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Abstract

In this paper we illustrate some of the dynamics of inflation by
coupling a Klein–Gordon scalar field to a new set of variables named
after Chang–Soo/CDJ in anisotropic minisuperspace reduced to the
isotropic sector. We provide further arguments for the semiclassical-
quantum correspondence in conjunction with a prescription for com-
puting the dynamics of inflation for a general self-interaction potential.
We compute these dynamics to third order and provide physically mo-
tivated arguments for various parameters governing the initital condi-
tions of the universe based upon our model. Comparisons are made to
the FRW model, and its congruity with the SQC noted.
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1 Introduction

We proceed with along with the development of [1] in the examination of
the semiclassical-quantum correspondence as regards the dynamics of the
Chang–Soo variables. We have argued that as a result of this correspon-
dence, the classical and the quantum evolution for the theory are intimately
intertwined. Therefore, if the preinciple holds, then it should be possible
to avoid singularities such as might occur in general relativity by a purely
classical treatment. We have shown this to be the case in [1], since we have
already defined the Hilbert space corresponding to the classical evolution.
However, we have shown this just for vacuum GR in anisotropic minisu-
perspace. In the present paper we will attempt to extend the SQC to the
case of a Klein–Gordon scalar coupled to gravity. We illustrate in [2],[3]
the quantum state corresponding to such a coupling, though in the original
Ashtekar variables.

So let us take for granted that such a state, with accompanying Hilbert
space, exists for the inflaton field coupled to gravity. Then the present
work would cover the classical evolution of the model for such states, which
would in turn be argued to satisfy the SQC. One indication of the inherently
quantum nature of some classical treatments resides in physical constraints
upon the initial conditions which cannot be prescribed by classical physics
alone. We will show that this is the case even in the metric description
of gravity to a certain extent, and to the Chang–Soo variables description
which we will use as a basis for comparison. The format of this paper
is as follows, using the full notations and conventions introduced in [4],[1].
Section 2 re-introduces the FRW model from within the context of the SQC,
placing it on an equal footing with the nonmetric description of gravity in
the Chang–Soo/CDJ variables for comparison. It is here that the introduce
the shor-time expansion which we argue should be valid at the Planck time.
In section 3 we apply the dynamics of [1], computing the equations of motion
for the inflaton field in Chang–Soo variables.In sections 4 and 5 we present
some phenomenological arguments and in section 6 we perform the analogous
solution for the inflaton field for Chang–Soo variables, for arbitrary self-
interaction potential, to third order for comparison with the FRW model.
Addtionally, we provide som constraints upon our model based upon initial
conditions which can be related in a physically meaningfull way to the FRW
model.
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2 Setting the stage with the FRW model

The Robertson–Walker line element, which assumes conditions in the uni-
verse of homogeneity and isotropy, is given in flat coordinates by [5]

ds2 = dt2 − a2
( dr2

1 − kr2
+ r2dθ2 + r2sin2θdφ2

)
. (1)

In (1) a = a(t) is the scale factor, which is dimensionless and depends on
time, and k = const. is the numerically curvature constant of the three
manifold, containing mass dimension [k] = 2. The classical equations of
motion for the metric of (1) coupled to a Klein–Gordon scalar field φ with
total energy E = K + V , which V = V (φ) is the self-interaction potential,
are given by

( ȧ

a

)2
=

GE

3
− k

a2
;

φ̈ + 3(ȧ/a)φ̇ + V ′ = 0. (2)

Commonly thought is that (56) cannot hold down to arbitrarily small times
due to their classical nature. However, even at the level of the metric de-
scription, there is already a hint of quantumness inherent in (2). This can
be seen by substituting ȧ/a from the first line into the second, obtaining

φ̈ + 3

√
GE

3
− k

a2
φ̇ + V ′ = 0. (3)

Since the inflaton field φ and its potential V are real-valued, then the ar-
gument of the square root in (3) cannot be allowed to be negative. This
implies the condition

GE

3
≥ k

a2
−→ a ≥

√
3k

GE
(4)

For k = 0 this condition is automatically satisfied. But for k > 0 this places
a lower bound on the size of the universe in relation to its characteristic
curvature. Condition (4) must certainly be met at t = 0 as a necessary
conditions for the dynamical evolution to consistently begin. Therefore,

a0 ≥
√

3k

GE0
(5)

which implies that the initial energy at t = 0 for φ cannot be arbitrar-
ily chosen. Assuming that (5) holds, then a pertinent question is whether
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the dynamics of (2) are sufficient to preserve (4) for all time t. This ques-
tion, along with the question of boundary conditions, transcend from the
classical into the quantum realm of the dynamics inherent in the theory.
Therefore, we would like to propose the notion of a semiclassical-quantum
correspondence within the FRW equations of motion, which we will examine
by comparison to our description in the metric-free Chang–Soo variables.

Clearly, if a ≥ amin at t = 0, and the condition (4) is satisfied ∀ t, then
the big bang singularity is avoided.1 To assess the feasibility of this, we
must solve the system (2) for a general potential V . However, this is an
underdetermined system due to residual dependence upon the scale factor
a = a(t). One could attempt to eliminate this dependence could by using
the relation

a(t) = a0exp
[∫ t

0
dt′

√
GE

3
− k

a2

]
= F [E(t), a(t)] (6)

Equation (6) appears to require a Pickard-type iteration procedure to solve
in closed form for an arbitrary scalar potential V .2

Additionally, there is the additional complication of an unknown function
in (2) until the exact form of the potential V is specified. This can be
interpreted as the ignorance to within an infinite number of parameters
specifying its the Taylor coefficients of V . It is our view that the correct
potential can be selected to all orders only by a fully consistent theory. We
will maintain our level of ignorance by keeping V for the moment unspecified.

Regardless of the form of V , for potentials for which a power series
expansion exists, one can always perform an expansion of the form

V (t) = V0 + V̇0t +
1

2
V̈0t

2 +
1

6

...
V 0t

3 + . . . (7)

By narrowing one’s self to short times, including on the order of the Planck
time, one should expect the salient features of the initial evolution of the
universe to be captured within the first few terms of (7).3Rather in this
paper, we will proceed to deduce these salient features through the time
dependence of the φ forming its argment for short times t as in.

1This implies that a classical treatment is sufficient to resolve the singularity, which in
turn would support the semiclassical-quantum correspndence.

2Hence one could define a sequence a0(T ) = a0 with an+1 = F [E(t), an(t)] and then at-
tempt to obtain the solution a(t) = limn→∞an(t). Such a solution, assuming the existence
of a fixed point, still appears unwieldy to obtain.

3For sufficiently short times t, the expansion should be independent of the details of the
higher order terms. Additionally, if the coefficients are sufficiently small, then one could
conceivably attempt to make correlations to some of the subsequent stages of evolution of
the universe.
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φ(t) = φ0 + φ̇0t +
1

2
φ̈0t

2 +
1

6

...
φ 0t

3 + . . . (8)

The expansion (8) should ideally be expressed in terms of (7) with respect
to quantities independent of the specific form of the potential which can be
measured in experiment. Since we are interested in the dynamics at around
t = 0,4 then one should expect the short time expansion (8) to be reliable
if the SQC holds, at least for within some interval of the beginning of the
universe. The definition of ‘short’ with regard to time really depends upon
the number of terms retained in the expansion as well as on the size of their
coefficients.

2.1 Short time expansion of the FRW model

The expansion (8) should hold for very short times, though whether the ex-
pansion is being applied beyond its domain of validity is a different question
which we hope to shed some light on in this paper. Additionally, what is con-
sidered ‘short’, will depend upon the relative size of the Taylor coefficients
of the expansion in relation to the order of the truncation. Let us perform
the Taylor expansion to the first nontrivial order for which we can make a
comparison to the model of [1],[4] in the Chang–Soo/CDJ variables. The
first order term is determined by the scalar field kinetic energy through the
relation φ̇0 =

√
2K0. The second order term is determined by the equation

of motion for φ, given by

φ̈ = −3
(GE

3
− k

a2

)1/2
φ̇ − V ′ (9)

To find the coefficient of the third order term, we must evaluate the third
time derivative of φ. Differentiating (9), we have

−
...
φ =

3

2

(GE

3
− k

a2

)
−1/2(GĖ

3
+

2kȧ

a2

)
φ̇ + 3

(GE

3
− k

a2

)1/2
φ̈ + V ′′φ̇. (10)

For the first term of (10) we will need to evaluate Ė. This is given by

Ė =
d

dt

(1

2
φ̇2 + V

)
= φ̇φ̈ + V ′φ̇. (11)

Putting in the equation of motion (9) into (11), we obtain

4Hence conceivably within the Planck time tPl ∼ 1043sec, when quantum effects are
presumably important.
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Ė = φ̇
(
−3

√
GE

3
− k

a2
φ̇ − V ′

)
+ V ′φ̇ = −3

√
GE

3
− k

a2
φ̇2. (12)

Substitution respectively of (12) and (9) into the second and third terms of
(10), we obtain

−
...
φ =

3

2

(GE

3
− k

a2

)
−1/2(

−G

√
GE

3
− k

a2
φ̇2

)
φ̇

+3
(GE

3
− k

a2

)
−1/2( k

a2

)√
GE

3
− k

a2
φ̇

+3
(GE

3
− k

a2

)1/2[
−3

(GE

3
− k

a2

)1/2
φ̇ − V ′

]
+ V ′′φ̇, (13)

where we have used the first equation in (2) for ȧ/a. Equation (13) simplifies
to

...
φ = 3

√
GE

3
− k

a2
V ′ +

√
2K

(
−V ′′ + 9

(GE

3
− k

a2

)
− 3

k

a2
+ 3GK

)
(14)

where we have used φ̇ =
√

2K. Hence, the expansion for the scalar field in
terms of measurable quantities is given by

φ(t) = V −1(V0) +
√

2K0t −
1

2

[
3

√
GE0

3
− k

a2
0

√
2K0 + V ′

0

]
t2

+
1

6

[
3

√
GE0

3
− k

a2
0

V ′

0 +
√

2K0

(
−V ′′

0 + 9
(GE0

3
− k

a2
0

)
+ 3

(
GK0 −

k

a2
0

)]
t3 + . . .(15)

We are now ready to perform the analogous expansion in the Chang–Soo
variables, for arbitrary scalar potential, to the same order for compari-
son. One claim of [1] was that the dynamics of vacuum GR satisfies the
semiclassical-quantum correspondence. To assess the feasibility of in the
presence of a Klein–Gordon scalar field we would need to construct the
quantum state corresponding to gravity coupled to the scalar field. We will
relegate that discussion to a quantum treatment of the Chang–Soo variables
coupled to matter analogous to [6], but proceed in the present paper on the
simplifying assumption that the SQC holds down to arbitrarily small times
in this case.
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3 Inflaton field coupled to Chang–Soo variables

A pertinent question is that of why one should need an inflaton field given
that inflation can already be derived as a consequence of vacuum GR in the
presence of a cosmological constant. Perhaps it has to do with the apportion-
ment of energy derived from the inflaton field toward structure formation in
the universe [7].5 We will examine the dynamics and the phenomenology of
coupling the inflaton field to the Chang–Soo variables in anisotropic minisu-
perspace, to try to shed some light on the initial conditions of the universe
and its subsequent evolution based upon our model. Let us move on now to
derive the action enforcing the sought after dynamics.

The form of the gravitational Hamiltonian enables a straightforward gen-
eralization to include matter fields simply by replacing H[N ], which vanishes
in vacuum GR, by the matter contribution to the Hamiltonian constraint.
In the case of the Klein–Gordon scalar field, that contribution in minisuper-
space is given in the Ashtekar variables, upon setting spatial gradients to
zero in [8], by

H[N ]matter = N
(π2

2
+ detσ̃V (φ)

)
, (16)

where σ̃i
a is the Ashtekar densitized triad, and N = N/

√
detσ̃ is the den-

sitized lapse function. We now transform (16) into the Chang–Soo/CDJ
variables by making the replacement σ̃i

a = ΨaeB
i
e in anisotropic minisuper-

space. Hence, we have that

H[N ]matter =
N√
detσ̃

π2

2
+ N

√
detσ̃V (φ)

=
N√

detΨ
√

detB

π2

2
+ N

√
detΨ

√
detBV (φ). (17)

Using detB = (detA)2 = X2 for the Chang–Soo variables in anisotropic min-
isuperspace, and making the replacement in (16) of N → iN for Lorentzian
signature, we have

iH[N ]matter = G
( iN

X
√

detΨ

π2

2
+ iNV X

√
detΨ

)
(18)

5Additionally, it will provide a good illustration of the dynamics of the CDJ matrix.
As shown in the previous section, the CDJ matrix Ψae is a matrix of numerical constants
λae in nondegenerate vacuum GR. The introduction of a matter field will then induce
a nontrivial time variation into this matrix under the nondegenerate condition, thereby
illustrating its role as a fully dynamical variable as introduced in [4].
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where we have appended a factor of G in accordance with the matter con-
tribution relative to its gravitational counterpart as in the Einstein field
equations Gµν = GTµν , which also balances the mass dimensions in the
equations of motion.6

We can now write down the action for general relativity in the Chang–
Soo variables coupled to a Klein–Gordon scalar field φ with self-interaction
porential V (φ) in anisotropic minisuperspace as

I =

∫ T

0
dt

(
− i

G
ΨaeẊ

ae + πφ̇ +
iN

X
√

detΨ

π2

2

+X
[
iN

√
detΨ

(
V (φ) + trΨ−1

)
+ (N iAd

i − θd)fdaeΨae

])
, (19)

where the cosmological constant Λ has been included in V which at this
stage will remain unspecified. The Hamilton’s equations of motion in the
N i = θd = 0 gauge arising from (19) are given by

Ẋae

X
= i

[1

2
(Ψ−1)aeX−1H[N ] − N

√
detΨ(Ψ−1Ψ−1)ae

]
;

Ψ̇ae = −δae
i

X
H[N ] (20)

for the gravitational variables, and

φ̇ =
δH

δπ
=

iNπ

X
√

detΨ
;

π̇ =
δH

δφ
= −iNX

√
detΨV ′. (21)

for the Klein–Gordon field, where V ′ = dV/dφ. Substituting the relation

π =
X
√

detΨφ̇

iN
−→ π2

2
= −X2(detΨ)φ̇2

2N2
(22)

into (18) we have

H[N ] = G
( iN

X
√

detΨ

(−X2(detΨ)φ̇2

2N2

)
+ iNV X

√
detΨ

)
= iGNX

√
detΨ

(
V − φ̇2

2N2

)
.(23)

Making the substitution we have

6Note that the Ashtekar curvature and the CDJ matrix must be nondegenerate in order
to have a consistent coupling with φ.
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Ẋae

X
= i

[1

2
(Ψ−1)ae 1

X
(GNX)

√
detΨ

(
V − φ̇2

2N2

)
− N

√
detΨ(Ψ−1Ψ−1)ae

]
;

Ψ̇ae = − i

X
δae(GNX)

√
detΨ

(
V − φ̇2

2N2

)
(24)

which lead to the classical equations of motion

Ẋae

X
= iN

√
detΨ

[G

2
(Ψ−1)ae

(
V − φ̇2

2N2

)
− (Ψ−1Ψ−1)ae

]
;

Ψ̇ae = −iδaeGN
√

detΨ
(
V − φ̇2

2N2

)
. (25)

One immediate observation that can be made from (25) is that all non-
vanishing off-diagonal elements of Ψae (25) must be numerically constant,
exactly as in the nondegenerate vacuum case [1]. Taking the trace of (25),
we have

Ẋ

X
= iN

√
detΨ

[G

2
trΨ−1

(
V − φ̇2

2N2

)
− tr(ΨΨ)−1

]
. (26)

The most expedient way to obtain the equation of motion for the scalar field
is to time differentiate the logarithm of (21), given by

lnφ̇ = ln(iN) − lnX − 1

2
ln(detΨ) + lnπ (27)

Hence time-differentiating (27), we have that

φ̈

φ̇
= −Ẋ

X
− 1

2
(Ψ−1)aeΨ̇ae +

π̇

π
. (28)

where we have used that iN is a numerical constant. The following relations
will come in handy in the evaluation of (28), namely

(Ψ−1)aeΨ̇ae = −iGN(trΨ−1)
√

detΨ
(
V − φ̇2

2N2

)
, (29)

obtained from substitution of (18) into the second line of (20), and

π̇

π
= − iNX

√
detΨV ′

φ̇X
√

detΨ(iN)−1
=

N2V ′

φ̇
. (30)
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which makes use of (21). Putting (26), (29) and (30) into (28) we obtain

φ̈

φ̇
= −iN

√
detΨ

[G

2
trΨ−1

(
V − φ̇2

2N2

)
− tr(ΨΨ)−1

]

+i
GN

2
(trΨ−1)

√
detΨ

(
V − φ̇2

2N2

)
+

N2V ′

φ̇

= −i
GN

2

√
detΨ(trΨ−1)

(
V − φ̇2

2N2

)
+ iN

√
detΨtr(ΨΨ)−1

+i
GN

2
(trΨ−1)

√
detΨ

(
V − φ̇2

2N2

)
+

N2V ′

φ̇

=
N2V ′

φ̇
+ iN

√
detΨtr(ΨΨ)−1. (31)

We have been explicit with the mathematical steps so far to make clear
that a remarkable cancellation has occured in (31). Hence the equation of
motion for the Klein–Gordon scalar field coupled to gravity in the Chang–
Soo variables is finally given by

φ̈ − iN
√

detΨtr(ΨΨ)−1φ̇ − N2V ′ = 0. (32)

4 Further phenomenology

Using the definition ηae =
√

detΨ(Ψ−1Ψ−1)ae, we have obtained the fol-
lowing system for the Klein–Gordon scalar field coupled to gravity in the
Chang–Soo variables.7

φ̈ − iNηφ̇ − N2V ′ = 0;

Ẋae

X
= iN

[G

2

(
V − φ̇2

2N2

)√
detΨ(Ψ−1)ae − ηae

]
;

Ψ̇ae = −iδaeGN
√

detΨ
(
V − φ̇2

2N2

)
;

d

dt
lnX = iN

[GN

2

(
V − φ̇2

2N2

)√
detΨtrΨ−1 − η

]
. (33)

where η = trηae. The system of equations governing the dynamics of the ho-
mogeneous scalar field and the geometry of a Friedmann–Robertson–Walker
universe with metric

7Note the cancellation of the factor of i from the equation for the CDJ matrix Ψae.
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ds2 = dt2 − a2(t)
[ dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

]
(34)

and scale factor a = a(t) is given by [10]

H2 =
1

3

(1

2
φ̇2 + V (φ)

)
− k

a2
;

φ̈ + 3Hφ̇ + V ′ = 0. (35)

where H = ȧ/a is the Hubble expansion parameter. A comparison of
the form of (35) with (33) suggests the identification of the trace of the
SU(2)− ⊗ SU(2)− metric η = trηae with H. Furthermore, it also suggests
the identification of the trace X = trXae with the scale factor a of the
spatial metric. This identification would be immediate if not for the fact
that the scalar field kinetic energy in (33) appears to have the wrong sign.8

Performing a Wick rotation N → iN , we transform into a spacetime of Eu-
clidean signature and at the same time ascribe to the scalar field a positive
kinetic energy. Making the definition

E =
φ̇2

2N2
+ V (φ) (36)

for the total energy of the scalar field, we obtain the following system of
equations

φ̈ + Nηφ̇ + N2V ′ = 0;

Ψ̇ae = −iδaeNG
√

detΨE −→ δaeNG
√

detΨE;

Ẋae

X
= N

[
ηae − (GE/2)

√
detΨ(Ψ−1)ae

]
. (37)

as well as their traces

φ̈ + Nηφ̇ + N2V ′ = 0;

tr(Ψ̇) = 3NG
√

detΨE;

Ẋ

X
= N

[
η − (GE/2)

√
detΨtrΨ−1

]
. (38)

8Since the equations were derived based upon a Lorentzian signature, one possibility is
that quantum mechanically the scalar field could be in a tunneling configuration. Hence
a quantum phenomenon would already be apparent at the classical level of our treatment,
further support for the concept of the SQC. Alternatively, it could be that the Chang–Soo
variables have coupled to the pressure as opposed to the energy density of φ.
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The system (37) and (38) suggest two main lines of attack. (i) One may
solve the system via perturbation theory by using the scalar field φ to drive
perturbations about any one of the exact vacuum solutions for Ψae = λae.
(ii) Since we are interested in the initital conditions of the universe, pre-
sumably short times on the order of tP l ∼ 10−43sec, a low-order Taylor
expansion in all variables in time should be sufficient for phenomenological
comparisons.9 One may then assess from the coefficients of the expansion
possible physical conditions which might have led to such evolution. (iii)
In any event, it is important to understand the isotropic case first, since it
most directly affect the ‘effective’ cosmological constant Λeff about which
finite states of quantum gravity can be expanded [9],[2],[3]. Hence, we have
that

Ψae =
1

3
δaetrΨ + (P (1))bfaeΨbf + (P (2))bfaeΨbf

=
1

Λeff

[
δae + Λeff (P (1))bfaeΨbf + Λeff (P (2))bfaeΨbf

]
(39)

where we have defined Λeff ≡ (1
3trΨ)−1, and (P (1))bfae and (P (2))bfae are the

projection operators onto the spin one and spin two subspaces of the CDJ
matrix, given by10

(P (1))bfae = δaeδ
bf − δaf δbe;

(P (2))bfae =
1

2

(
δabδef + δaf δeb −

2

3
δaeδbf

)
. (40)

But for now we will present just the classical treatment.

5 Solution for the isotropic case for Euclidean sig-

nature spacetimes

Let us now solve the system of equations (37) and (38) for the isotropic
case.11 First, make the definitions Ψae = ϕδae. Note that in the case of pure

9Note that we are performing this investigation based upon the classical theory. If the
semiclassical-quantum correspondence holds, then the result would also have bearing on
the quantum theory.

10In this way, the decomposition into irreducible representations under SU(2)− could
provide a possible avenue to addressal of the CMB anisotropy of one part in 10−5 [12]
by making use of the quantum nature of the CDJ matrix and the semiclassical-quantum
correspondence.

11We will show in this paper that the ability to solve this system this is equivalent to
the capability to provide a general solution to (35).
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gravity with cosmological term, then ϕ = − 6
Λ , where Λ is the cosmological

constant. We will make use of the following quantities

Ψae = ϕδae; trΨ = 3ϕ; trΨ−1 = 3ϕ−1; detΨ = ϕ3;

ηae =
√

ϕ3ϕ−2δae = ϕ−1/2δae; η = 3/
√

ϕ

(Ψ−1)ae = ϕ−1δae; (Ψ−1Ψ−1)ae = ϕ−2δae. (41)

Substitution of (41) into (38) yields the manipulations, starting with the
trace of the CDJ matrix

tr(Ψ̇) = 3ϕ̇ = 3GN
√

ϕ3E = 3GNEϕ3/2;

ϕ−3/2ϕ̇ = −2
d

dt
(ϕ−1/2) = GNE, (42)

where we have taken without loss of generality the positive square root,
which leads to

1√
ϕ(T )

=
1√
φ0

− GN

2

∫ T

0
E(t)dt;

√
ϕ(T ) =

√
ϕ0

(
1 −

GN
√

ϕ0

2

∫ T

0
E(t)dt

)
−1

(43)

as well as

d

dt
lnX = N

[ 3
√

ϕ
− GE

2
ϕ3/2(3/ϕ)

]
. (44)

Overall, we obtain the equations

φ̈ +
3N
√

ϕ
φ̇ + N2V ′ = 0;

d

dt
lnX = 3N

[ 1
√

ϕ
− GE

2

√
ϕ
]

(45)

where the time dependence of ϕ dependence is as indicated in (43). Since we
are examining the regime within the vicinity of t = 0, we can assume that
the times are short and that the following expansion holds for the scalar
field energy

E(t) = E0 + Ė0t +
1

2
Ë0t

2 + · · · = E0 + rt + st2 + . . . (46)

12



Since the highest order differential equation for our system (45) is of second
order, then it is necessary and sufficient to know the initital energy E0 as
well as its initial time rate of change r = Ė0 in order to determine its
future evolution. It suffices to expand to second order to extract the physics
within the time of the big bang as encoded in the Chang–Soo variables, since
our equation for the scalar field provides the physics necessary to deduce the
acceleration of the energy at that time in terms of known quantities. Putting
in the expansion E(t) ∼ E0 + rt + st2 into (43), we obtain

1√
ϕ(T )

=
1√
φ0

− GN

2
− GN

2
(E0T +

r

2
T 2) + . . . ;

(47)

5.1 Initial parameters for the universe

To apply our model to the initital conditions for the universe, one may
attempt to measure parameters of the scalar field today, such as in the
Large Hadron collider, and then extrapolate the values to t = 0 to fix the
initital conditions.12 The necessary parameters are the initial potential V0

and the kinetic energy K0 of the scalar field φ. The criterion for what counts
as ‘early times’ will depend upon the relative size of these parameters.13

Starting from the total energy

E = V +
φ̇2

2N2
(48)

in conjunction with the equation of motion for the Klein–Gordon scalar field,

φ̈ = −(Nηφ̇ + N2V ′), (49)

we take the first time derivative to obtain

Ė = V̇ +
φ̈φ̇

N2
=

(
V ′ +

φ̈

N2

)
φ̇. (50)

12This is a crude treatment, since it would assume the existence of such a scalar field,
and also neglects other processes occuring in the evolution of the universe. So the idea
is simply to obtain some physical intuition for how the new variables interact, prior to
extending to more realistic scenarios.

13Another unknown is the specific form of the potential V (φ). However, a lot can be
deduced about the potential at short times independently of these details, as hinted in
the FRW model.
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Substituting (49) into (50), we obtain

Ė =
(
V ′ − 1

N2
(Nηφ̇ + N2V ′

)
φ̇ = −

(ηφ̇2

N

)
. (51)

The contribution due to V ′ has cancelled out. Hence we have that

r = Ė0 = −
(η0φ̇

2
0

N

)
. (52)

Moving on to the second order term Ë0 = 2s, we have

Ë = − 1

N

(
η̇φ̇2 + 2ηφ̇φ̈

)
. (53)

So we need η̇. Recalling that η = 3ϕ−1/2, we have η̇ = −(3/2)ϕ−3/2. Hence

Ë = − 1

N

(
η̇φ̇2 + 2ηφ̇(−Nηφ̇ − N2V ′)

)

= − η̇φ̇2

N
+ 2(ηφ̇)2 + 2ηNφ̇V ′. (54)

Hence, we have that

s =
Ë0

2
=

1

2

(
(3/2N)φ̇2

0ϕ
−3/2
0 + 18(ϕ̇0)

2ϕ−1
0 + 6Nφ̇0V

′

0ϕ
−1/2
0

)
. (55)

6 Probing the early universe

Our goal is to make a physically motivated guess regarding the initial con-
ditions of the universe and its subsequent evolution, based purely on the
classical dynamics of the Chang–Soo variables. First, let us rewrite the
equations of motion for the Chern–Simons functional X, at the level prior
to elimination of trΨ. This is given, recalling that we are now in Euclidean
signature, by

Ẋ

X
= 3N

[ 1
√

ϕ
− GE

2

√
ϕ
]

= −6N

√
GE

2

1

2

[
(GEϕ/2)

1

2 − (GEϕ/2)−
1

2

]
. (56)

Defining eθ = (GEϕ/2)
1

2 , we can express this in terms of trigonometric
functions. Hence

14



Ẋ

X
= −6N

√
GE

2
sinh

[1

2
ln(GEϕ/2)

]
. (57)

Substituting in (47), equation (57) integrates directly to

XEucl(T ;ϕ0 > 0) = XEucl(0;ϕ0 > 0)

×exp

[
−6N

∫ T

0
dt

√
GE/2sinh

[1

2
ln

( GE(t)ϕ0

2
(
1 − (GN

√
ϕ0/2)

∫ t
0 E(t′)dt′

)2

)]]
(58)

Equation (58) reduces directly to the vacuum solution in the limit E → 0
where there is no scalar field. However, we have put in place a new notation.
The notation XEucl(T ;ϕ0 > 0) is meant to remind us that we are presently
considering the Euclidean signature case, for which the trace of the CDJ
matrix at t = 0 is positive. In (58) we have obtained an expression for
the Chern–Simons functional X explicitly as a function of time, driven by
the time dependence of the inflaton total energy E. Additionally, one can
ascribe an interpretation to the analogue of the Hubble expansion parameter
as a function of time via

HSoo(t) =
N

√
ϕ0

(
1 − (GN

√
ϕ0/2)

∫ t

0
E(t′)dt′

)
(59)

where N/
√

ϕ0 ∼ H0 takes on the interpretation of the Hubble parameter at
t = 0.14

6.1 The inflaton solution

The time dependence for the scalar field φ can in principle be found by
substitution of (43) into its equation of motion

φ̈ +
3N
√

ϕ
φ̇ + N2V ′ = 0. (60)

This substitution leads to the nonlinear equation

φ̈ +
3N
√

ϕ0
φ̇
(
1 − (GN

√
ϕ0/2)

∫ t

0
E(t′)dt′

)
+ N2V ′ = 0. (61)

14Note that for ϕ0 > 0 which is consistent with inflation due purely to dark matter,
this makes sense only for Lorentzian signature. Hence we will ultimately be led to the
necessity to perform a Wick rotation N → iN back into Lorentzian signature, albeit by
alternate arguments.
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There is no input into the dynamics of the scalar field due to gravity ex-
cept through the lapse N , a numerical constant used to fix the signature of
spacetime by appropriate Wick rotation, and ϕ0, the initial trace of the CDJ
matrix at t = 0 which is also a numerical constant. The ability to write the
analogue of (61) in metric variables implies the ability to solve explicitly for
the scale factor a = a(t) in the FRW model for an arbitrary self-interaction
potential V (φ) and for an arbitrary topology.

Since we are interested in the dynamics at around t = 0,15 then one
should expect the short time expansion (62) to be reliable assuming that
the SQC holds, at least for within some interval of the beginning of the
universe.

φ(t) = φ0 + φ̇0t +
1

2
φ̈0t

2 +
1

6

...
φ 0t

3 + . . . (62)

To get a handle on this degree of ignorance, it seems a reasonable ap-
proach to express these coefficients in terms of measurable quantities. Mea-
surable quantities at t = 0 would include V0 and K0.

16 Given a scalar
potential V (φ), the interpretation of the first term of (62) is φ0 = V −1(V0),
which is expressed in terms of V0, the initial potential energy of the scalar
field. Using the relation K = φ̇2/2N2, one ascribes the interpretation to the
first order coefficient of (62) of φ̇0 = N

√
2K0, which directly relates to the

initial kinetic energy of φ.
To obtain the second order coefficient on (62), we must invoke the equa-

tion of motion for φ at t = 0, namely

φ̈0 = −
[ 3N
√

ϕ0
φ̇0 + N2V ′

0

]
= −N2

[ 3
√

ϕ0

√
2K0 + V ′

0

]
. (63)

where we have used φ̇ = N
√

2K. Hence, the Taylor expansion (62) is given
by

φ(t) = V −1(V0) +
√

2K0(Nt) − 1

2

[ 3
√

ϕ0

√
2K0 + V ′

0

]
(Nt)2 +

1

6

...
φ 0t

3 + . . .(64)

Note that the dynamics of the scalar field in (64) does not contain any

input from gravity until second order in time via the ϕ
−1/2
0 factor. The

15Hence conceivably within the Planck time tPl ∼ 1043sec, when quantum effects are
presumably important.

16These quantities might not be directly measurable in the sense that they could con-
ceivably have been as high as the Planck scale. However, they can conceivably be indirectly
measurable today using for example the LHC at more manageable energies, and then ex-
trapolated using the dynamics of the Chang–Soo variables via the SQC to the beginning.
This would assume that the inflaton might possibly play the role of the Higgs particle of
the standard model coupled to gravity.
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interpretation is that there exists a time interval in the initial stages of the
evolution of the universe during which there is no apparent backreaction due
to gravity on φ.

The third order coefficient in (62) can be determined by time differenti-
ating the equation of motion for φ. This can conveniently be written in the
form

φ̈ + N2V ′

φ̇
= g

∫ t

0
E(t′)dt′ − 3N

√
ϕ0

, (65)

where g = (3GN2/2) is a complex numerical constant. Differentiating (65)
with respect to time, we obtain

d

dt

( φ̈ + N2V ′

φ̇

)
= gE(t) = g

( φ̇2

2N2
+ V

)

−→ φ̇
(...
φ + N2V ′′φ̇

)
− (φ̈ + N2V ′)φ̈ = gφ̇2

( φ̇2

2N2
+ V

)
. (66)

Hence, the third order coefficient in (62) is given by

...
φ 0 =

1

φ̇0

[
(φ̈0)

2 + N2V ′φ̈0 +
g

2N2
φ̇4

0 +
(
gV − N2V ′′

)
φ̇2

0

]
. (67)

It would seem, naively, that one must be restricted from initial scalar field
configurations of vanishing kinetic energy φ̇0 = 0 in order to have a well-
defined solution for φ(t). However, let us express (67) directly in terms of
the measurable quantities. We will need the square of (63), given by

(φ̈0)
2 = N4

[18K0

ϕ0
+ 6V ′

0

√
2K0

ϕ0
+ (V ′

0)2
]
. (68)

Substituting (68) into (67), we obtain the relation

N
√

2K0

...
φ 0 =

(18N4K0

ϕ0
+ 6N4V ′

0

√
2K0

ϕ0
+ N4(V ′

0)2
)

−
(
3N4V ′

0

√
2K0

ϕ0
+ N4(V ′

0)2
)

+ g
(
2N2K2

0 + 2N2K0V0

)
− 2N4V ′′

0 K0. (69)

Hence, there is a cancellation of the term N4(V ′

0)2, without which the K0 =
0 configuration would be excluded. Hence, putting back in the relation

17



g/N2 = 3G/2, and cancelling the factor of
√

2K0 from the denominator, we
obtain

...
φ 0 = N3

[3

2

( 2V ′

0√
ϕ0

+ G
√

2K0E0

)
−

√
2K0

(
V ′′

0 − 9

ϕ0

)]
. (70)

Substitution of (70) back into the short time expansion yields

φEucl(t;K0, ϕ0 > 0)

= V −1(V0) +
√

2K0(Nt) − 1

2

[ 3
√

ϕ0

√
2K0 + V ′

0

]
(Nt)2

+
1

6

[3

2

( 2V ′

0√
ϕ0

+ G
√

2K0E0

)
+

√
2K0

(
−V ′′

0 +
9

ϕ0

)]
(Nt)3 + . . . (71)

The notation φEucl(t;K0, ϕ0 > 0) is designed to remind us that we are still
in the Euclidean signature case, under the condition of an initial CDJ matrix
trace ∼ ϕ0 which would support inflation independently of the existence of
φ, such as for Λ > 0. The expansion (71), which can be carried out to
arbitrarily high order17 can then be substituted into (58) to determine the
evolution of the Chern–Simons functional X = X(t), and consequently the
scale factor a(t) and the spacetime metric gµν = gµν(t) as a function of time
in anisotropic minisuperspace.

6.2 Comparison with the FRW model

The short-time expansion for the inflaton field coupled to Chang–Soo vari-
ables is given by

φEucl(t;K0, ϕ0 > 0) = V −1(V0) +
√

2K0(Nt) − 1

2

[ 3
√

ϕ0

√
2K0 + V ′

0

]
(Nt)2

+
1

6

[( 3V ′

0√
ϕ0

+ G
√

2K0E0

)
+

√
2K0

(
−V ′′

0 +
9

ϕ0
+

3

2
(GE0)

)]
(Nt)3 + . . .(72)

Let us now compare this to the analogous expansion for the FRW model in
metric variables (15), which we write here for completeness

φFRW (t) = V −1(V0) +
√

2K0t −
1

2

[
3

√
GE0

3
− k

a2
0

√
2K0 + V ′

0

]
t2

+
1

6

[
3

√
GE0

3
− k

a2
0

V ′

0 +
√

2K0

(
−V ′′

0 + 9
(GE0

3
− k

a2
0

)
+ 3

(
GK0 −

k

a2
0

)]
t3 + . . .(73)

17Even to describe the universe in its present state.
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For a gauge choice of N = 1 in Euclidean signature, if one makes the iden-
tification of the CDJ initial parameters with the FRW counterparts of

1

ϕ0
∼ GE0

3
− k

a2
0

, (74)

then the terms of (72) and (73) are identical until the third order term, with
a difference of

(
3GK0 −

3k

a2
0

)
+

3

2
(GE0) −

(
3GK0 −

3k

a2
0

)
= 3

[G

2
(V0 − K0) +

3k

a2
0

]
(75)

Comparison to the Lorentzian signature case indicates that a Wick rotation
N → iN must be accompanied by a corresponding shift in the sign of the
inflaton kinetic energy K0 → −K0, which maintains E invariant and positive

E =
φ̇2

2N2
+ V −→ − φ̇2

2N2
+ V −→ φ̇2

2N2
+ V (76)

This transformation must be accompanied with a shift ϕ0 → −ϕ0 in order
to preserve the reality of the inflaton to cubic order.18 The Lorentzian
signature solution then is given to this order by

φLor(t;K0, ϕ0 > 0) = V −1(V0) +
√

2K0(Nt) +
1

2

[ 3
√

ϕ0

√
2K0 + V ′

0

]
(Nt)2

+
1

6

[(
− 3V ′

0√
ϕ0

+ G
√

2K0E0

)
+

√
2K0

(
−V ′′

0 +
9

ϕ0
+

3

2
(GE0)

)]
(Nt)3 + . . .(77)

which, while real, begins to differ from the Euclidean solution at second
order in t.

Another comparison that we can make is with regard to the condition
mentioned in the beginning section of singularity avoidance. Recall that the
following bound must exist at t = 0 in order for the classical evolution of
the inflaton field to be consistent. To obtain a physical interpretation, let
us compare the result of [1] which computes the initial value of h = dethij

in terms of the Chang–Soo variables, where hij is the metric of three-space
Σ. This bound on h in FRW variables is given by

h0 = a6
0 ≥

√
3k

GE0

6

=
( 3k

GE0

)3
. (78)

18Recall that a ϕ < 0 correpsonds to a positive scomological constant Λ. This means
that for Lorentzian signature, the gravitational field should be able to sustain inflation
independently of the existence of the inflaton.
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The result for h0 in Chang–Soo variables is given in the isotropic sector of
anisotropic minisuperspace by

h = X2(detΨ) → h0 = X2
0 (detΨ0) = X2

0ϕ3
0. (79)

The value of h determined by (79) should be bounded by the value deter-
mined by (78), in the limit when the inflaton is turned off. In this case
one makes the identifications GE0 → Λ, and ϕ → 6/Λ.19 This leads to the
inequality, as a rough basis for comparison

X2
0

( 6

Λ

)3
≤

(3k

Λ

)3
→ X2

0 ≤ k2

24
(80)

Equation (80) provides a relation between the initital value of X, which is
the same thing as the Chern–Simons invariant [11], to the curvature scalar
of the spacetime.

Additionally, the term at cubic order by which our model differs from
FRW, given by

∆ = 3
[G

2
(V0 − K0) +

3k

a2
0

]
t3 (81)

awaits physical interpretation. It does not appear to have a strightforward
interpretation for Euclidean signature, but for Lorentzian signature under
K0 → −K0, it is given by ∆ = 9

2GE0, which is preportional to the initial
total energy of the inflaton.

7 Conclusion

This paper has further examined the dynamics of the Chang–Soo variables
in anisotropic minisuperspace as regards cosmic inflation. We have argued
for the validity of the SQC down to within the Planck time, and have pro-
vided some physically motivated bounds on the initial parameters of the
universe. Some future and in-progress lines of research include the exten-
sion of this formalism to include additional matter fields, and ultimately to
combine them into a realistic cosmological scenario to match cosmological
observations. These lines of research include the full theory in addition to
anisotropic minisuperspace.

19There is an interesting presentation in [13] which attempts to calculate the value of
Λ based upon geometric arguments for the manifolds comprising three space Σ.
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