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Abstract

This is the fifth paper in the series outlining an algorithm to consis-
tently quantize four-dimensional gravity. We derive the pure Kodama
state by path integration, in analogy to the no-boundary proposal for
constructing quantum gravitational wavefunctions, checking at each
stage of the process the equivalence of the canonical and path integral
approaches. A family of additional pure Kodama states is identified
via the canonical approach and a criterion for their suitability as a ba-
sis of states is examined. We provide an interpretation for the problem
of time within the context of generalized Kodama states and propose a
possible method of resolution. We also develop different techniques for
solving the Gauss’ law constraints at the kinematical level, in prepa-
ration for future work in this series.
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1 Introduction: The no-boundary approach to quan-

tum wavefunctions

The no-boundary proposal is a path integral representation for the wave-
function of the universe, based upon the transition amplitude of the 3-metric
hij = hij(~x, t) between an initial configuration on a 3-surface Σ0 and a final
3-surface ΣT , including a matter field φ = φ(~x, t), given by [8].

ΨHH

[
hij(ΣT ), φ(ΣT )

]
=

∫
dgµνDΦexp

[
−SEH(gµν , φ)/~

]
(1)

where the gravitational portion of the path integral is over all 4-metrics
gµν throughout the interior of a compact 4-manifold M with the given 3-
metric and matter fields (hij(ΣT ), φ(ΣT )) and (hij(Σ0), φ(Σ0)) induced on
the spatial 3-boundariy ΣT and Σ0. The action for the gravitational system
is the Einstein-Hilbert action, given by

IEH =
1

16πG

∫

M

d4x
√−g((4)R− 2Λ) + S[φ],

∫

Σ
d3x

√
htrK, (2)

where gµν is the 4-metric of spacetime and Kij is the extrinsic curvature of
a 3-surface Σ of intrinsic curvature (3)R. To find the Hamiltonian for the
system (and thus the energy eigenstates), one performs a 3+1 decomposition
of the Einsten-Hilbert action (refs[8],[5])

S[g] =

∫

M

(
πijḣij + πφ̇−NH −N iHi

)
(3)

where H and Hi are the classical Hamiltonian and diffeomorphism con-
straints corresponding to N and N i, the lapse function and shift vector,
respectively, given by

H = −Gijklπ
ijπkl −

√
h

(3)
R+ 2Λ

√
h ; Hi = πij|j, (4)

where Gijkl, the metric on superspace, is given by

Gijkl = 1/2
√
h(hikhjl + hilhjk − hijhkl) (5)

and the momentum conjugate to the induced 3-metric hij on Σ, namely πij,
is given by πij = GijklKkl.

Since the gravitational Hamiltonian is a linear combination of first-class
constraints, it must be the zero of energy for the system, which corresponds
to an exact cancellation of the gravitational against the matter energy, at
least for compact manifolds. This is enforced by the requirement that the
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wavefunction be invariant with respect to variations of the Lagrange multi-
pliers. Define Ψ0(g, φ) ≡ Ψpath[g, φ]. Then we must have

δ

δN(x)
Ψpath[g, φ] =

δ

δN i(x)
Ψpath[g, φ] = 0 ∀x. (6)

Both the path integral and canonical approaches to quantization con-
tain some elements of ambiguity, namely operator ordering ambiguities in
the former and ambiguities in the path integral measure in the latter, but
nevertheless it has been established that the two approaches must, at least
formally, be equivalent to one another ([8],[9], [10]).

For some simplified cases, reasonable equivalence has been shown to exist
between the two approaches in minisuperspace models for certain restrictions
upon boundary conditions, operator ordering and convergence ([8],[9],[5]).
Still, one would like also to be able to address these issues within the context
of the full theory, unobscured by any simplifications due to minisuperspace.

The path integral measure can be decomposed into the following form

DgDφ =
∏

x,i,k,l

dN(x)dN i(x)dhkl(x)dφ(x) = DNDNiDhDφ. (7)

The purpose of this decomposition is to separate the gauge (N,N i) from
the physical (hij , φ) degrees of freedom in view of the fact that they both
originated from the same total phase space (gµν , φ), and to make it more
physically clear the sequence of path integration along these variables.

The invariance of the wavefunctional with respect to variations in the
Lagrange multipliers corresponds to the implementation of the constraints

δ

δN i(x)
Ψcan[g, φ] −→ Ĥi(x)Ψcan = 0 ∀x (8)

which is the diffeomorphism constraint, independently valid at point x of M
and

δ

δN(x)
Ψcan[g, φ] −→ Ĥ(x)Ψcan = 0 ∀x (9)

which is the Hamiltonian constraint, also independently valid at each point
x of M .

We will define an analog to the no-boundary proposal for determining
quantum gravitational wavefunctions in Ashtekar variables. The argument
of the wavefunction must include, as a minimum, the values of the fields
(Aa

i (Σ0), φ(Σ0)) and
(Aa

i (ΣT ), φ(ΣT )) fixed on the respective 3-boundaries. One obervation, as in
the no-boundary proposal [8], is that the additional degrees of freedom path-
integrated within the interior of M beyond those defined on the boundaries
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ΣT and Σ0 are pure gauge degrees of freedom. In the case of the Ashtekar
variables one gauge degree of freedom is the time component of the connec-
tion Aa

0 = θa. Note that the densitized lapse N and the shift N i, strictly
speaking, are not part of the original phase space of the Ashtekar variables
in the same manner that they are for the metric variables, in the sense that
they do not combine to form a covariant object such as the 4-metric gµν . In
order to impose all corresponding constraints within the interior of M , the
phase space must be ’enlarged’ to include these ’gauge’ degrees of freedom.
So, in Ashtekar variables we might expect a relation of the form (for pure
gravity without matter, for simplicity), schematically,

Ψ[A] ≡
〈
A(ΣT )

∣∣A(Σ0)
〉

=

∫
DAphysDAgaugeexp[iSAsh[A]]

=

∫
DAphys

∫
DNiDθ

aDNexp[iSAsh[A]]

≡
∫
DAphys

∏

x

δ
(
Ga(x)

)
δ
(
Hi(x)

)
δ
(
H(x)

)
exp

∫

M

σ̃i
aȦ

a
i , (10)

where we have used (modulo metric signatures)

SAsh[A] =

∫

M

(
σ̃i

aȦ
a
i −NH −N iHi − θaGa

)
(11)

to yield the wavefunction. A relevant question becomes what version of
the constraints is imposed by the delta functionals arising from the path
integral: the classical or the quantum version.

Since the path integral involves c-numbers and not operators one may
attempt to attribute the ’knowledge’ of ordering ambiguities arising from
the canonical, operator approach to the path integral measure. As we will
ultimately see, the path integral approach to Ashtekar variables provides an
infinite set of semiclassical states to choose from. A subset of these semiclas-
sical states will correspond to the quantum states determined by the opera-
tor canonical approach. Therefore, the requirement that the state satisfy the
semiclassical-quantum correspondence will be equivalent to the requirement
that the path integral and canonical approaches should be equivalent.

It has not exhaustively been established the well-definedness of the path
integral in metric variables as a means to corroborate the canonical approach
to quantization of gravity. However, in ([11]) correspondence between Ψpath

and Ψcan was shown at least at the linearized level of the constraints ap-
plied to a linearization of the wavefunction using techniques similar to path
integral quantization of Yang-Mills theory. One of the aims of this paper
is to show that the path integral for quantum gravity is purely well-defined
and convergent, as evidenced by the existence of the pure Kodama state.
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2 Some more on the kinematic constraints

This section is intended to present the kinematic constraints from another
perspective. The reader can skip to the next section in order to avoid the
details. The main purpose is to acquire as many tools as possible for our
QGRA quantization toolkit. Three quarters of this section is intended for
preparation for part II and III of this series.

The the quantum physical states
∣∣Ψ

〉
=

∣∣Ψcan

〉
are the set of states which

lie in the kernel of the quantum constraints, whereas the semiclassical states∣∣ΨWkb

〉
lie in the kernel of their classical counterparts.

For the kinematic constraints there is insufficient criteria to distinguish
between these states, due to the fact that they are linear in conjugate mo-
menta of the dynamical coordinate variables. However, the kinematic con-
straints should be considered more fundamentally than consistency condi-
tions on the model. Rather, they interact in a special way amongst each
other and are intimately intertwined with the dynamics that uniquely fixes
a state. Onr main theme of this series for each successive work, in addition
to results, is to incrementally fill up our toolkit.

We will explicitly solve these constraints for gravity coupled to matter,
using the basis [4] for the CDJ matrix. The quantum Gauss’ law constraint
reads

ĜaΨ =
[
Di

δ

δAa
i

+Qa

]
Ψcan =

(
Di
δIcan

δAa
i

+Qa

)
Ψcan (12)

where Qa is the eigenvalue of the matter part of the constraint on the state
for matter fields φA transforming in some representation Ta of SU(2), where
the index A ranges from 1 to N, given by

(Ĝa)matterΨcan = φA(Ta)
A
B

δ

δφB
Ψcan =

(
φA(Ta)

A
B

δIcan

δφB

)
Ψcan = QaΨcan

(13)
and the Ansatz Ψcan = eIcan has been used. The CDJ Ansatz σ̃i

a ≡
(δIcan/δA

a
i ) = ΨaeB

i
e leads to the condition [4] that

X̂eΨae +Qa = 0 (14)

where the twisted vector field X̂e is given by

X̂eΨae =
∂

∂te
Ψae + (Ca)

fgΨfg. (15)

4



the SU(2)− 3-vector te = te(x) can be thought of as a set of coordinates
defining three directions in the tangent space (angles) of a nonorthogonal
coordinate system defined by the vector field and corresponding covector
one-forms

∂e =
∂

∂te
= Bi

e

∂

∂xi
; dte = dxj(B−1)ej (16)

representing the rate of change of a function in any of the three internal
SU(2) directions of the magnetic field. In this system we have

〈
dta

∣∣∂b

〉
= δa

b

The new set of coordinates is related to the old by the relation

te(~x) = te(0) +

∫ x

0
dyj(B−1)ej . (17)

As long as Bi
a is nondegenerate, which we expect in the presence of matter

fields ([?],[4]), the map between the coordinate systems should be bijective.
The integrability condition for these vector fields is given by the theorem of
Frobenius, which is the condition that there exist functions he

ab(x) such that

[ ∂

∂ta
,
∂

∂tb
]
f(x) = he

ab(x)
∂

∂ta
f(x) ∀a, b (18)

for all smooth f(x). In this case the ’structure functions’ are given by

he
ab = (B−1)ej

[
Bi

a

∂Bj
b

∂xi
−Bi

b

∂Bj
a

∂xi

]
, (19)

again which are globally well-defined due to the invertibility of the magnetic
field. When the same criteria is applied to the ’twisted’ vector fields, X̂e,
twisted by a new kind of connection C ≡ BA corresponding to a covari-
ant derivative with respect to the new (nonorthogonal) coordinate system,
taking values in a tensor representation of the group.

(Ca)
fg = Bi

eA
b
i(fabf δge + febgδaf ), (20)

we obtain, in operator form

[
X̂a, X̂b

]
= he

abX̂e − he
abCe + Fab (21)

where Fab is the curvature for the new connection Ce, a curvature of curva-
tures, given by

Fab =
∂Ca

∂tb
− ∂Cb

∂ta
+ [Ca, Cb]. (22)

So it appears that in the presence of inhomogeneous terms, including
matter, the ability of the new coordinate system to cover the spatial manifold
Σ may be in jeopardy due to this obstruction. However, application of the
theorem of Frobenius enables one to transform into a new coordinate system
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which does manifestly span Σ, even in the presence of matter fields, by
finding an appropriate linear combination ~X = αeXe for suitably chosen
coefficients αe. We will not attempt to illustrate this in this work, but
will rather find it more convenient to adopt a fibre bundle interpretation
on a base space G ≡ (B−1)Σ with fibres comprising the spin 0 and spin
2 elements of the CDJ matrix in the presence of a model-specific matter
source, determined by the spin 1 elements and the charge.

Recalling the notation from [4] Ψab = Dab + ψab +Aab where

Ψab =




Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33




and the diagonal, off-diagonal and antisymmetric parts are given, respec-
tively, by

Dab =




X 0 0
0 Y 0
0 0 Z


 ; ψab =




0 U W
U 0 V
W V 0


 ; Aab =




0 −u −w
u 0 −v
w v 0




Using the notation, for integral curves along the direction t ≡ te, in analogy
to path ordering of a parallel propagator, we define the ’symmetric contri-
bution’ D̂ which acts on the symmetric elements of the CDJ matrix, given
by

D̂abc
e F (te) ≡

[
U−1 ∂

∂te
U

]
F, (23)

where U is the parallel propagator along a path in this SU(2) space, given
by

U = U(t, 0) = 1 −
∫ t

0
dt1Ca(bc)(t1) +

∫ t

0
dt1

∫ t1

0
dt2Ca(bc)(t1)Ca(bc)(t2)

−
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3Ca(bc)(t1)Ca(bc)(t2)Ca(bc)(t3) + ...

= P̂
[
exp

[
−

∫ te

0
dt′Ca(bc)(t

′)
]]

(24)

and the antisymmetric contribution
ˆ̃
D which acts on the antisymmetric

elements of the CDJ matrix, given by

ˆ̃
D

abc

e F (te) ≡
[
U−1 ∂

∂te
U

]
F, (25)

where the antisymmetric counterpart of the parallel propagator is given by
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U = U(t, 0) = 1 −
∫ t

0
dt1Ca[bc](t1) +

∫ t

0
dt1

∫ t1

0
dt2Ca[bc](t1)Ca[bc](t2) + ...

−
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3Ca[bc](t1)Ca[bc](t2)Ca[bc](t3) + ...

= P̂
[
exp

[
−

∫ te

0
dt′Ca[bc](t

′)
]]

(26)

with no summation over a, b, c, e, and with the definitions Ca(bc) = Cabc +
Cacb, and Ca[bc] = Cabc − Cacb. Gauss’ law constraint can be written in the
form




D̂112
2 C1(23) D̂113

3

D̂212
1 D̂223

3 C2(13)

C3(12) D̂323
2 D̂313

1







ψ12

ψ23

ψ31


 = −




Q′
1

Q′
2

Q′
3


−




D̂111
1 0 0

0 D̂222
2 0

0 0 D̂333
3







ψ11

ψ22

ψ33




where ~Q′ is made up of the matter charge and the antisymmetric part of the
CDJ matrix, both determined by the matter fields, given by




Q′
1

Q′
2

Q′
3


 =




Q1

Q2

Q3


 +




ˆ̃
D

112

2 C1[23]
ˆ̃
D

113

3

ˆ̃
D

212

1
ˆ̃
D

223

3 C2[13])

C3[12]
ˆ̃
D

323

2
ˆ̃
D

313

1







A12

A23

A31




Observe that it is in general nontrivial to solve for the shear components
ψ12, ψ23 and ψ13 in terms of the anisotropic components ψ11, ψ22 and ψ33

due to the noncommutativity of the elements of the nondiagonal matrix of
differential operators acting on the former. However, it is easier to solve for
the latter interms of the former.

The differential operators D̂ and
ˆ̃
D have a useful interpretation. Sup-

pose that a field F satisfies the following inhomogeneous first-order linear
differential equation with source q(s) distributed along a curve parametrized
by s

D̂F =
[ ∂
∂t

+ C
]
F (t) = q(t) (27)

Then (27) can be viewed as an evolution equation in t space, which can
readily be inverted to give

F (t, r, s) = U−1(t, t0)F (0, r, s) + U(t, t0)

∫ t

t0

dt′ U−1(t′, t0)q(t
′, r, s) (28)
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(28) has a physically intuitive interpretation with regard to interaction
among the CDJ matrix elements. The value of the ’fibre’ F at any point
along a curve t is determined by two contributions. (i) First, its value at
the origin of the curve t = 0 is parallel propagated to the spatial point in
question (x(t), y(t), z(t)). This has a direct analogy in the Dyson formula in
field theory, in which the parallet propagator plays the role of the interaction
Hamiltonian. (ii) Secondly, there is a contribution due to an inhomogeneous
term which depends upon all points 0 ≤ t′ ≤ t. If this procedure can be
carried out for three linearly independent directions t = (t1, t2, t3), then the
value of F (t) can be found everywhere in Σ.

This makes it possible to solve for the diagonal (anisotropy) components
of the CDJ matrix in terms of the matter phase space variables, which are
model-specific, and the symmetric off-diagonal (shear) components. The
rotational (antisymmetric) components of the CDJ matrix are fixed by the
matter contribution to the diffeomorphism constraint

ĤiΨcan =
[
ǫijk

δ

δAa
j

Bk
a+(Hi)matter

]
Ψcan =

(
ǫijk

δIcan

δAa
j

Bk
a+(Hi)matter

)
Ψcan = 0

(29)
where the matter contribution (Hi)matter ≡ Hi is the eigenvalue of its re-
spective operator on the state

(Ĥi)matterΨcan = Diφ
A δ

δφA
Ψcan =

(
Diφ

A δIcan

δφA

)
Ψcan = HiΨcan, (30)

which by the CDJ Anstaz requires that

Aab = ǫabdψd = |B|−1Bi
dHiǫabd. (31)

Note that when there is no matter present, that the antisymmetric part of
the CDJ matrix is identically zero. This is also the case for minisuperspace
models not containing fermions. The relationship among the elements of the
CDJ matrix imposed by the kinematic constraints, in general, holds for the
state Ψcan both at the classical and at the quantum level regardless of the
model. It is the type and representation of the matter fields, if present, which
distinguish one model from another. It is useful to visualize the diagonal
(anisotropic) elements of the CDJ matrix as comprising a three-vector ~X =
(X,Y,Z) and the off-diagonal symmetric (shear) elements as comprising
another three-vector ~U = (U, V,W ), with the antisymmetric (rotational)
elements comprising a third 3-vector ~u = (u, v,w). The relationship among
these vectors is linear and appears, in matrix form, as
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


X(t1)
Y (t2)
Z(t3)


 =




(Û111(t1, t0))
−1 0 0

0 (Û222(t2, t0))
−1 0

0 0 (Û333(t3, t0))
−1




−1 


X
Y
Z




~0




D̂111
1 0 0

0 D̂222
2 0

0 0 D̂333
3




−1



D̂112
2 C1(23) D̂113

3

D̂212
1 D̂223

3 C2(13)

C3(12) D̂323
2 D̂313

1







U
V
W




−




D̂111
1 0 0

0 D̂222
2 0

0 0 D̂333
3




−1


~π · (T1

~φ)

~π · (T2
~φ)

~π · (T3
~φ)




−|B|−1




D̂111
1 0 0

0 D̂222
2 0

0 0 D̂333
3




−1




ˆ̃
D

112

2 C1[23]
ˆ̃
D

113

3

ˆ̃
D

212

1
ˆ̃
D

223

3 C2[13])

C3[12]
ˆ̃
D

323

2
ˆ̃
D

313

1







Bi
1~π · (Di

~φ)

Bi
2~π · (Di

~φ)

Bi
3~π · (Di

~φ)




where the subscript ~0 denotes the value of the quantity on a 2-dimensional
surface orthogonal to the integral curves of the vecor field comprising the
original differential equation. Note, below that (τ1, τ2, τ3) need not form
an orthogonal system of coordinates, but it should be possible to construct
an orthogonal system from them using either Frobenius’ theorem, or the
Gram-Schmidt orthogonalization procedure.




X
Y
Z




~0

=




X(0, τ1, τ2)
Y (τ1, 0, τ2)
Z(0, 0, τ3)




~0

Note that the first term on the right hand side, which involves the
anisotropic components at the origin, can be expressed entirely in terms of
the shear components and matter fields at the origin by solving the Hamil-
tonian constraint. Hence




X(t1)
Y (t2)
Z(t3)




=




(Û111(t1, t0))
−1 0 0

0 (Û222(t2, t0))
−1 0

0 0 (Û333(t3, t0))
−1




−1 


X[~U(t0)]

Y [~U(t0)]

Z[~U(t0)]


+...

Making the identifications
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D̂diag =




D̂111
1 0 0

0 D̂222
2 0

0 0 D̂333
3




−1

D̂sym =




D̂112
2 C1(23) D̂113

3

D̂212
1 D̂223

3 C2(13)

C3(12) D̂323
2 D̂313

1




D̂anti =




ˆ̃
D

112

2 C1[23]
ˆ̃
D

113

3

ˆ̃
D

212

1
ˆ̃
D

223

3 C2[13])

C3[12]
ˆ̃
D

323

2
ˆ̃
D

313

1




the final equation can be written, schematically,

~X(~t) = (D̂diag)
−1(~t, 0) ~X [~U0] − D̂−1

diag(
~t, s)D̂sym

~U(s)

−
∑

s

D̂−1
diag(

~t, s)~Q(s) − |B|−1
∑

s

D̂−1
diag(

~t, s)D̂anti
~H(s) (32)

The interpretation of the canonically determined dynamics for the CDJ
matrix can now be seen as the following neat picture. In order to determine
the gravitational sector of the generalized Kodama state

Ψgrav = exp
[∫

M

ΨabB
i
aȦ

b
i

]
= exp

[∫

M

(
ΨabF

a ∧ F b −Aa
0(Ga −Qa)

)]
(33)

we need to find the CDJ matrix everywhere in M in order to integrate
against the a ’topological four-form tensor’

F a ∧ F b = ǫµνρσF
a
µνF

b
ρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ (34)

which serves as a test function. For a given matter model the charge
~Q = φ·(~Tπ) and the momentum ~H = φ·( ~Dπ) are specified for all along with
the contribution of the matter fields to the quantum Hamiltonian constraint
(Ω0,Ω1,Ω2) (corresponding to the orders of singularity. This combination
of inputs produces an ouput comprising the anisotropy ~X and the shear ~U
components everywhere in space, and can be pictured as follows.

Map 3-dimensional space Σ into an internal manifold G with coordi-
nates (t1, t2, t3) by the action of a nondegenerate ’driebein’ Bi

a. Each point
~t of G consists of three SU(2) 3-vectors Xa = ~X = (X,Y,Z), Ua =
~U = (U, V,W ) and ωa = ~ω = ~ω(~Q, ~H). The pure Kodama state con-
sists everywhere of two zero vectors ~UKod = ~ωKod = ~0 and the fixed vector

10



~XKod = −6(~GΛ)−1(1, 1, 1). These vectors remain globally decoupled ev-
erywhere. For the generalized Kodama state Ψ′ two vectors are specified:
the 3-vector ω′ = ω[ ~Q, ~H], determined everywhere for by the given model
(by compressing the matter fields into the gravitational arena [4]) and the
shear ~U0 on three 2-dimensional surfaces (the (t1, t2), (t2, t3) and (t3, t1)
planes, which is freely specifiable.

The kinematics then takes over to give the anisotropy ~X(~t) everywhere
in G, from which the shear everywhere ~U(~t) = ~U [ ~X(~t)] automatically fol-
lows via the dynamics. The coupling due to matter can then be seen as
a transformation between two coordinate systems ~U → ~U( ~X) (analogous
to the transformation from Cartesian to spherical coordinates) induced by
the freely specifiable quantities ~ω and ~U0. Each global configuration of
( ~X, ~U( ~X)) corresponds to a generalized Kodama state.

Since this relationship and interpretation holds at the semiclassical and
at the quantum levels we must have that

∣∣Ψ
〉
≡

∣∣ΨWkb

〉
with regard to

the canonical relationship imposed by the kinematic constraints. Thus as
the kinematic level there are three degrees of freedom, residing in the off-
diagonal shear components of the CDJ matrix, that exist in the semiclassical
state Ψcan = ΨWkb and in the quantum state Ψcan = Ψ, and the states are
thus far identical. The semiclassical-quantum correspondence is intact.

Let us now establish the semiclassica-quantum correspondence via path
integral for the simplest model, namely that of pure gravity with Λ term.

3 The pure Kodama state: Equivalence of the canon-

ical versrus path integral approach

We would like to have an algorithm for determining the ground state wave-
function corresponding to general relativity in Ashtekar variables coupled
to the most general fields. First it is important to have an understanding of
the pure gravity case with cosmological constant. Following suit as in the
Hartle-Hawking prescription one can write

Ψpath =
〈
A

∣∣A′
〉

=

∫
DAexp

(
iS[A]

)
(35)

where the action, by the 3+1 decomposition, is given by

S[A] =

∫

M

(
σ̃i

aȦ
a
i −θaGa−N iHi−NH

)
=

∫

M

(
σ̃i

aȦ
a
i

)
−G(θ)−Hi(N

i)−H(N)

(36)
Since the 3+1 decomposition is equivalent to transitioning from the tan-
gent bundle to the cotangent bundle involves the phase space variables

11



(Aa
i , Ȧ

a
i ) → (Aa

i , σ̃
i
a) the path integral should, strictly speaking, be per-

formed over all phase space variables. Hence

Ψpath =

∫
DADσ̃exp

(
iS[A, σ̃]

)
. (37)

In a usual treatment the path integral of a constrained system with
constraints Φβ one would include a gauge fixing condition χα with a factor-
ization over gauge equivalent orbits and correpsonding contribution to the
path integral measure

dµ(σ̃, A) −→ dµ(σ̃, A)
∏

x

δ
(
χα(x)

)
Det

(
[Φβ, χ

α]+
)
. (38)

We shall, in our approach to path integral quantization, introduce the fol-
lowing ideas:
(i) We will not factor out any infinities due to redundant integration over
gauge orbits, since these infinities will be common to all states and should
therefore cancel out in the relative probabilities and in the computation of
observables.
(ii) As a consequence of (i) we will not need to implement any gauge-fixing
procedures, and therefore needn’t worry about the complications due to
naive inequivalence among different gauge-fixing conditions.
(iii) One possible interpretation of the path integral measure, if there is to
be any equivalence between the path integral and canonical approaches to
quantization, will be such as to enforce this equivalence. Since the differ-
ence between Ψcan and Ψpath is, in our interpretation, a direct consequence
of either the breaking or of the skewing of the SQC, which is due to the
Hamiltonian constraint (a phenomenon unique to quantum gravity), one
possibility (albeit artificial) is to define a measure

dµ(σ̃, A) −→ dµ(σ̃, A)
(∏

x

δ
(
Hcl(x)

))−1
∏

x

δ
(
(Ψcan)−1ĤΨcan

)
(39)

which forces Ψcan = Ψpath providing the integral over the lapse density is
performed prior to applying the measure. We will show how this measure
can be usely to force by hand the equivalence of the canonical to path
integral approaches, but in later work accomplish the same effect without
it. But for now, let us focus upon the path integration over the phase space
‘coordinates’ DA.

When one decomposes the coordinate part of the path integral measure
in (37) into a measure over the physical and the gauge degrees of freedom

∫
DA =

∫ ∏

x,a,b

dAa
i (x)dA

b
0(x) (40)
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one realises that the group averaging procedure [6] can only be performed
with respect to the gauge group SU(2). Since the total phase space consists
of the Ashtekar conection Aa

i and the densitized triad σ̃i
a and excludes the

auxilliary metric variables, g0µ and
√
h, there is no inherent mechanism in

(37) for implementing the corresponding Hamiltonian and diffeomorphism
constraints via path integral.

One way to implement the constraints would be to incorporate these
quantities into the definition of the phase space variables and path integrate
over them accordingly. This is the direct analog of integrating over 4-metrics
instead of 3-metrics in the Hartle-Hawking prescription. The space of 3-
metrics hij plays the role of Aa

i and the g0µ parts can be viewed as structures
external to the physical phase space which must be integrated over in order
to reduce the state from an unconstrained form to a state that describes
quantum gravity. In other words, to study quantum general relativity rather
than simply SU(2) non-abelian gauge theory we must embed the phase space
of the former within the latter by enlarging it.

The configuration space of general relativity in metric variables contains
6 − 3 − 1 = 2 physical degrees of freedom per point: 6 components of
the 3-metric hij minus 3 diffeomorphism constraints minus one Hamiltonian
constraint. The configuration space in Ashtekar variables contains 9−3−3−
1 = 2: 9 components of the connection Aa

i minus 3 vector constraints minus
three Gauss’ law constraints minus one Hamiltonian constraint (we have for
the time being put aside the reality conditions). The number of degrees of
freedom is the same for both but if we were to enlarge the respective phase
spaces we would increase them by 4 for metric relativity (including g00 = N2

and g0i = Ni).
For the case of Ashtekar variables we would need to include Ni and

not N , but rather the combination N = N/
√
h. This is an increase of 4

if we regard the lapse and the lapse density as independent variables, but
5 if we do not. The former interpretation appears more reasonable, since
we by definition regard any quantities involving the spacetime metric as an
external structure with respect to the Ashtekar variables. However, although
the shift vector Ni is external to the 3-metric hij as it is to the Ashtekar
connection Aa

i , it would not be obvious a-priori to conclude that the lapse’s
externality to the 3-metric is the same as the lapse density’s externality to
the Ashtekar connection. One can say that they must somehow be equivalent
if the two theories are to in a sense correspond to each other. But as we
can already see, the Ashtekar variables ’know’ something about the metric
general relativity irrespective of the quantization scheme. We nevertheless
take the Lagrange multipliers N(x) and N i(x) as external structures in the
reduced theory.

To implement the Hamiltonian and diffeomorphism constraints we must
do so by hand. The most seemingly natural way is to act on (37) with the
unit operator in the form
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I =

∫
DNDN i

∫
DNDN i

. (41)

This has the effect of implementing the constraint while introducing a con-
tribution to the normalization factor of the wavefunction. Since we know
a-priori the right answer, namely the Kodama state we can place restrictions
upon the form of the normalization factor. Thus we have

Ψ[A] =
(∫

DNDN i
)−1

∫
DNexp[iH(N )]

∫
DAa

iDA
a
0exp[iG(θ)]

×
∫
DN iexp[iH i(Ni)]exp

(
i

∫

M

σ̃i
aȦ

a
i

)
. (42)

where we have introduced the following notation for smearing a function,

F j(Gj) =
∑

j

∫

M

d4x F (x)G(x) (43)

Alternatively, if we adopt the enlarged phase space interpretation then we
can discard the prefactor entirely. The first two integrations transform the
unconstrained wavefunction

Ψ0[A] = exp
[
i

∫

M

σ̃i
aȦ

a
i

]
(44)

into a gauge-invariant, diffeomorphism-invariant functional via a group av-
eraging procedure [ ]

Ψinv[A] =

∫
DN iDθaΨ[N i, θa, A] (45)

where

Ψ[N i, θa, A] = exp[iĤi(N
i)]exp[iĜa(θ

a)Ψ0[A]exp[−iĜaexp[−iĤi(N
i)].
(46)

Here Ψinv[A] is a diffeomorphism and gauge invariant state derived from the
unconstrained state and is otherwise arbitrary- this is the maximum that
can be done at the the kinematical level. Also note that (46) expresses the
tranformation as an operator relation. This is possible because quantum
operators corresponding to the diffeomorphism Ĥi and the gauge Ĝa con-
straints are linear in functional derivatives and therefore can be expressed as
eigenvalues directly in terms of a phase without quantum corrections. This
property is not spoiled due to ordering ambiguities due to the fact that the
kinematical algebra of constraints Diff ⋆ SU(2) closes, as a lie algebra, on
itself. By the Baker-Campbell-Hausdorf formula
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exp[iĤi(N
i)]exp[iĜa(θ

a)] = exp[i
(
Ĥi(N

i)+Ĝa(θ
a)+(1/2)Ĝa(N i∂iθ

a)+ ...
)
]

(47)
one ends up with a linear combination of diffeomorphisms and gauge trans-
formations in the exponent which is still first-order in the momenta. As
the Hamiltonian constraint commutes with the Gauss’ law constraint but
not with the diffeomorphism constraint (except for spatially uniform lapse
density functions N) the question arises as to whether the sequence of per-
forming its path integration is important.

As in any theory given possible ambiguities due to ordering one chooses
a particular operator ordering and then quantizes the theory with respect to
the chosen ordering. Then one can simply transform among states correp-
sonding to different orderings. Here, we will isolate the kinematic portion
of the phase space first by performing the path integrals as above, and then
apply the Hamiltonian portion last in order to derive the physical state of
the model.

That the starting wavefunction Ψ0[A] is not a-priori gauge or diffeo-
morphsim invariant can be seen by performing a transformation

Ψ′
0[A] = Ψ[A,α] = exp[iT̂ (α)]exp

(∫

M

σ̃i
aȦ

a
i

)
exp[−iT̂ (α)]

= expi
[
eiT̂ (α)

(∫

M

σ̃i
aȦ

a
i

)
e−iT̂ (α)

]
(48)

where T̂ (α) represents either a SU(2) ⊗ Diff ’gauge’ transformation la-
beled by α = (θa, N i) as determined by the BCH formula. We are re-
stricting, for simplicity, to ’gauge’ transformations connected to the iden-
tity. In any event, the result is to produce a wave-functional that satisfies
the Diff ⋆ SU(2) constraint, since the path integral can also be viewed (by
’disentangling’ the parameters) as

Ψinv[A] =

∫
DαΨ[A,α] ≡

(∫
DθeiGa(θa)

)(∫
DN ieiHi(N

i)
)
Ψ0[A]

=
∏

x,i,a

δ
(
Ga(x)

)
δ
(
Hi(x)

)
Ψ0[A]. (49)

which is the statement that the state has support only on configurations
for which the kinematic constraints are satisfied. The projector approach to
path integration of constrained systems is well explained in [6]. A special
case is that the kinematic constraints are identically satisfied when the self-

duality condition (σ̃i
a = κBi

a for some numerical constant κ) holds. Imposi-
tion of the Hamiltonian constraint fixes the value of this numerical constant.
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To implement the Hamiltonian constraint via path integral we can attempt
to define a state evolved in time relative to Ψinv via

Ψ(A,N ) = exp
[
iĤ(N)

]
Ψinv[A] (50)

and then integrate over all N . The difference from the previous procedure
is that the Hamiltonian constraint is cubic in momenta, which introduces
an operator ordering ambiguity, as well as potential divergences. Since the
path integral deals with c-number quantities and not quantum operators, it
would not be capable of dealing with the Hamiltonian constraint other than
at the classical level.

One aspect of the Ψcan ≡ Ψpath equivalence is that consistency between
the two must be maintained at all stages for the particular state in question.
The CDJ Ansatz clearly picks out a range of states canonically. One would
expect the path integral to reflect this and can taylor it accordingly. For
an ordering with momenta to the left of the coordinates, one has in the
canonical approach under the Ansatz Ψcan = eIcan

ĤiΨcan =
[
ǫijk

δ

δAa
j

Bk
a

]
Ψcan =

(
ǫijk

δIcan

δAa
j

Bk
a

)
Ψcan = 0 (51)

By the CDJ Ansatz σ̃i
a ≡ (δIcan/δA

a
i ) = ΨaeB

i
e we find that the antisymmet-

ric part of Ψae must be identically zero. Hence the CDJ matrix is symmetric,
both at the classical and at the quantum levels. This is the case due to the
linearity of this particular constraint in momenta

For the quantum Hamiltonian constraint, for the chosen operator order-
ing of momenta to the left of the coordinates, this yields

ĤΨcanǫ
abcǫijk

δ

δAa
i

δ

δAb
j

[
Bk

c + ~G
Λ

6

( δ

δAc
k

)]
Ψcan

= ǫabcǫijk
δ

δAa
i

δ

δAb
j

(
Bk

c + ~G
Λ

6

(δIcan

δAc
k

))
Ψcan = 0. (52)

Note that the quantum Hamiltonian constraint is a scalar constraint, and
therefore in the general case can impose only one condition upon the phase
space. A nontrivial solution can be found such that

Bk
c + ~G

Λ

6

(δIcan

δAc
k

)
= 0 ∀k, c, (53)

which is tantamount to converting the cubic Hamiltonian constraint into a
linear constraint, upon the same footing as the kinematic constraints. This is
as well appropriate for the path integral, since the aforementioned infinities
and ordering ambiguities are no longer an issue. By the CDJ Ansatz one
has
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(
Ψce + 6(~GΛ)−1δce

)
Bk

e = 0 (54)

One obvious solution to (54) is that Ψce = −6(~GΛ)−1δce [2] which, is
consistent with the Gauss’ law constraint and leads directly to the pure
Kodama state

ΨKod ∝ e−6(~GΛ)−1ICS [A]. (55)

This corresponds to nonflat Ashtekar connections. From the perspective that
the Hamiltonian is a scalar constraint and Gauss’ law is a SU(2)− vector
constraint there must remain, in the most general circumstance, two degrees
of freedom in the state. Noting that (54) is in reality a matrix acting on
the SU(2)− index of the magnetic field Bk

e , viewed as a collection of three
3-vectors labelled by the spatial index k, the condition that the equation
hold for nontrivial Bk

e is weaker than that leading to ΨKod. One can also
have

det
(
Ψce + 6(~GΛ)−1δce

)
= 0 (56)

which leads to the requirement that

detΨ + 18Λ−1V arΨ + 216Λ−2trΨ + 216Λ−3 = 0. (57)

(57) is one equation in five unknowns. Ψce = −6(~GΛ)−1δce is a special
solution, leading to the pure Kodama state, but it is clear that there are
others as well. Hopefully the path integral is ’smart’ enough to pick out all
solutions provided by the canonical approach. We will demonstrate this in
the next section.

Note that since Ψab is symmetric it can be diagonalized by orthogonal
transformation

Ψae = OabDbcO
T
ce (58)

where Dab = Diag(X,Y,Z) is a diagonal matrix and Oab = O(θ1, θ2, θ3) is
a 3 by 3 orthogonal matrix parametrized by three angles (θ1, θ2, θ3). Note
that all quantities appearing in (57) are independent of Oab since

detΨ = (detO)2detD = detD = XY Z

trΨ = OT
baOacDbc = trDbc

trΨ2 = Oab(DD)bfO
T
fa = trD2

(59)

Hence V arΨ = V arD. This leads to the condition
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XY Z + 36Λ−1(XY + Y Z + ZX) + 216Λ−2(X + Y + Z) + 216Λ−3

−→ Z = −Λ−1

(
216 + 216Λ(X + Y ) + 36Λ2XY

216 + 36Λ(X + Y ) + Λ2XY

)
. (60)

which determines the diagonal (anisotropic) elements of the CDJ matrix
in terms of the two freely specifiable parameters X and Y . This leaves
the Gauss’ law constraint, three conditions upon the off-diagonal symmetric
(shear) components, which should be specifiable completely in terms of the
diagonal ones.

The CDJ Ansatz can be viewed as the imposition, by hand, of a con-
straint upon the path integral which collapses the phase space path integral
into a configuration space path integral. Returning to the Hamiltonian con-
straint portion of the path integral we have, in an abuse of notation,

ΨHam[A, σ̃] =

∫
DNΨ(A, σ̃,N ) =

∏

x

δ
(
H(x)

)
Ψinv[A, σ̃]. (61)

At the level of (61) all constraints have been imposed subject to the CDJ
Ansatz, which produces a two-parameter space of solutions for the chosen
operator ordering, for which the Kodama state is a specialized solution from
this set. Since the semiclassical-quantum correpsondence is maintained we
have

(σ̃, A)
(∏

x

δ
(
Hcl(x)

))−1
∏

x

δ
(
(Ψcan)−1ĤΨcan

)
=

∏
x δ(0)∏
x δ(0)

= 1, (62)

and the path integral becomes, taking into account the substitution of the
CDJ Ansatz,

Ψpath =

∫
DADσ̃

∏

x,i,a

δ
(
σ̃i

a(x) − ΨaeB
i
e(x)

)
Ψ0[A] (63)

upon path integration over the ’momenta’ Dσ̃i
a the Ansatz is substituted,

along with the solution imposed by the the canonical constraints, into the
remainder of the path integral yielding [1],[2]

Ψpath = Ψpath(X,Y )

∫
DAexp

[∫

M

(
ΨabF

a ∧ F b +Aa
0Di(σ̃

i
a)

)]

=

∫
DAexp

[∫

M

(
Ψab(X,Y )F a ∧ F b

]
(64)

To enforce the Gauss’ law constraint we shall illustrate via the method
introduced in [1], for simplicity. The Gauss’ law constraint can be written,
in the absence of matter,
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Diσ̃
i
a = ∂i

[(
P̂ e

R

γ
A
)b

a
σ̃i

b

]
= 0, (65)

where in (65) we have used the path-ordered parallel propagator along a
path parametrized by s, given by

∫

γ

A =

∫ s

s0

dsẋiτaA
a
i −→ U ≡ P̂ e

R

γ
A (66)

It is clear that the pure Kodama state is a particular solution to the
Gauss’ law constraint since Qa = 0 when there are no matter fields present,
since

−6(~GΛ)X̂eδae = −6(~GΛ)
( ∂

∂te
δae + fabcA

b
iΨce + febcA

b
iΨac

)

= −6(~GΛ)−1(fabcA
b
iδce + febcA

b
iδac) = 0 (67)

due to antisymmetry of the structure constants. However, there are more
general solutions, which correspond to more general states. Applying the
abelian Poincare Lemma and the CDJ Ansatz to (65),

(
P̂ e

R

γ
A
)b

a
σ̃i

b =
(
P̂ e

R

γ
A
)b

a
(ΨbeB

i
e) = ǫijk∂jvka. (68)

for some arbitrary SU(2)−- valued 3-vector vka. Solving for the CDJ matrix
we have

Ψbe = (U−1)ab (∂jvka)ǫ
jki(B−1)ie ≡ Vbe (69)

At this point Vbe is an arbitrary SU(2)−-valued 2-index tensor. The CDJ
can be expressed in the in the spin-2 representation in terms of the rotation
angles

Ψae(~θ) = Oab(~θ)DbcO
T
ce(
~θ) = Rfg

be (~θ)Dfg = (U−1)abVae(~θ), (70)

where Dfg is a diagonal matrix. Note that since Ψbe is symmetric, three de-
grees of freedom can be eliminated from Vae by symmetrizing on the indices

Ψbe = (U−1)a(bVae). (71)

The diagonal elements of the CDJ matrix can then be expressed, with the
rotational degrees of freedom ~θ isolated,

Dfg = (R−1(~θ))befg(U
−1V )be. (72)

(72) can be compared with the form derived in sec(2), in terms of degrees
of freedom
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~X = (Ddiag)
−1 ~X0 + (Ddiag)

−1(Dsym)~U. (73)

In this basis ~X0 is the anisotropy vector at the origin, which corresponds
to the diagonal matrix elements, which fixes three components of Vae. The
remaining three components of the latter must be chosen to vanish in order
to balance the degrees of freedom. The shear vector ~U corresponds to the
degrees of freedom in the rotation angles ~θ.

Let us now see how Gauss’ law interacts with the Hamiltonian constraint
to determine the final CDJ matrix elements. ~U can be considered chosen at
all space and ~X0 is arbitrary. We will discretize space. labeling the points
by subscripts, to illustrate. Since the Hamiltonian constraint is independent
of ~θ it is the former which determines the latter at each stage of the process.
(i) (X0, Y0), (U0, V0,W0) are freely specified, (X0, Y0) being substituted into
the Hamiltonian constraint, which fixes Z0. There are five degrees of freedom
at the origin.
(ii) Using (73) and ~U1 as an input, ~X1 is found explicitly as a functional of
(X0, Y0, U0, V0,W0) and (U1, V1,W1) producing the vectors

X1 = X1(X0, Y0, U0, V0,W0, U1, V1,W1)

Y1 = Y1(X0, Y0, U0, V0,W0, U1, V1,W1)

Z1 = Z1(X0, Y0, U0, V0,W0, U1, V1,W1). (74)

(iii) Consistency must of course be checked with the Hamiltonian constraint.
Sustitution of (74) into the Hamiltonian constraint reveals that not all com-
ponents of ~U = (U1, V1,W1) are independent. This limits one of the com-
ponents, say W1, to be a functional of all the variables thus far, including
(U1, V1). Thus there are only two degrees of freedom accepted from ~U .
(iv) The new vectors are substitued into (73) and the process repeats until
all of space is covered.

To summarize, the CDJ matrix elements is freely specified at the origin
except for the antisymmetric components, which are zero due to the absence
of matter. These components remain zero throughout the ’evolution’ (here,
evolution with respect to space, not time). Subsequently, two components of
the shear are freely specifiable throughout Σ, from which the third compo-
nent and all anisotropy components are uniquely determined. This should
yield a two-functional-parameter family of generalized pure Kodama states.

We have found the most general state when there is no matter present,
even more general than the pure Kodama state, due to the two aforemen-
tioned degrees of freedom. When there is matter in the model, the matter
charge and diffeomorphism momentum are injected at each stage in the
process, which can be considered a nonlocal effect.

The pure Kodama state is given by the ’initial’ conditions
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(X,Y,Z, θ1, θ2, θ3)Kod = −6(~GΛ)−1(1, 1, 1, 0, 0, 0) (75)

for pure gravity in the absence of matter, whereupon a vanishing shear input
at each stage maintains its CDJ matrix elements globally decoupled. This
would not be the case for the general matter model, which is labeled by
a two-parameter family of functions corresponding to the shear elements
U(x), V (x).

Note that for the pure Kodama state we have Ψab = −6(~GΛ)−1δab and
(64) becomes

Ψpath =

∫
DAexp

[
−6(~GΛ)−1

∫

M

trF ∧ F
]

(76)

and something interesting happens. The path integrand becomes purely
topological. By Stokes’ theorem,

∫

M

trF ∧ F =

∫

∂M

tr
(
AdA+

2

3
A ∧A ∧A

)
= ICS [A(Σ)]. (77)

The path integrand of (76) collapses from a volume into a boundary integral,
which becomes immune to path integration within the interior of M and can
be factored out.

Ψpath =

∫
DAexp

[
−6(~GΛ)−1

∫

M

trF ∧ F
]

=

∫
DAΨKod[A(Σ)]

= (V olA)exp
[
−6(~GΛ)−1ICS [A(Σ)]

]
(78)

The V olA factor, the volume of the space of Ashtekar connections, is
formally infinite. But we expect this infinity to cancel among ratios of
states and for observables. The result is a topological state, defined on
the boundaries of M , just as the Hartle Hawking state is parametrized by
the boundary values of the 3-metric hij . The path integral resulting in the
Kodama state is manifestly convergent. We expect to be able to perform the
analogous procedure for a general model when there is coupling to matter
fields involved.

We will now show a sense in which the states ΨKod(U, V ) are orthogonal,
for this and in preparation of future work in the series. Note also that these
states are quantum states, even though we solved only the classical part of
the Hamiltonian constraint. This is the case becasue the state, as ΨKod[A],
is determined for an operator ordering for which q1 = q2 = 0 a-priori.
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4 Generalized Kodama wavefunctions as a com-

plete basis of states

We have demonstrated in the previous section that there exists a two-
parameter family of states satisfying the quantum constraints of pure grav-
ity, in addition to the pure Kodama state formed by the Chern-Simons
wavefunction. The first matter of interest is the sense, if any, that these
states form an orthonormal basis. Secondly, assuming that there is such a
basis of semiclassical/quantum states- which respect to what measure? The
same questions will be raised of the more general models coupled to matter.
We will demonstrate in this section the fundamental concept, which we hope
partially addresses the issue of normalizability of the states.

In order to establish in what sense an equivalence exists between the
canonical and the path integral approaches to quantization and the normal-
izability of the states that they produce, we must introduce a new repre-
sentation for the Hamiltonian constraint. We will motivate the formalism,
drawing upon simpler examples of increasing complexity, starting from the
finite dimensional analog.

Consider a polynomial F (x) which has N zeroes, r1, r2,...rN . The poly-
nomial can be written in the following factorized manner

F (x) =

N∏

k=1

(x− rk). (79)

(79) is written based upon a finite, discrete spectrum of roots. This can be
extended to transcendental functions with an infinite number of discretely
spaced roots, for instance in the Euler expression for the sine function

sinx = x
∞∏

n=1

(x2 − n2π2). (80)

To gain an intuition for what is to follow, let us first extend this concept to
the case of a continuous spectrum of roots. The Dirac delta function δ(x),
along with its various representations, can be viewed in a certain sense as
a function with a continous spectrum of zeroes, namely the entire real line
excluding possibly a finite number of points. One may imagine an extension
of (79) for which the roots become closer and closer spaced together, and
taking the continuous limit

δǫ(x) = limǫ→0δ
[∏

k

(x− rk)
]−1

such that||rk − rk+1| < ǫ. (81)

or variations theoreof.
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While we are discussing such pathological, albeit extremely useful, ’func-
tions’, let us generalize the concept of roots to functionals on infinite dimen-
sional spaces.

Bear in mind that what follows is meant, not so much to be a rigorous
mathematical construction, but rather a qualitative argument to motivate
the plausibility for how and why the the states satisfying the constraints can
be in a sense be considered normalizable.

Consider first the classical Hamiltonian constraint H(U,W, V ) = 0 ∀x.
Let W = W (γ)(U, V ) be a set of N solutions labeled by (γ) for each U and
V . The parametrization of the Hamiltonian constraint must reflect the fact
that there is as well a two-parameter familty of solutions (or roots, if you
like) U = U (α) and V = V β for each α = β. The classical Hamiltonian
constraint function, which is explicitly a function of the three remaining
CDJ matrix elements, can then be written as ’functional’ factorization over
each solution.

Let us now discretize space, assigning the label n to each point. The
Hamiltonian constraint, expressed in this language, reads at the classical
level when

δ[Hcl] ≡
∏

n

δ
(∏

α

(
U(xn) − U (α)(xn)

))
δ
(∏

β

(
V (xn) − V (β)(xn)

))

δ
(∏

γ

(
W (xn) −W (γ)(U (γ)(xn), V (γ)(xn))

))
(82)

For brevity we we will perform the analysis for one spatial point and the
compose the results in the end in for all points in the continuum limit. It
makes no difference to our analysis whether α and β are discrete or contin-
uous indices. Think of α and β as indices in functional space, each index
labeling a different pair of functions for which the HAmiltonian constraint
is satisfied ∀x. In order to aid the visualization of the mechanisms at play,
we shall explicitly maintain the indices throughout the derivation. Using
the identity

δ(F (x)) =
∑

r

δ(x− xr)

F ′(xr)
, (83)

where xr are the roots of F (x), we have for our discretized system of points
and functions,
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δ(Hcl(xn))

=
(∑

α

δ(U(xn) − U (α)(xn))
[
N (α)(xn)

∏

γ1 6=α

(
U (α)(xn) − U (γ1)(xn)

)N(α)−1
]−1)

×
(∑

β

δ(V (xn) − V (β)(xn))
[
M (β)(xn)

∏

γ2 6=β

(
U (β)(xn) − U (γ2)(xn)

)M (β)−1
]−1)

×
(∑

γ

δ(W (xn) −W (γ)(xn))
[
K(γ)(xn)

∏

γ3 6=γ

(
W (γ)(xn) −W (γ3)(xn)

)K(γ)−1
]−1)

,(84)

where N (α), M (β) and K(γ) are meant to take into account any possible
multiplicity of ’roots’. In shorthand motation,

δ(Hcl(xn)) =
∑

α,β,γ

(µαβγ)−1δ(U(xn) − U (α)(xn))

δ(V (xn) − V (β)(xn))δ(W (xn) −W (γ)(xn)) (85)

with a Jacobian contribution to the measure given by

µαβγ(xn) = N (α)(xn)M (β)(xn)K(γ)(xn) ×
∏

γ1 6=α,γ2 6=β,γ3 6=γ

(
U (α)(xn) − U (γ1)(xn)

)N(α)−1

(
V (β)(xn) − V (γ2)(xn)

)N(β)−1(
W (γ)(xn) −W (γ3)(xn)

)N(γ)−1
.(86)

Again, α and β can be viewed as coordinatizing a 2-dimensional surface
(U (α), V (β)) in the functional space over each point x, upon which various
quantities of interest can be defined.

We wish to evaluate a path integral for a functional Ψ[U, V,W ] upon
which we wish to impose the Hamiltonian constraint. Hence,

Ψpath =

∫
DU

∫
DV

∫
DλeiH(λ)Ψ[U, V,W ], (87)

where the path integration measure is given by

DUDVDWDλ =
∏

x

dU(x)dV (x)dW (x)dλ(x)

= limn→∞

n∏

k

dU(xk)dV (xk)dW (xk)dλ(xk) (88)

Note that Ψpath is at this stage a single wavefunctional. Now observe what
happens. First, we perform the path integration over the Lagrange multi-
plier to obtain
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Ψpath =

∫
DUDVDW

∏

x

δ
(
Hcl(x)

)
Ψ(U,W, V ). (89)

Before proceeding with the path integral we must first distentangle the con-
straint into a form linear in the variables of path integration, including the
appropriate Jacobian factor (the analog of (83), except in the space of func-
tions). We anticipate that imposition of the constraint will fix the function
W for each set of functions U and V , which can be chosen arbitrarily. Thus
we have, in disretized notation,

Ψpath =
∑

α,β,γ

∫
DUDV

∏

n

∫
dW (xn)η(γ)[U(xn), V (xn),W (xn)](µαβγ)−1(xn)

δ(W (xn) −W (γ)[U(xn), V (xn)])δ(U(xn) − U (α)(xn))δ(V (xn) − V (β)(xn))

Ψ[U(xn), V (xn),W (xn)],(90)

where η(xn) is the Jacobian of the distentanglement relation for W . Since
the classical part of the Hamiltonian constraint is already linear in W the
relation is given by

η(γ) = (UαV β)−1

W (γ)[U(xn), V (xn)]) = −Λ−1

(
216 + 216Λ(U (α) + V (β)) + 36Λ2U (α)V (β)

216 + 36Λ(U (α) + V (β)) + Λ2U (α)V (β)

)
.(91)

Observe that the wavefunction, which was originally a single state, has
now decomposed into a linear combination of states. There is one state
for each pair of functions U(x) and V (x), consistent with the Hamiltonian
constraint. We have taken into account all possible functions, and therefore
all possible states.

First we perform the W path integral, whereupon the three-dimensional
functional manifold over each point collapses into a two-dimensional func-
tional manifold. Now the path integral shifts to DU . This can readily be
visualized by undiscretizing after the DW integral and the re-discretizing
in preparation for the DU integral. Here, the notation Ψ(2)) signifies the
collapsed path integrand, now containing two functional degrees of freedom.

Ψpath =
∑

α,β,γ

∫
DVDUη

(γ)
(2) [U(x), V (x)](µαβγ(x))−1δ(U(x) − U (α)(x))

δ(V (x) − V (β)(x))Ψ(2)[U(x), V (x)]

=
∑

α,β,γ

∫
DV

∏

n

dU(xn)η
(γ)
(2) [U(xn), V (xn)](µαβγ)−1δ(U(xn) − U (α)(xn))

δ(V (xn) − V (β)(xn))Ψ(2)[U(xn), V (xn)].(92)
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The path integration over DU imposes the delta functional giving

Ψpath =
∑

α,β,γ

∫
DV η

(γ)
(2) [U

(α)(x), V (x)](µαβγ)−1[U (α)(x), V (x)]

δ(V (x) − V (β)(x))Ψ(1)[U
(α)(x), V (x)]. (93)

The wavefunction in the path integrand has now collapsed to one functional
degree of freedom. Again, we undiscretize and re-discretize to do the DV
path integral,

Ψpath =
∑

α,β,γ

∏

n

∫
dV (xn)η

(γ)
(1) [U

(α)(xn), V (xn)](µαβγ)−1[U (α)(xn), V (xn)]

δ(V (xn) − V (β)(xn))Ψ(1)[U
(α)(xn), V (xn)]

=
∑

α,β,γ

η
(γ)
(0) [U

(α)(x), V (β)(x)](µαβγ)−1Ψ(0)[U
(α)(x), V (β)(x)].(94)

So the state has collapsed into a linear combination of the set of all functions
on a reduced phase space consistent with the constraints. Furthermore, these
functions are weighted by their respective Jacobians. To ease the notation,
one can regard either α and β or U and V as dummy labels, with the
understanding that each pair of indices labels a particular functional of two
variables (functions) of the set.

Ψpath =
∑

α,β

ρ(α, β)Ψ[α, β] (95)

This procedure can in principle be carried on for more sets of variables.
Now we must ask in what sense the states are normalizable. Let us say that
the there were additional variables A in the path integral that needed to be
done. A possible trap to fall into is to define the norm by

〈
Ψαi,βi

∣∣Ψαj ,βj

〉
≡

∫
DAΨαi,βi

[A]Ψαj ,βj
[A]. (96)

(96) is incorrect because it is neither the correct set of variables nor correct
Hilbert space with respect to which the orthonormality naturally would
be assessed in the analogous system of ordinary quantum mechanics. To
provide a more familiar analogy, imagine that a wavefunction Ψ expanded
in a complete basis of states

Ψ(x, y) =
∑

n

cnψn(x, y) (97)

where cn are the weights. Performing (96) would be analogous to defining
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〈
ψm

∣∣ψn

〉
≡

∫
dy

[(∫
dxΨm(x, y)

)
∗

(∫
dxΨn(x, y)

)]
(98)

where the product ∗ would have to be suitably defined. The proper defini-
tion, in accordance with the axioms of quantum mechanics, is given by

〈
ψm

∣∣ψn

〉
=

∫
dxdyΨm(x, y)Ψn(x, y). (99)

with due regard for the line bundle structure over the (x, y) base space. The
Hilbert space is the set of square-integrable functions on the the space of
positions (x, y). In the case of the path integral the role of x was played by
U(x) and V (x), variables which have already been integrated out, and the
role of y played by the remaining variables, such as the connection Aa

i (x).
In order to assess the inner products and norms of the functions, one must
integrate the probability density with respect to the variables in question:
square then integrate, not the other way around.

Applying this principle, we would have to go back to the corresponding
stage upon path integrating W and isolate the individual states, including
their measures and delta functions. It so happens that the states are peaked
on functions consistent with the solution of the Hamltonian constraint.

The proper state with respect to which orthonormality should be mea-
sured is a functional of U(x) and V (X), labelled by a pair of functions Uα

and V α. So we have (suppressing the suffix on Ψpath)

〈
Ψα,β

∣∣[U, V ]
〉

= δ
[
U − U (α)

]
δ
[
V − V (β)

]
ρ[U (α), V (β)]Ψ(2)[U, V ]. (100)

Assuming a complete set of functional basis states, the the inner product of
two states is given by

〈
Ψαi,βi

∣∣Ψαj ,βj

〉

=

∫
DUDV

〈
Ψ[U (αi), V (βi)]

∣∣U, V
〉〈
U, V

∣∣Ψ[U (αi), V (βi)]
〉

=

∫
DUDV ρ[U (αi), V (βi)]ρ[U (αj), V (βj)]δ

[
U − U (αi)

]

[
V − V (βi)

][
U − U (αj)

][
V − V (βj)

]
Ψ(2)[U, V ]Ψ(2)[U, V ] (101)

Tidying up the notation a bit, we have
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〈
Ψαi,βi

∣∣Ψαj ,βj

〉

=

∫
DUDV δ

[
U − U (αi)

][
V − V (βi)

][
U − U (αj)

][
V − V (βj)

]

Ψ(2)[U, V ]Ψ(2)[U, V ]ρ(αi, βi)ρ(αj , βj)

=
∏

x

δ
[
U (αi) − U (αj)

][
V (βi) − V (βj)

]∣∣∣ρ(α(i), β(i))
∣∣∣
2∣∣∣Ψ(2)(α

(i), β(i))
∣∣∣
2
. (102)

In a nutshell, we have found that the inner product of two different
generalized Kodama states, corresponding to any two different solutions to
the constraints, is zero unless the two functions paramterizing the two states
are identically equal. This it the orthogonal basis we seek: orthogonality of
functionals with respect to arbitrary functions. To calculate the norm of a
state we merely ’contract’ the ’indices’ and obtain

∣∣Ψα,β

∣∣2 = (δ(0))2∞
∣∣ρ(α, β)

∣∣∣
2∣∣∣Ψ(2)(U

(α), V (β))
∣∣∣
2
. (103)

It may appear that (103) is pathological, due to the infinite product of delta
functions of zero, two per spatial point. However, we expect these infinite
numerical factors to cancel out in the ratios of probabilities amongs different
states and also in the computation of observables. The functions of course
must all have the same domain in order for the relative probabilities of
solutions to the constraint in a superposition state to be well-defined. Still,
ζ function regularization procedures can be used on these delta functions,
although not necessary.

This entire argument is based upon assessing the orthonormality with
respect to the appropriate Hilbert space. There is of course still the possi-
bility to carry out this computation in the remaining unintegrated variables.
The question is then to find and to to appropriately define with respect to
what relationships orthogonality is being measured.

∏

x

∫
dU(x)∧dV (x)∧dW (x)

∫
DNeiH(N) =

∏

x

∫
dU∧dV ∧dWδ

(
Hcl(U,W, V )

)

(104)
which, when disentangled and account is taken of the state, leads to

∏

x

dUdV dW
∑

α,β,γ

(καβγ)−1δ(U − U (α))δ(V − V (β))δ(W −W (γ))

exp
[∫

M

(
Ψae(U, V,W,ω)Bi

eȦ
a
i + ~π · ~̇φ

)]

=
∑

α,β

(καβ [ω])−1exp
[∫

M

(
Ψae(U

(α), V (β))Bi
eȦ

a
i + ~π · ~̇φ

)]
(105)
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For brevity we have suppressed the dependence upon W and γ above, but
we can see that at the level of implementation of the quantum Hamiltonian
constraint, the original path integral has split into a linear combination of
(uncountably infinite) basis states.

5 The problem of time in quantum gravity

Let us revisit the no boundary prescription for determining quantum gravi-
tational wavefunctions [8]. The no-boundary proposal relates the transition
amplitude for the quantum gravitational wavefunction into its present state,
to the path integral via

〈
hij(ΣT ), φ(ΣT )

∣∣h′ij(Σ0), φ
′(Σ0)

〉
=

∫
DgDφ exp(i

∫

M

LEH [g, φ]) (106)

where the gravitational portion of the path integral is over all 4-metrics
gµν throughout the interior of a 4-manifold M with the given 3-metrics
and matter fields (hij(ΣT ), φ(ΣT )) and (hij(Σ0), φ(Σ0)) on the spatial 3-
boundaries ΣT and Σ0. The Lorentzian path integral, as written, is typically
ill-defined.

The usual prescription to find the ground state for a quantum field theory
field theory is to Wick rotate the time interval τ = T − t0 → −iτ into
the imaginary time axis in order to improve the convergence properties of
the path integral. To isolate the ground state of the system one inserts a
complete set of orthonormal eigenstates of the total Hamiltonian operator

I =
∑

n

∣∣n
〉〈
n
∣∣. (107)

Thus

〈
hij , φ

∣∣h′ij, φ′
〉

=
∑

n

Ψn[hij , φ]Ψn[h′ij , φ
′]exp[−Enτ ]

=

∫
DgDφ exp(−S[g, φ]), (108)

where En is the nth energy eigenvalue of the quantum Hamiltonian operator.
Then one takes the limit τ → ∞ and observes that it is only the n = 0 term
which survives. n = 0 corresponds to the lowest energy level of the system
and relates to the amplitude to make a transition from a time far in the
past, to the present when measurements can be made on the system.
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When this prescription is extended to quantum gravity one is faced with
our interpretation of the problem of time. Succinctly, in order for the ground
state to be selected, it must be incapable of having evolved into the current
state, due to the condition that the state must identically satisfy the Hamil-
tonian constraint. The requirement of equivalence between the canonical
and path integral approaches for a reparametrization-invariant theory such
as general relativity, to quantization system seems to be a root cause. Let
Ψcan and Ψpath be the wavefunctions determined, respectively, by the canon-
ical and the path integral approaches to quantization.

The quantum Hamiltonian constraint reads

Ĥ
∣∣Ψcan

〉
= 0. (109)

Hence for compact manifolds or for manifolds with suitable fall-off conditions
of the fields, it seems that there can be no evolution of the quantum state.
Written in the language of transition amplitudes,

〈
hij(ΣT ), φ(ΣT )

∣∣hij(Σ0), φ(Σ0)
〉

=
∏

x

δ
(
hij(ΣT ) − hij(Σ0)

)
δ
(
φ(ΣT ) − φ(Σ0)

)
. (110)

The no-boundary prescription circumvents this issue by restricting the
initial state of the universe to the hypersurface t = −i∞, [8] for which it can
be argued that the state does not exist. To entertain the possibility of the
current state of the universe having evolved in finite time from something
other than nothing, we shall focus on two spaceial categories of states: (i)
There is a canonical state Ψcan, in the full theory of quantum gravity which
must satisfy the quantum version of the Hamiltonian constraint

Ĥ
∣∣Ψcan

〉
= 0. (111)

For the sake of convenience let us assume we are now describing Ashtekar’s
gravity, although the same argument can essentially be applied as well to
the metric representation to a certain extent). (ii) But there is also a semi-
classical state also of the full theory, ΨWkb, that satisfies a condition usually
of the form [2]

Ĥ
∣∣ΨWkb

〉
= (Hcl +Hct)

∣∣ΨWkb

〉
=

(
~Gδ(3)(0)q1 + ~

2G2(δ(3)(0))2q2
)∣∣ΨWkb

〉
.

(112)
where q1 and q2 can be expressed in terms of the CDJ matrix elements in
the form

q1 = ǫijkǫ
abcGΛ~

6

[
Bi

e

δ2

δAb
jδA

c
k

+ 2Dij
eb

δ

δAc
k

+ ǫijkebc

]
Ψae + Ω2 + 72 = 0 (113)
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q2ǫijkB
i
aB

j
f

δ

δAc
k

[
ǫabcΨbf +

1

4
~GΛǫebcΨaeΨbf

]
+

(
12Cb

e + 4δb
etrC

)
Ψbe

+2~GΛ
(
δa
eC

b
f − δb

eC
a
f

)
ΨaeΨbf + Ω1 = 0. (114)

For this state, the semiclassical part of the Hamiltonian vanishes Hcl = 0,
but there remain quantum terms Hct. It is these quantum terms that can
potentially provide a ’Hamiltonian’ for the evolution of the semiclassical
state. The perception of time evolution for this state is the classical
limit of an unobservable quantum effect. So the first question that needs
to be answered is, which version of the constraints is being satisfied and by
which state? Since we make contact with the semiclassical limit of quantum
mechanics, one may think that when we observe time evolution classically,
we lose the ability to do so quantum mechanically, hence that it is impossible
to experimentally verify any effects of quantum gravity, although we can
verify the classical limit of such effects, such as inflation, etc.

Part of the reason for this paradox may reside in the notion that one must
choose the initial state, at −i∞, to be the only one with respect to which a
measurement of the present can be made, in order to select a ground state
consistent with the Feynman path integral. The no-boundary prescription
would allow for excited states which when unsuppressed can tunnel into
our present universe. Such states, evlauated at finite times, can interfere
with a quantum mechanical measurement made at finite times. However,
an alternative is suggested.

One would like to be able to observe quantum gravitational effects exper-
imentally, which requires a meaurement of two observables separated by a
finite time separation τ . The ability to correlate such measurements would
be strong indication for the testability of the quantum theory of gravity
below the Planck scale.

First, a more convenient basis is neededed for measuring energy than
the mode eigenstates

∣∣n
〉
. Let us consider instead a set of complete states

quantum states
∣∣Ψ(n)

can

〉
, which are solutions to the quantum Hamiltonian

constraint. We will later have to define a measure with respect to which
these states are complete, but assume for now that there exists a resolution
of unity of the form

I =
∑

n

∣∣Ψ(n)
can

〉〈
Ψ(n)

can

∣∣. (115)

The index n in (115), which can be discrete or continuous, enumerates these
quantum states. Now insert these states into the quantum amplitude to
transition from one state at time ti to a state at time tf for a finite time
separation t1 − t2 = τ . The transition amplitude then reads
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∑

n

〈
Aa

i (Σtf ), φ(Σtf )
∣∣Ψ(n)

can

〉〈
Ψ(n)

can

∣∣Aa
i (Σti), φ(Σti)

〉

=
∑

n

Ψ(n)
can[Aa

i (Σtf ), φ(Σtf )]eiĤ
i(Ni)eiĜa(θa)eiĤ(N)Ψ

(n)
can[Aa

i (Σti), φ(Σti)]

=
∑

n

Ψ(n)
can[Aa

i (Σtf ), φ(Σtf )]Ψ
(n)
can[Aa

i (Σti), φ(Σti)]

=

∫
DADφ exp(i

∫

M

LAsh[A,φ]).(116)

In the second line we have made use of the fact that the kinematic constraints
have been identically satisfied, and that the Hamiltonian constraint has been
satisfied as well, and we have used the smearing convention

Ĥ(N) =

∫

M

d4xN(x)Ĥ(x). (117)

Note that in this basis we have related a ground state, or a linear combina-
tion of ground states, of quantum gravity to the path integral. Furthermore,
these ground states occur at a time interval apart which should make possi-
ble a measurement and correlation of observables. There is no interference
from excited states because all states in this set are by definition of zero
energy.

It is a matter of convention whether one chooses a Euclidean or Lorenzian
signature for spacetime, but either way, if there is a quantum state satisfying
the constraints, then it must necessarily be related to the path integral.
Therefore the path integral and canonical approaches are still congruous.

Now, let us assume that there exists a complete set of semiclassical states
permitting a resolution of unity of the form

I =
∑

n

∣∣Ψ(n)
Wkb

〉〈
Ψ

(n)
Wkb

∣∣. (118)

Again, the sense in which these semiclassical states from a complete set will
be discussed future work. Observe what happens when we insert this set of
states into the transition amplitude.

∑

n

〈
Aa

i (Σtf ), φ(Σtf )
∣∣Ψ(n)

Wkb

〉〈
Ψ(n)

can

∣∣Aa
i (Σti), φ(Σti)

〉

=
∑

n

Ψ
(n)
Wkb[A

a
i (Σtf ), φ(Σtf )]eiĤ

i(Ni)eiĜa(θa)Ψ
(n)
Wkb[A

a
i (Σti), φ(Σti)]e

−H′

ct(N)

=
∑

n

Ψ
(n)
Wkb[A

a
i (Σtf ), φ(Σtf )]Ψ

(n)
Wkb[A

a
i (Σti), φ(Σti)] = 0

=?

∫
DADφ exp(i

∫

M

LAsh[A,φ]).(119)
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Here we have made a few assumptions. (i) The kinematic constraints have
also identically been satisfied by the WKB state, since these constraints
are linear in momenta. (ii) A Wick rotation has been made to Euclidean
signature (iii) We have applied a variant of the Baker-Campbell-Hausdorf
formula in isolation of the energy ’eigenvalue’ on the state.

eĤ(N)
∣∣ΨWkb

〉
=

[∑

n

1

n!

n∏

i

∫
d4xiN(xi)h(x1, ...xi)

]∣∣ΨWkb

〉
=

∣∣ΨWkb

〉
e−H′

ct(N).

(120)
Here H ′

ct is the eigenvalue upon exponentiation of the operator equation
(112), and is made up of multiple commutators of Ĥ with Hct. The precise
expression is not important so much as the fact that it is highly singular

H ′
ct =

∞∑

n=0

~
nGn(δ(3)(0))nq′n, (121)

due to the factors of δ(3)(0), which when exponentiated yield zero (for the
appropriate spacetime signature such that the argument of the exponential
is negative). Or, if nonzero, oscillates with infinite frequency (for an appro-
priate signature) such that the contributions from all WKB states cancel.
Whatever the case, the quantum transition amplitude can be defined so as
to suppress the WKB states so that they are either highly pathological or
nonmeasurable.

Let us assume the appropriate conventions for measuring states, between
finite time intervals, are in place. Unless the lapse density is zero (either for
for the time component of the metric to vanish g00 = 0, or for the spatial
3-metric to be degenerate det(hij) = 0), the semiclassical states cannot
contribute unless τ = tf − ti = 0. The problem of time has resurfaced.
It also implies that the laws of physics for gravity are valid or accessible
only in the quantum realm, and that we must regard with skepticism the
semiclassical limit if any sense is to be made of path integral quantization.
On the other hand, we do live in a universe in which we make contact with
reality by testing the classical limit of a quantum theory. So what is the
way out?

A way out is possibly via the semiclassical-quantum correspondence! In
other words, when

∣∣ΨWkb

〉
=

∣∣Ψcan

〉
, the path integral is in conformity with

the canonical approaches to an experimentally verifiable quantum theory of
gravity. So the question now becomes, for which sets of quantum gravita-
tional states are the quantum and semiclassical limits identically the same?
It is the set of generalized Kodama states ΨGKod. The canonical quantum
states are actually a subset of the WKB states [ ], and they are preferen-
tially selected by the path integral for a Hilbert space upon which to make
measurements. So one does not necessarily need to access the Planck scale
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in order to experimentally test quantum gravity. One can do so, vicariously,
in the semiclassical limit via the SQC.

The dichotomy between these two extremes exists in the full theory of
gravity, for which quantum singularities make the split evident. However,
there are intermediate cases as well, fully consistent with the theory of quan-
tum gravity. This are precisely the minisuperspace models.

Minisuperspace models, albeit an approximation for the full theory of
quantum gravity (or perhaps vivce versa), are perfectly suitable models in
their own right modulo issues of the commutativity of superspace reduction
with quantization. For usch models the δ(3)(0) singularities in the quantum
terms are no longer present and one may still have for its corresponding
WKB states relations of the form

Ĥ
∣∣Ψmini

〉
= H ′

ct

∣∣Ψmini

〉
=

(
Hcl~Gµ1 +~

2G2Hctµ2 + ...
)∣∣Ψmini

〉
6= 0. (122)

These states are deviod of infinities, and performing the analogous insertion
gives something of the form

∑

n

〈
Aa

i (Σtf ), φ(Σtf )
∣∣Ψ(n)

mini

〉〈
Ψ

(n)
mini

∣∣Aa
i (Σti), φ(Σti)

〉

=
∑

n

Ψ
(n)
mini[A

a
i (Σtf ), φ(Σtf )]eiĤ

i(Ni)eiĤ(NΨ
(n)
Wkb[A

a
i (Σti), φ(Σti)]e

−H′

ct(N)

=
∑

n

Ψ
(n)
mini[A

a
i (Σtf ), φ(Σtf )]Ψ

(n)
mini[A

a
i (Σti), φ(Σti)]

=

∫
DADφ exp(i

∫

M

LAsh[A,φ]).(123)

In the case where there is a large set of quantum states of minisuperspace it
may not be as obvious the relation of a particular one to the path integral
but at least the left-hand side is finite, which implies that that the path
integral most likely converges.

6 Discussion

The fundamental principle underlying the semiclassical-quantum conjec-
ture for quantum gravity is that the Hamiltonian constraint which is either
quadratic or cubic in momenta can be transformed into a form linear in the
momenta. In this form the semiclassical state can be exactly determined
by solution of a first-order functional differential equation for the full theory
without resorting to minisuperspace reduction. If the semiclassical-quantum
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correspondence holds then the resulting state would also be a quantum state
and the reduced phase space quantization would be equivalent to the full
Dirac quantization [13]. Let us briefly compare these two processes as they
apply to quantum gravity. The reduced phase space quantization, which fac-
torizes or simplifies the constraint into linear form at the classical level prior
to promoting the classical operators to quantum form, has the following fea-
tures: (i) it allows determination of the semiclassical state by solution of a
first-order functional differential equation, which is easier to solve and can
generally be solved exactly; (ii) it does not take into consideration quantum
ambiguities and for this reason is not the exact quantum state. However,
in the event that the SQC holds, the issue of ordering ambiguities would
by definition be resolved since any ambiguities would be a-priori isolated in
the form of quantum counterterms which are dealt with by separately. In a
certain sense, it is as though the quantum ambiguities are introduced into
the theory externally by hand through the quantization process.

The full Dirac quantization procedure, on the other hand, which pro-
motes the classical operators into their quantum versions while the full con-
straint is still in unfactorized form, has the following features: (i) it is now
the quantum state which satisfies a condition, generally a non-linear func-
tional differential equation. This equation would allow exact determination
of the quantum state if it could be solved, however due to the infinite number
of degrees of freedom it is virtually intractable to do so. It is a conjecture
[8] that the path integral by definition solves the constraint formally for cer-
tain boundary conditions on the main dynamics variables, however there are
many properties of of relevance in the path integral which are ill understood,
for example the transformation properties of the path integral measure. (ii)
Upon reduction to minisuperspace (which is not the same thing as reduced
space quantization, and in itself raises separate issues of the communtativ-
ity of reduction process with respect to quantization), even if it is possible
to solve the reduced differential equation (which is still non-linear), the or-
dering ambiguities would still be present. (iii) the ordering ambiguities,
whether they be in the superspace or in the minisuperspace version of the
theory, would be reflected in the quantum state and the state would not be
unique [9] thus even though the range of ambiguity may be parametrizable
it would still not be clear which quantum theory would be the correct one
to choose.

So we see that in general there is a trade-off between both approaches.
But in particular, the former approach would be preferable provided the
semiclassical-quantum correspondence holds. It may be possible to relate
the uncertainties due to the Dirac quantization process, which imposes a
functional Schrodinger operator equation with ordering ambiguities, to the
ill-definedness of the path integral measure. It is the natural tendency to
do so since the integrand of the path integral is classical and involves c-
numbers. Since there are no operators one may think that any uncertainties
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can automatically be attributed to the path measure itself which may in
general contain infinitefactors.par In Part II and III we will illustrate
the equivalence of the canonical to path integral approaches to quantization
when gravity is coupled to matter sources. We will also refine the character-
ization of the so-called suprious orthonormal states. In [4] we computed the
antisymmetric contribution to the quantum terms arising from the Hamilto-
nian constraint. In these next few works we will complete the calculation of
the remaining terms, and illustrate the algorithm for systematically finding
the generalized Kodama states correpsonding to the full set of terms.
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