB
i
a. (211)

Using the properties of the determinant of nondegenerate three by three
matrices, we have that

HN =
1

2
ǫijkǫ

abcσ̃iaσ̃
j
bB

k
c (212)

where we have defined the ‘densitized’ lapse density functionN = N(detσ̃)−1/2.
Equation (212) is the Hamiltonian constraint in the Ashtekar variables, re-
stricted to the set of connections obtainable from the diagonal connections
by SO(3, C) rotation, and restricted to the set of symmetric CDJ matri-
ces Ψae. We will now prove that this corresponds to the diffeomorphism
invariant phase space.

The diffeomorphism constraint in the Ashtekar variables is given by

Hi = ǫijkσ̃
j
aB

k
a . (213)

Now substitute (177) into (213). Due to antisymmetry, the symmetric part
of Ψae drops out and we are left with

Hi = ǫijkN
jBk

dǫaedΨae = 0. (214)

which arises from varying N i in (209). The final result is that there is
a well–defined map between the kinematic phase space of the dual theory
and the reduced phase space of the Ashtekar variables, as well as from the
former to the full unconstrained theory both in the dual and in the Ashtekar
case. Moreover, the kinematic phase space is Dirac consistent, admits a
quantization and classical dynamics.
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8.4 Map to the unreduced dual theory

To obtain the unreduced dual theory from its kinematic version (100) it
suffices to augment the variables, appending terms corresponding to the
Gauss’ law and diffeomorphism constraints. The canonical one form on Ω0

is given by

θ0 =

∫

Σ
d3xΠf (x)δX

f (x) =

∫

Σ
d3x

(
λ1a2a3δa1 + λ2a3a1δa2 + λ3a1a2δa3

)
.(215)

To see where (215) could potentially have originated from, consider the
canonical one form on the unreduced phase space ΩDual

θInst =

∫

Σ
d3xΨaeB

i
eδA

a
i =

∫

Σ
d3xσ̃iaδA

a
i . (216)

Peform the decomposition (178) on the left hand side of (216), yielding an
integrand

ΨaeB
i
eδA

a
i = λf ((e

−θ·T )feB
i
e)((e

−θ·T )faδA
a
i ) + ǫdaeψdB

i
eδA

a
i . (217)

Next, write (217) in the intrinsic SO(3, C) frame

λfb
i
f δa

f
i + ǫdaeψdb

i
eδa

a
i . (218)

Using λf = (a1a2a3)
−1Πf , we have

Πf (a1a2a3)
−1

(
ǫijk(δafi )∂ja

f
k + (deta)(a−1)if δa

f
i

)
+ ǫdaeψdb

i
eδa

a
i . (219)

Application of the diffeomorphism constraint implies ψd = 0, which makes
the second term of (219) vanish. Let us now expand the part of the term in
brackets involving spatial gradients. Taking the f = 1 component without
loss of generality, this is given by

(δa11(∂2a
1
3 − ∂3a

1
2) + δa12(∂3a

1
1 − ∂1a

1
3) + δa13(∂1a

1
2 − ∂1a

1
3). (220)

Note that for diagonal aai , (220) vanishes. The result is that restricted to
a diagonal connection in the intrinsic diffeomorphism invariant SO(3, C)
frame, (216) reduces to (215) which in turn admits a quantization and a
Hilbert space structure. All that remains is to extend the Hamiltonian
constraint (207) to include and antisymmetric Ψae, which is actually what
we started from in (45). The result is thus a map between the full Ashtekar
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variables and its corresponding reduced phase space via the dual theory.
The unreduced dual theory is given by

IDual =

∫
dt

∫

Σ
d3x

(
ΨaeB

i
eȦ

a
i −Aa0we{Ψae}

−ǫijkN iBj
aB

k
eΨae − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
, (221)

which as we have shown follows from the Pleanski action. Using (73) and
the symmetric properties of the four dimensional epsilon tensor this can be
written as

IDual =

∫

M
d4x

(1
8
ΨaeF

a
µνF

e
ρσǫ

µνρσ

+
(
Bi

[eȦ
a]
i − ǫijkN

iBj
aB

k
e

)
Ψae −

√−g
(
Λ+ trΨ−1

)
, (222)

where we have absorbed the Gauss’ law constraint into the definition of the
covariant curvature.
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9 Summary

The this paper we have shown the following things. From the starting
Plebanski action which implies the Einstein equations, there are two the-
ories that can result. There is the Ashtekar theory based on the phase
space ΩAsh = (σ̃ia, A

a
i ) and there is a dual theory based on the phase space

(Ψae, A
a
i ). The momentum space variables for both theories originated at

the Plebanski level as auxilliary fields. We have shown that the dual theory
is consistent in the Dirac sense since its constraints algebra closes. Next we
performed a reduction to the kinematical phase space of the reduced theory
by implementing the Gauss’ law and the diffeomorphism constraints. Since
the initial value constraints in the reduced theory constrain only the mo-
mentum space, we were free to choose diagonal configuration space variables
canonically conjugate to the eigenvalues of Ψae. Next, we demonstrated that
the dual theory implies the Einstein field equations provided that the initial
value constraints are satisfied. Implementation of the kinematic parts of
these constraints led us to the kinematic phase space were we computed the
corresponding Lagrangian and Hamiltonian dynamics of the theory. One
result is that we were able to construct a Hamilton–Jacobi functional on
the spatial boundary of spacetime by holographic projection of the physical
degrees of freedom. Additionally, we verified the Dirac consistency of the
constraints algebra even after projection to this kinematic phase space.

We then performed a quantization of the kinematic phase space, con-
structing a Hilbert space of normalizable constraints sannihilated by the
quantum Hamiltonian constraint. The states are labelled by two eigenvalues
of Ψae, and have the same form implied by the Hamilton–Jacobi functional.
Lastly, we clarified the relationship between of the canonical structure of
the reduced dual theory to its counterpart in the Ashtekar variables, as well
as its relation to the unreduced theories. According to our analysis the dual
theory provides a direct route from the full Ashtekar theory to a reduced
phase space on the nondegenerate sector via implementation of the initial
value constraints.
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10 Appendix A: Expansion of the determinant on

diagonal configurations

It is convenient to factor out the leading order behaviour of the determinant
of the connection from the Ashtekar magnetic field as

(detB) = (UdetA)2, (223)

where U will be determined. The Ashtekar magnetic field is given by

Bi
a = ǫijk∂jA

a
k +

1

2
ǫijkfabcA

b
jA

c
k ≡ f ia + (detA)(A−1)ia. (224)

In (224), f ia = ǫijk∂jA
a
k refers to the ‘abelian’ part and the second term is

a correction due to nonabeliantiy. We have used the fact that the SU(2)−
structure constants fabc = ǫabc are numerically the same as the Cartesian
epsilon symbol in order to write the determinant, which also assumes that
Aai is nondegenerate. Putting (224) into the expansion of the determinant,
we have

detB =
1

6
ǫijkǫ

abc
(
f ia + (detA)(A−1)ia

)(
f jb + (detA)(A−1)jb

)(
fkc + (detA)(A−1)kc

)

= detf + (detA)2 +
1

2
ǫijkǫ

abc
[
f iaf

j
b (A

−1)kc (detA) + f iaA
a
i (detA)

−1
]
.(225)

On diagonal connections the second term in (230) in square brackets van-
ishes, since

Aai f
i
a = ǫijkAai ∂jA

a
k = ǫijk(δai ai)∂j(δ

a
kak) = ǫajaaa∂jaa = 0 (226)

on account of the antisymmetry of the epsilon symbol. We must now expand
the first term in square brackets, evaluated on diagonal connections. Hence
we have

1

2
ǫijkǫ

abcf iaf
j
b (A

−1)kc (detA) =
1

4
ǫijkǫ

klmǫabcǫcdef
i
af

j
bA

d
lA

e
m

=
1

4

(
δliδ

m
j − δljδ

m
i

)(
δadδ

b
e − δae δ

b
d

)
f iaf

j
bA

d
lA

e
m

=
1

4

(
f laf

m
b − fma f

l
b

)(
Aal A

b
m −AamA

b
l

)

=
1

2

(
(f laA

a
l )

2 − fma A
a
l f

l
bA

b
m

)
. (227)
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The first term on the right hand side of (227) vanishes on diagonal connec-
tions as proven in (226). The second term is given by

f laA
a
mf

m
b A

b
l = ǫlij∂i(δajaa)(δ

a
maa)ǫ

mi′j′∂i′(δbj′ab)(δ
b
l ab)

= ǫbiaǫai
′bab(∂iaa)aa∂i′ab = −1

4
ǫiabǫjab(∂ia

2
a)(∂ja

2
b) (228)

where we have relabelled indices i′ → j on the last term. The only nontrivial
contribution to (228) occurs for i = j, which yields

r = −1

8

3∑

i=1

Iiab(∂ia
2
a)(∂ia

2
b). (229)

The determinant of the Ashtekar magnetic field for a diagonal connection,
which constitutes the kinematic configuration space, is given by

(detB) = (A1
1A

2
2A

3
3)

2 + (∂2A
3
3)(∂3A

1
1)(∂2A

2
2)− (∂3A

2
2)(∂1A

3
3)(∂2A

1
1)

+(A2
2A

3
3)(∂1A

2
2)(∂1A

3
3) + (A3

3A
1
1)(∂2A

3
3)(∂2A

1
1) + (A1

1A
2
2)(∂3A

1
1)(∂3A

2
2)

= a60e
2T

[
1 + a−3

0 e−T
(
(∂2X

3)(∂3X
1)(∂1X

2)− (∂3X
2)(∂1X

3)(∂2X
1)
)

+a−2
0

(
e−2X1

(∂1X
2)(∂1X

3) + e−2X2
(∂2X

3)(∂2X
1) + e−2X3

(∂3X
1)(∂3X

2)
)]

≡ a60e
2TU2,(230)

where we have defined T = X1+X2+X3. The end result in the full theory
is that

detB = (deta)2 + r[∂a], (231)

where we have defined

r = (detf)2 − 1

8

3∑

i=1

Iiab(∂ia
2
a)(∂ia

2
b). (232)

This fixes the definition of U as

U =
√

1 + r(detA)−2. (233)
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