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Abstract

In this thesis we show that the Plebanski theory of gravity im-
plies a theory equivalent to gravity in the Ashtekar variables, where
the antiself-dual Weyl curvature is the fundamental momentum space
variable. We have called this new theory the instanton representation
of Plebanski gravity, and we have performed various consistency checks
to establish its existence as a new representation of general relativity.
We perform a quantization of the instanton representation, construct-
ing a Hilbert space of states for vanishing and nonvanishing cosmo-
logical constant. We provide an addressal of the issues surrounding
the Kodama state as well as the Wheeler–DeWitt equation. Addition-
ally, we demonstrate that the quantum theory exhibits a well-defined
semiclassical limit as well as compute its Hamiltonian dynamics.
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1 Introduction

One of the main outstanding issues in quantum gravity has been the con-
struction of solutions to the quantum Hamiltonian constraint, in the full
theory, with a well-defined semiclassical limit.1 In the Ashtekar formalism
of general relativity there is one known special solution which satisfies this
requirement, known as the Kodama state ψKod ([2], [3]). It has been argued
by various authors the dangers inherent in attempting to associate the Ko-
dama state with a wavefunction of the universe for gravity (See e.g. [4] by
analogy to the pathologies of the Chern–Simons functional for Yang–Mills
theory). Counterarguments by Smolin and Friedel indicate that not all of
the properties of Yang–Mills theory extend to gravity, particularly in view
of the fact that the latter has additional constraints which must be satisfied
[5]. In [6] it is concluded that the Kodama state cannot be regarded as a
normalizable state of Lorentzian gravity, though in the Euclidean case it is
delta-function normalizable in minisuperspace.

In this thesis we will explicitly construct a Hilbert space for gravity,
which will clarify the role of the Kodama state as well as provide an addres-
sal of the aformentioned issues. When attempting to formulate a consistent
quantum theory of gravity one must first determine what degrees of freedom
of the gravitational field can be quantized and should be quantized. This
will bring us to a new representation which we have called the ‘instanton
representation of Plebanski gravity’. In this representation the states will
be labelled by the eigenvalues of the antiself-dual part of the Weyl curva-
ture tensor (CDJ matrix), which as shown in [7] and [8] encode the Petrov
classification of the corresponding spacetime. The Petrov (algebraic) clas-
sification is independent of coordinates and of tetrad frames, and for this
reason we surmise to be objects naturally suited for quantization. This the-
sis will cover the quantization of spacetimes of Petrov Types I, D and O.
A brief introduction of the Weyl curvature and its relation to principal null
directions and to Petrov types is provided in Appendix A.

1.1 Index conventions

Let M be a 4-dimensional globally hyperbolic manifold of topology M =
Σ × R, foliated by spacelike 3-surfaces Σ labelled by a parameter t. We
will adopt the following index notations in this thesis, adapted to the 3+1

1This is also known as the Wheeler–DeWitt equation [1], which has posed difficulties
due to the existence of singular operator products.
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decomposition of M . Greek symbols µ, ν, . . . will denote spacetime indices
taking on the values 0, . . .3. Uppercase symbols I, J,K, . . . from the middle
of the Latin alphabet denote Lorentz SO(3, 1) indices, and the Minkowski
metric is given by ηIJ = Diag(−1, 1, 1, 1). Uppercase Lowercase symbols
A,B and their primed versions A′, B′ will denote SL(2, C) indices, which
take on the values 0 and 1. Lowercase symbols from the beginning of the
Latin alphabet a, b, c, . . . will denote internal SO(3, C) indices, and symbols
from the middle i, j, k, . . . will denote spatial indices. The epsilon symbols
εIJKL and εµνρσ are totally antisymmetric in their indices, where ε0123 =
−ε0123 = 1.

1.2 Mass dimensions

By [g] we denote the mass dimension of any quantity g such that Planck’s
constant ~ and the speed of light c respectively, which are dimensionless con-
stants of nature, have [~] = [c] = 0. In these units, Newton’s gravitational
constant G defines a natural scale of dimensions of length2, or [G] = −2
such that lP l =

√
G ∼ 10−33m, where lP l is the Planck length.

We will assume that the densitized Ashtekar triad σ̃i
a is of mass di-

mension [σ̃i
a] = 0, since it is related to the 3-metric as hhij = σ̃i

aσ̃
j
a which is

dimenionless. For the Ashtekar connection we stipulate that [Aa
i ] = 1.2 This

implies that [Bi
a] = 2, where Bi

a = 1
2ε

ijkδabF
b
jk is the Ashtekar magnetic field

derived from the SO(3, C) curvature F a
ij = ∂iA

a
j − ∂jA

a
i + fabcAb

iA
c
j with

structure constants fabc. In this thesis we will use the relation σ̃i
a = ΨaeB

i
e,

where Ψae is the CDJ matrix. Note that [Ψae] = −2, which has dimensions
of inverse curvature. Hence the CDJ matrix Ψae defines an area scale of
dimensions length2, which for the quantum theory will be important.

The cosmological constant Λ in this thesis is expressed in units such that
[Λ] = 2. This can be seen more clearly from the the Einstein field equations
with cosmological term [9]

Rµν − 1
2
gµνR+ Λgµν = GTµν , (1)

wherein Λ appears on the same footing as the Riemann curvature scalar
R, which is of dimension [R] = [(∂g)2] = 2. Hence, [gµν ] = 0 remains
dimensionless as one should expect. This also implies that the quantity GΛ

2These are the mass dimensions necessary to make the kinetic term for Yang–Mills
theories, which is quadratic in the field strength, have mass dimension 4 in four spacetime
dimensions. While Ashtekar’s action for gravity is linear in the curvature of Aa

i , we still
require that [Aa

i ] = 1 in congruity with the notion of gravity as a nonabelian gauge theory.
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is dimensionless. Mass dimensions are a convenient tool for doublechecking
the mathematical consistency of various formulae.

1.3 Symmetric SO(3, C) matrices

In describing the CDJ matrix Ψae it will also be convenient to adopt the
following basis of symmetric three by three matrices

E1
ae =




0 0 0
0 0 1
0 1 0


 ; E2

ae =




0 0 1
0 0 0
1 0 0


 ; E3

ae =




0 1 0
1 0 0
0 0 0


 ,

e1ae =




1 0 0
0 0 0
0 0 0


 ; e2ae =




0 0 0
0 1 0
0 0 0


 ; e3ae =




0 0 0
0 0 0
0 0 1


 ,

which satisfy the orthogonality relations

〈
ef
∣∣eg
〉

=
∑

a,e

(ef )ae(eg)ea = δfg;

〈
Eα
∣∣Eβ

〉
=
∑

a,e

Eα
aeE

βea = 2δαβ;

〈
Eα
∣∣ef
〉

=
∑

a,e

Eα
ae(e

f )ea = 0. (2)

1.4 Phase space conventions

Let Ω denote a phase space of Ω = (P,Γ), where Γ refers to configuration
space and P to momentum space. We will denote the phase space dimension
per point by Dim(Ω) = (m,n), where m = Dim(P ) and n = Dim(Γ). We
will phase spaces by various subscripts, which specify the nature of the space.
For example ΩInst = (Ψae, A

a
i ) will refer to the full unreduced phase space

of the instanton representation of Plebanski gravity, which will be defined
later in this thesis. Also ΩKin = (PKin,ΓKin) will refer to the kinematic
phase space, comprised of the kinematic momentum space PKin and the
kinematic configuration space ΓInst. This latter space can be seen as ΩInst

at the level of implementation of the kinematic constraints, which as well
will be defined later.
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1.5 Organization of this thesis

The presentation of finite states in this thesis is organized as follows:
(ii) In Chapter 2 we derive two possible actions for gravity, using Pleban-
ski’s theory of gravity as the starting point. One action IAsh is GR in the
Ashtekar variables, and the second action IInst we have called the instanton
representation of Plebanski gravity. We would like to apply the quantization
procedure to IInst, however it is noncanonically related to IAsh. Therefore
to verify that IInst does in fact represent GR we must perform some con-
sistency checks. The first consistency check is a demonstration that IInst

does indeed produce the Einstein equations, combined with a prescription
for writing down a solution.
(iii) Chapter 3 provides an additional consistency check on IInst as a theory
of gravity by demonstrating the existence of gravitational waves in this for-
malism. Specifically, we produce the two spin 2 polarizations by linearization
of the full unreduced theory about a DeSitter background.
(iv) The action IInst does not admit a canonical structure, which constitutes
an obstruction to its quantization. Chapter 4 carries out a series of trans-
formations from ΩInst to the kinematic phase space ΩKin, where it is shown
that a canonical structure exists. This entails an implementation of the
Gauss’ law and diffeomorphism constraints on ΩInst, in conjunction with re-
stricting to quantizable configurations of the configuration space ΓKin ∈ Γq .
It is ΩKin on which we carry out the quantization procedure of this thesis.
(v) The next four chapters construct a Hilbert space of states on ΩKin

annihilated by the Hamiltonian constraint. There are two cases, namely
vanishing and nonvanishing cosmological constant. In Chapter 5 we carry
out the construction for Λ = 0 using a discretized version of 3-space and
then pass to the continuum limit.
(vi) In Chapter 6 we re-construct the Λ = 0 states starting from the Wheeler–
DeWitt equation of the full theory, demonstrating regularization-independence
and completeness of the states. This is linked to the fact that for Λ = 0
the Hamiltonian constraint is invariant under a rescaling of momenta. The
result for Λ = 0 is a Hilbert space of states in two-to-one correspondence
with points in C2, two copies of the complex plane per spatial point.
(vii) In Chapter 7 we attempt to extend the results to Λ 6= 0. This introduces
a length scale into the theory which destroys the invariance of the Hamilto-
nian constraint under rescaling. It is found that the condition of finiteness
of the wavefunction imposes a restriction on the allowable states linked to an
expansion in powers of Λ, which we have developed by Lippman–Schwinger
type approach to perturbative quantum mechanics.
(viii) Chapter 8 lifts this restriction by carrying out the expansion in inverse
powers of Λ. The solution reduces to the Kodama state in the limit of Type
O spacetimes, which corresponds to the origin of C2. In the general case the
states are solutions to a certain hypergeometric differential equation, and
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are in three-to-one correspondence with points in C2. The existence of a
Hilbert space for Λ 6= 0 implies that 3-space must be discrete.
(ix) In Chapter 9 we clarify the role of the Kodama state ψKod within this
Hilbert space and provide a possible resolution to the issue of its normaliz-
ability. ψKod can be regarded as a time variable on the configuration space
of the instanton representation, and one does not normalize a wavefunction
in time. The idea of the Chern–Simons functional as a time variable was
first suggested in [11], which is corroborated by the results of this thesis.
(x) Having constructed a Hilbert space for gravity, the next natural step is
to verify the existence of a well-defined semiclassical limit corresponding to
the quantum theory. In Chapter 10 we demonstrate such a limit by carrying
out the following steps: (i) First, we verify Dirac consistency of ΩKin (see
e.g. [10]), demonstrating closure of the Hamiltonian constraint algebra both
under Poisson brackets and quantum commutators. Note that this implies
preservation of ΩKin under Hamiltonian evolution, as well as the absence of
quantum anomalies. (ii) We compute the Hamiltonian dynamics both for
Λ = 0 and Λ 6= 0. For each case there is a Hamilton–Jacobi functional which
mimics the quantum states previously constructed. (iii) A natural time
variable T emerges on ΓKin, with respect to which the remaining variables
evolve. (iv) We provide an iterative procedure for constructing solutions,
where the spatial derivatives in the full theory come into play. This is meant
to reaffirm that ΩKin does indeed include the full theory, with two physical
degrees of freedom per point, and not only minisuperspace. (v) Lastly, we
provide a prescription for producing gravitational waves on ΩKin. This is to
verify that the physical degrees of freedom from ΩInst as found in (iii) are
indeed preserved under the reduction ΩInst → ΩKin.
(xi) To make contact with the conventional formalism, we clarify the role
of the Bianchi models within the instanton representation. We argue that
it makes sense to regard these models as corresponding to the full theory
rather than minisuperspace.
(xii) In Chapter 12 we provide a summary of the main results, as well as a
prescription for determining which sectors of general relativity can be solved
by the methods of this thesis.3

The results of this thesis show that there exist finite and regularization-
independent states solving the Wheeler–DeWitt equation for Λ = 0, states
which form an Hilbert space and exhibit a well-defined semiclassical limit.
For Λ = 0 there is only one regularization-independent state, namely the
Kodama state, which corresponds to spacetimes of Petrov Type O. For alge-
braically general spacetimes the states are regularization-dependent, which
implies that space is discrete with the scale of the discretization fixed by the
coincidence limit of the regulating function.

3The results of this thesis are not applicable for spacetimes other than of Petrov Types
I, D and O, where the CDJ matrix possesses three linearly independent eigenvectors.
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2 Plebanski theory of gravity

It has been shown by Plebanski in [12] that general relativity may be written
using two forms in lieu of the metric as the basic variables. We adapt the
starting action to the language of the SO(3, C) gauge algebra as

IP leb =
∫

M

δaeΣa ∧ F e − 1
2
(δaeϕ+ ψae)Σa ∧ Σe, (3)

where ψae is a symmetric and traceless SO(3, C)⊗ SO(3, C) matrix, and ϕ
is a numerical constant.4 We have defined SO(3, C)-valued two forms Σa

and curvature two forms F a, given by

Σa =
1
2
Σa

µνdx
µ ∧ dxν ; F a =

1
2
F a

µνdx
µ ∧ dxν . (4)

The quantity F a is the curvature two form of an SO(3, C)-valued connection
one form Aa = Aa

µdx
µ, written in component form as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν (5)

with structure constants fabc = εabc. There are three equations of motion
resulting from (3). The first equation

δIP leb

δψae
= Σa ∧ Σe − 1

3
δaeΣg ∧ Σg = 0 (6)

is the simplicity constraint, which implies that the two forms Σa can be
derived from tetrad one forms eI = eIµdx

µ occuring in a self dual combination

Σa = ie0 ∧ ea − 1
2
εafgef ∧ eg. (7)

Note that (7) implies

i

2
Σa ∧ Σe = δae√−gd4x, (8)

with the proportionality factor given by the spacetime volume element [15].
The second equation of motion

4For ϕ a numerical constant then (3) implies general relativity. For ϕ = ϕ(trψ2, trψ3)
an arbitrary function of the invariants of ψae, one obtains the so-called neighbors of GR
[13],[14],[15], neighbors in the sense that they still contain two propagating degrees of
freedom.
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δI

δAg
= DΣg = dΣg + εgfhA

f ∧ Σh = 0, (9)

where D is the exterior covariant derivative with respect to Aa, states that
Aa is the self-dual part of the spin connection compatible with the tetrad
implicit in Σa through (7). The third equation of motion is

δIP leb

δΣa
= F a − Ψ−1

ae Σe = 0 −→ F a
µν = Ψ−1

ae Σe
µν (10)

where we have defined Ψ−1
ae = δaeϕ+ψae (for this thesis we will assume that

Ψae is nondegenerate so that its inverse exists). Equation (10) states that
the curvature of Aa is self-dual as a two form, which implies that the metric
gµν = ηIJe

I
µe

J
ν derived from the tetrad one-forms eI satisfies the vacuum

Einstein equations. Equation (3) written in component form is given by

IP leb[Σa, Aa,Ψ] =
1
4

∫

M
d4x
(
Σa

µνF
a
ρσ − 1

2
Ψ−1

ae Σa
µνΣ

e
ρσ

)
εµνρσ (11)

where ε0123 = 1, which yields the 3+1 decomposition

1
2

∫
dt

∫

Σ
d3xεijkΣa

jkȦ
a
i + Aa

0Di(εijkΣa
jk) + Σa

0iε
ijk
(
F a

jk − Ψ−1
ae Σe

jk

)
(12)

where we have used F a
0i = Ȧa

i −DiA
a
0 from the temporal component of (5) in

conjunction with an integration by parts and discarding of boundary terms.
Defining the spatial part of the two forms as σ̃i

a = 1
2ε

ijkΣa
jk and the

SO(3, C) magnetic field as Bi
a = 1

2ε
ijkF a

jk , then (12) is given by

IP leb =
∫
dt

∫

Σ
d3xσ̃a

i Ȧ
a
i + Aa

0Diσ̃
i
a + Σa

0i

(
Bi

a − Ψ−1
ae σ̃

i
e

)
. (13)

Let us use (6) and (7) to redefine the two form components in (13). Making
the identification

eai =
1
2
εijkε

abcσ̃j
b σ̃

k
c (detσ̃)−1/2 =

√
detσ̃(σ̃−1)a

i , (14)

we see that σ̃i
a takes on the interpretation of a densitized spatial triad. In

a special gauge e0i = 0, known as the time gauge, the temporal components
of the two forms (7) are given by [16],[17]
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Σa
0i =

i

2
Nεijkε

abcσ̃j
b σ̃

k
c + εijkN

jσ̃k
a , (15)

where N = N(detσ̃)−1/2 and N i are the densitized lapse function and shift
vector. Substituting (15) into (13), we obtain the action

I [σ̃,Ψ;A] =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a −N i

(
εijkN

iσ̃j
aB

k
a + εijk σ̃

j
aσ̃

k
e Ψ−1

ae

)

−iN
[
(detσ̃)−1/2

(1
2
εijkε

abcσ̃i
aσ̃

j
bB

k
c − 1

6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)]
.(16)

Equation (16) can be regarded as an action for Aa
i parametrized by points in

an 81 dimensional manifoldµ = (σ̃i
a,Ψae), where each point of µ corresponds

to a different theory.

2.1 Ashtekar theory of gravity

We would like to select, from the infinite set of possibilities inherent in (16),
a submanifold of µ which corresponds to the theory of GR. One way is to
restrict to those Ψ−1

ae ∈ µ which satisfy the conditions

εdaeΨ−1
ae = 0; trΨ−1 = −Λ (17)

with no restriction on σ̃i
a, where Λ is the cosmological constant. When (17)

holds, then (16) reduces to the action

IAsh[σ̃, A] =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a

−εijkN iσ̃j
aB

k
a +

i

2
Nεijkεabcσ̃

i
aσ̃

j
b

(
Bk

c +
Λ
3
σ̃k

c

)
. (18)

Equation (18) is precisely the action for GR in the Ashtekar variables ([18],[19],[20]).5

Note that (18) provides phase space variables ΩAsh = (σ̃i
a, A

a
i ), which

form a canonical pair with symplectic two form ΩAsh given by

ΩAsh =
∫

Σ
d3xδσ̃i

a(x)∧ δAa
i (x) = δ

(∫

Σ
d3xσ̃i

a(x)δA
a
i (x)

)
= δθAsh, (19)

which is the exterior functional derivative of the canonical one form θAsh.
Therefore ΩAsh satisfies the fundamental Poisson brackets

5Equation (18) is a totally constrained system with the Gauss’ law, diffeomorphism
and Hamiltonian constraints smearing their respective auxilliary fields (Aa

0 ,N
i, N).
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{Aa
i (x, t), σ̃

j
b(y, t)} = δj

i δ
a
b δ

(3)(x, y), (20)

which constitute a basis for transition to the quantum theory. Equation
(18) has led to the loop quantization programme [21],[22], which has been
widely studied in the literature. Having shown that the choice (17) leads to
a theory which is known to be equivalent to general relativity, we will now
introduce a theory dual to (17), dual in a sense that we will make precise.

2.2 Instanton representation of Plebanski gravity

We will show that there exists a formulation of gravity, dual in a sense to
(18), which also follows from (16). Let us, instead of (17), restrict ourselves
to those σ̃i

a ∈ µ satisfying the conditions

εijkεabcσ̃
i
aσ̃

j
bB

k
c = −Λ

3
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c ; εijk σ̃

j
aB

k
a = 0 (21)

with no restriction on Ψ−1
ae . Note that (21) are precisely the Hamiltonian

and diffeomorphism constraints obtainable by variation ofN and N i in (18).
Substitution of (21) into (16) and using the relation

H = (detσ̃)−1/2
(
−Λ

6
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

−1
6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)
= −

√
detσ̃

(
Λ + trΨ−1

)
(22)

yields the following action

I [σ̃,Ψ, A] =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a

+εijkN iσ̃j
aσ̃

k
e Ψ−1

ae − iN
√

detσ̃
(
Λ + trΨ−1

)
. (23)

But (23) contains an additional variable Ψ which is absent from (18). Let
us trade σ̃i

a for Ψae by substituting the spatial restriction of (10)

σ̃i
a = ΨaeB

i
e, (24)

which is an equation of motion of (3), into (23). This substitution, known
as the CDJ Ansatz, yields an action6

6Equation (24) holds only when (detB) 6= 0 and (detΨ) 6= 0. The latter condition for
Ψae limits the analysis in this thesis to spacetimes of Petrov Types I, D and O.
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IInst[Ψ, A] =
∫
dt

∫

Σ
d3xΨaeB

i
aȦ

a
i +Aa

0B
i
eDiΨae

+εijkN iBj
aB

k
e Ψae − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
, (25)

which is written on the phase space ΩInst = (Ψae, A
a
i ). Let us make a few

observations regarding (25).
(i) Note that variation of Nµ = (N,N i) in (25) implies (17), just as

variation of Nµ in (18) implies (21). It is in this sense that we regard (25)
and (18) as being ‘dual’ theories. (ii) Unlike ΩAsh = (σ̃i

a, A
a
i ) in (18), the

phase space ΩInst = (Ψae, A
a
i ) is noncanonical. Variation of the canonical

one form θInst derived from θAsh through (24) yields

δθInst = δ
(∫

Σ
d3xΨaeB

i
eδA

a
i

)

=
∫

Σ
d3x
[
Bi

eδΨae ∧ δAa
i + Ψae(εijkDjδA

e
k)∧ δAa

i

]
, (26)

which is not a symplectic two form ΩInst of canonical form. (iii) Hence (24) is
a noncanonical transformation, which implies that there is no configuration
space variable on ΩInst canonically conjugate to Ψae. This feature presents
an obstruction to quantization, which will need to be dealt with. (vi) Lastly,
note that (24) transforms (25) into (18) and vice-versa, which implies that
the two actions are equivalent for (detB) 6= 0 and (detΨ) 6= 0.

2.3 Verification of the Einstein equations of motion

While (24) is not a canonical transformation, we will nevertheless show that
(25) still produces the Einstein equations. Using Ȧa

i = F a
0i +DiA

a
0 and the

Bianchi identity upon integration by parts, (25) can be written as

IInst =
∫
dt

∫

Σ
d3x
[
ΨaeB

i
eF

a
0i + εijkN

iBj
aB

k
e Ψae

−iN(detB)
√

detΨ
(
Λ + trΨ−1

)]
. (27)

First, rewrite (27) by decomposing Ψae = Ψ(ae) + Ψ[ae] into its symmetric
and antisymmetric parts, as in

IInst =
∫
dt

∫

Σ
d3x
[
Ψ(ae)B

i
eF

a
0i + Ψ[ae]

(
Bi

eF
a
0i + εijkN

iBj
aB

k
e

)

−iN(detB)
√

detΨ
(
Λ + trΨ−1

)]
. (28)
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Variation of the shift vector N i in (28) yields the constraint

Hi = εijkB
j
aB

k
e Ψae = 0, (29)

which implies that Ψae = Ψea is symmetric, and variation of the lapse
function N yields the constraint

H = (detB)1/2
√

detΨ
(
Λ + trΨ−1

)
= 0. (30)

In what follows we will make use of the relation

√
−g = N

√
h = N

√
detσ̃ = N(detB)1/2

√
detΨ, (31)

which writes the determinant of gµν in terms of its 3+1 decomposition and
uses the determinant of (24). Using Ψ[ae] = 0 from (29) reduces (28) to

IInst =
∫
dt

∫

Σ
d3x
[1
2
Ψ(ae)ε

ijkF a
0iF

e
jk − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)]
,(32)

which can be written in covariant form by defining εijk ≡ ε0ijk, and invoking
the symmetries of the 4-dimensional epsilon tensor εµνρσ . Since Ψae is now
symmetric, then (32) can consequently be written as

IInst =
∫

M
d4x
(1

8
ΨaeF

a
µνF

e
ρσε

µνρσ − i
√
−g
(
Λ + trΨ−1

))
. (33)

We will now show that (33) implies the Einstein equations. More precisely,
we will verify that using (33) as the starting point, one obtains the analogue
of (6), (9) and (10) as they relate to (3). The equation of motion for the
(symmetric) CDJ matrix is given by

δIInst

δΨ(bf)
=

1
8
F b

µνF
f
ρσε

µνρσ + i
√
−g(Ψ−1Ψ−1)bf = 0. (34)

Left and right multiplying (34) by Ψ, we obtain

1
4
(Ψbb′F b′

µν)(Ψff ′
F f ′

ρσ)εµνρσ = −2i
√
−gδbf . (35)

Note that this step and the steps that follow require that Ψae be nondegen-
erate as a 3 by 3 matrix. Let us make the re-definition of variables
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Σa
µν = ΨaeF

e
µν = Σa

µν [Ψ, A], (36)

which retains Ψae and Aa
µ as fundamental, with the two form Σa

µν being a
derived object. After identifying (36) with (10), then (35) yields

1
4
Σb

µνΣf
ρσε

µνρσd4x = Σb ∧ Σf = −2i
√
−gδbfd4x. (37)

One recognizes (37) as the condition that the two forms thus constructed in
(36) be derivable from tetrads, which is the analogue of (8). To complete
the demonstration of the Einstein equations, it remains to show that the
connection Aa is compatible with the two forms Σa as constructed in (36).

The equation of motion for the connection Aa
µ from (27) can be seen as

arising from the relevant covariant part encoded in (33), which is given by

δIInst

δAa
µ

= εµσνρDσ(ΨaeF
e
νρ) −

δ

δAa
µ

∫

M
d4x
(
εmnlN

mBn
b B

l
f Ψbf

−iN
√

detB
√

detΨ
(
Λ + trΨ−1

))
= 0. (38)

Since the only occurrence of Aa
0 resides in the F a

0i term, then the equation
of motion for the temporal component is given by

δIDual

δAa
0

= ε0ijkDi(ΨaeF
e
jk) = Di(ΨaeB

i
e) = 0, (39)

which is the Gauss’ law constraint Ga upon use of the spatial restriction of
(36). The equations of motion for the spatial components Aa

i are given by

δIInst

δAa
i

= εiµνρDµ(ΨaeF
e
νρ) −

δ

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
fΨbf

+
δ

δAa
i

∫

M
d4xiN

√
detB

√
detΨ

(
Λ + trΨ−1

)
= 0. (40)

Let us consider the contributions to (40) due to the Hamiltonian and diffeo-
morphism constraints Hµ = (H,Hi). Defining

D
ji
ea(x, y) ≡

δ

δAa
i (x)

Bj
e(y) = εjki

(
−δae∂k + fedaA

d
k

)
δ(3)(x, y), (41)

the contribution due to the diffeomorphism constraint is given by
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δHi[N i]
δAa

i

=
δ

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
fΨbf

= 2Dni
ba(εmnlN

mBl
fΨ[bf ]) + 2Dli

fa(εmnlN
mBn

b Ψ[bf ])

= 4Dni
ba(εmnlN

mBl
fΨ[bf ]), (42)

and the contribution due to the Hamiltonian constraint is given by

δH [N ]
δAa

i

=
δ

δAa
i

∫

M
d4xiN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)

= iD
ki
da

(N
2

(detB)1/2(B−1)d
k

√
detΨ

(
Λ + trΨ−1

))

= iD
ki
ba

(N
2

(B−1)b
kH
)
. (43)

Hence combining the results of (42) and (43), the equation of motion for Aa
µ

is given by

εµνρσDν(ΨaeF
e
ρσ) +

1
2
δµ
i D

ki
ba

(
i(B−1)b

kNH + 4εmklN
mBl

fΨ[bf ]

)
= 0. (44)

The first term of (44) by itself when zero implies (9) upon invoking (36).
The obstruction to this equality arises due to the second and third terms
of (44), which contain spatial gradients acting on the diffeomorphism and
Hamiltonian constraints Hµ. In order that Aa

µ be compatible with the two
form Σa

µ = ΨaeF
e
µν , we must require that these terms of the form ∂iHµ must

vanish, which can be seen from the following argument. Since Hµ = 0 when
the equations of motion are satisfied, then the spatial gradients from D

ji
ea

acting on terms proportional to Hµ in (44) must vanish. To see this, smear
the gradient of a constraint C with a test function f

S =
∫

Σ

d3xf∂iC = −
∫

Σ

d3x(∂if)C ∼ 0, (45)

where we have integrated by parts. The result is that (45) vanishes on the
constraint shell ∀f which vanish on the boundary of 3-space Σ. This is
tantamount to the condition that the spatial gradients of a constraint must
vanish when the constraint is satisfied.7 Of course, the constraintsHµ follow
from the equations of motion for Nµ = (N,N i) in (27).

This completes the demonstration of the Einstein equations. The Ein-
stein equations have arisen in the same sense as from (3) using (27) as the
starting point, which is defined on the phase space ΩInst = (Ψae, A

a
i ). These

equations are modulo the initial value constraints and their spatial gradients,
which also have arisen from (27).

7The author is grateful to Chopin Soo for pointing out this argument.
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2.4 Writing down a solution

Equation (25) is a nonmetric theory of gravity, whereas in Einstein’s theory
the spacetime metric gµν is the fundamental variable. Therefore we will
provide a prescription for constructing gµν as follows. The line element of
four dimensional spacetime M can always be written in terms of its 3+1
decomposition [9]

ds2 = gµνdx
µdxν = −N2dt2 + hijω

i ⊗ ωj , (46)

where Nµ = (N,N i) are the lapse function and hij is the spatial 3-metric
of Σ. Also we have defined the one forms ωi = dxi + N idt. Recall in the
3+1 formulation of GR that Nµ are gauge degrees of freedom which can be
chosen arbitrarily. Therfore it suffices to write hij explicitly in terms of Ψae

and Aa
i , the phase space variables of (25), in order to construct a solution.

The desired expression is given by

hij = (detΨ)(Ψ−1Ψ−1)ae(B−1)a
i (B

−1)e
j(detB), (47)

where Ψae and Aa
i are solutions to the initial value constraints

we{Ψae} = 0; εdaeΨae = 0; Λ + trΨ−1 = 0. (48)

We have written the Gauss’ law constraint as

we{Ψae} ≡ Bi
eDi{Ψae} = ve{Ψae} +

(
fabfδge + febgδaf

)
CbeΨfg (49)

using the vector fields ve = Bi
e∂i and the magentic helicity density matrix

Cbe = Aa
iB

i
e, and have made use of the covariant derivative of Ψae

DiΨae = ∂iΨae +Ab
i

(
fabfΨfe + febf Ψaf

)
, (50)

seen as a SO(3, C) tensor of second rank. Note that (24) substituted into
(47) implies hhij = σ̃i

aσ̃
j
a, which is the relation of the contravariant 3-metric

to the Ashtekar densitized triad.
Note that the Hamiltonian and diffeomorphism constraints in (49) are

algebraic, but the Gauss’ law constraint involes spatial derivatives. In con-
structing a solution to (48), the CDJ matrix can be parametrized in the
rectangular form

Ψae = efaeϕf + Ef
aeΨf , (51)
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where efae and Ef
ae form a basis of symmetric three by three matrices. In

this basis (49) is given by

we{Ψae} = efaewe{ϕf}+ Ef
aewe{Ψf} = 0, (52)

which is a matrix equation of noncommuting differential operators




v1 − C23 + C32 −C32 C23

C31 v2 − C31 + C13 −C13

−C21 C12 v3 − C12 + C21





ϕ1

ϕ2

ϕ3




+




v2 + C13 − 2C31 C22 − C33 v3 + 2C21 − C12

v1 + 2C32 − C23 v3 + C21 − 2C12 C33 − C11

C11 − C22 v2 + 2C13 − C31 v1 + C32 − 2C23






Ψ3

Ψ1

Ψ2


 = 0.

When invertible, (52) can be formally inverted to yield

Ψf = Ĵg
fϕg = −(Ef

aewe)−1egadwd{ϕg}, (53)

where Ĵg
f defines the propagator from the diagonal elements ϕf to the off-

diagonal ones Ψf , using ϕf as the physical degrees of freedom.8

Lastly, to be sure that the metric as defined in (46) is real-valued, one
must implement reality conditions. Clearly one can simply require all vari-
ables on ΩInst to be real, and one must choose N i to be real while using the
replacement N ↔ iN to select between Lorentzian and Euclidean signature.
But the basic requirement is that the densitized triad σ̃i

a must be real. Since
σ̃i

a is now a derived quantity, then the required condition is that

Im{ΨaeB
i
e} =

∑

e

(
Re{Ψae}Im{Bi

e} + Im{Ψae}Re{Bi
e}
)

= 0, (54)

which can be analysed by decomposing Ψae into its real and imaginary parts
and using Aa

i = Γa
i + iKa

i , where Γa
i and Ka

i are real.

8The construction of Ĵg
f will not be covered in this thesis. Nevertheless, the implication

is that one can reduce Ψae to two physical degrees of freedom by solving the system (48).
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3 Demonstration of gravitational waves

Another test of the feasibility of the instanton representation of Plebanski
gravity as a description of GR is the ability to produce gravitational waves
from the formalism, with the starting action given by

IInst =
∫
dt

∫

Σ

d3x
[
ΨaeB

i
eȦ

a
i +Aa

0we{Ψae}

+εijkN iBj
aB

k
e Ψae − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)]
. (55)

The solutions arising from (55) will be characterized by the algebraic classi-
fication of Ψae. For simplicity we will perform an expansion about DeSitter
spacetime, which corresponds to a CDJ matrix

(Ψae)O = − 3
Λ
δae (56)

where Λ is the cosmological constant.9 Note that there is no restriction on
Aa

i other than the requirement that (detB) 6= 0.
Let us first evaluate the action (55) on the class of solutions defined by

(56) by evaluating each term. The Gauss’ law constraint

Ga = ve{−(3/Λ)δae} +
(
fabfδge + febgδaf

)
Cbe(−(3/Λ)δfg) =

− 3
Λ
(
0 + (fabe + feba

)
Cbe = 0 ∀Aa

i (57)

is automatically satisfied on account of spatial homogeneity of Λ and anti-
symmetry of the structure constants. The diffeomorphism constraint yields

Hi = εijkB
j
aB

k
e (−(3/Λ)δae) = − 3

Λ
εijkB

j
aB

k
a = 0 ∀Aa

i (58)

on account of antisymmetry of εijk . The Hamiltonian constraint is

Λ + trΨ−1 = Λ − Λ = 0 (59)

which is also identically satisfied ∀Aa
i . On account of (57), (58) and (59),

all terms in (55) vanish except the first term. So we are left with

I0 = −
( 3

Λ

) ∫
dt

∫

Σ
d3xδaeB

i
eȦ

a
i = −

( 3
Λ

) ∫
dt
d

dt
ICS [A] = −

( 3
Λ

)
ICS [A],(60)

9This falls within a class of spacetimes of Petrov Type O, where Ψae has three equal
eigenvalues and three linearly independent eigenvectors.
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where ICS is the Chern–Simons functional of the connection A, given by

ICS =
∫

Σ

[
A ∧ dA+

2
3
A ∧ A ∧A

]
. (61)

in the language of differential forms, defined on the spatial boundary of
spacetime M . The exponentiation of (60) in units of ~G gives

ψKod = e−3(~GΛ)−1ICS[A] (62)

which is the Kodama state. It is known that ψKod is an exact quantum
state for GR whose semiclassical orbits include DeSitter spacetime [3],[6].

3.1 Ingredients for perturbing the solution

Having verified that spacetimes of Petrov Type O constitute a solution to
the initial value constraints, let us now introduce a perturbation εae, where
|εae| << 3

Λ is small. Then the CDJ matrix is now given by

Ψae = − 3
Λ
δae − εae, (63)

where εae parametrizes the deviation from Type O spacetimes. In conjunc-
tion with (63) we will expand about a reference connection

Aa
i = δa

i a+ aa
i , (64)

where |aa
i | << a, with a = a(t) some spatially homogeneous function of

time. The magnetic field for Aa
i is given by

Bi
a = εijk∂jA

a
k +

1
2
εijkfabcA

b
jA

c
k = a2δi

a − aai
a + εijk∂ja

a
k (65)

to first order in aa
i .

Our next task will be to attempt to produce the gravitational wave
polarizations by linearising (55) about DeSitter spacetime. We will need to
make use of a few preliminary results, starting with the determinant

det
( 3

Λ
δae + εae

)

=
1
6
εabcεefg

( 27
Λ3
δaeδbfδcg +

27
Λ2
δaeδbf εcg +

9
Λ
δaeεbf εcg + εaeεbf εcg

=
27
Λ3

+
9
Λ2
δaeεae +

3
2Λ
(
δbfδcg − δcf δbg

)
εbf εcg +

1
6
εabcεefgεAeεbf εcg

=
27
Λ3

+
9
Λ2

trε+
3
2Λ
(
(trε)2 − trε2

)
+ detε, (66)

18



as well as the trace of the inverse

( 3
Λ
δae + εae

)−1
=

Λ
3
δae −

(Λ
3

)2
εae + . . . . (67)

The dots signify terms of second order and higher in εae, which will not be
needed for our analysis. Let us write the magnetic field (65) as

Bi
a = a2(δi

a + qi
a + . . .) (68)

where qi
a is of linear order in aa

i , given by

qi
a =

1
a2
εijk∂ja

a
k − 1

a2
ai

a. (69)

The following relations will be useful

detB =
a6

6
εijkε

abc
(
δi
aδ

j
bδ

k
c + 3δi

aδ
j
bq

k
c + . . .

)
= a6(1 + trq + . . .) (70)

for the determinant of B, as well as the magnetic helicity density matrix
Cae = Aa

iB
i
e, given by

Cae = (δa
i a + aa

i )(a
2δi

e + qi
e + . . . ) = a3δae + a2aa

e + aqa
e + . . . (71)

3.2 Solving the linearized constraints

It will be convenient to first linearize the action (55) with respect to εae and
then with respect to aa

i . Substituting (63) into (55) and using (57), (58) and
(59), we have

IInst = I0 −
∫
dt

∫

Σ
d3x

[
εaeB

i
eȦ

a
i +Aa

0we{εae}

+εijkN iBj
aB

k
e εae + iN(detB)1/2

√
det
(
− 3

Λ
δae − εae

)(
Λ − tr

( 3
Λ
δae + εae

)−1)]
.(72)

We are now ready to solve the linearized constraints, which arise due to
the equations of motion for N i, Aa

0 and N in (72). First we start with the
diffeomorphism constraint, given by

εijkB
j
aB

k
e εae = 0, (73)

19



which is already linear in εae and implies that εae is symmetric. This is
true whether or not Aa

i is linearized, but we will nevertheless complete the
linearization. Since (73) is already linear in εae, then we need only expand
Bi

a to zeroth order as in Bi
a = δi

aa
2 and substitute into (73).10 This yields

εijk(δj
aa

2)(δk
ea

2) = a4εiaeεae = 0, (74)

which is that εae is symmetric to linear order. Of course we already knew
this to be the case to all orders.

Next we move on to the Gauss’ law constraint

Bi
e∂iεae +

(
fabfδge + febgδaf

)
Cbeεfg = 0, (75)

which as well is linear in εae. Therefore, for the linearized approximation
we must use Bi

a = δi
aa

2 + . . . and Cae = δaea
3 + . . . to zeroth order in aa

i .
Putting this into (75), we have

a2δi
e∂iεae +

(
fabfδge + febgδaf

)
a3δbeεfg

= a2∂eεae + a3fagf εfg = 0, (76)

where we have used the antisymmetry of the structure constants. The second
term of (76) vanishes on account of the symmetry of εae, which we knew
from the linearized diffeomorphism constraint (74). Assuming a 6= 0 then
the linearized Gauss’ law constraint reduces to

∂eεae = 0. (77)

Next is the Hamiltonian constraint, given by

(detB)1/2
√

detΨ(Λ + trΨ−1)

= (detB)1/2

√
det
(
− 3

Λ
δae − εae

)(
Λ − tr

( 3
Λ
δae + εae

)−1)
= 0. (78)

Since (detB) and (detΨ) are nonzero by assumption, then the Hamiltonian
constraint reduces to the vanishing of the rightmost terms of (78), which is

Λ −
(
Λ − Λ2

9
trε + . . .

)
= 0 (79)

10This is because all terms containing products of εae with aa
i must be regarded as

second-order terms.
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where we have used (67). To linear order in εae, (79) reduces for all Aa
i to

trε = 0. (80)

Equations (74), (77) and (81) respectively imply that the deviation εae is
symmetric, transverse and traceless to linearized order. This implies that εae

corresponds to a massless spin two field. In conjunction with the constraints
we must impose seven gauge-fixing conditions. But we cannot gauge fix εae

since it already has two physical degrees of freedom. Therefore the gauge-
fixing conditions must be applied to the perturbation aa

i , since aa
i is not

constrained by the initial value constraints.
With only the Hamiltonian and diffeomorphism constraints, εae would

have five degrees of freedom, which corresponds to a massive spin two field.
Since gravitons are long-ranged particles they must be massless. Therefore
the effect of the Gauss’ law constraint must be to reduce the degrees of
freedom from five to two, which implies the existence of gravitational waves.

3.3 Graviton modes

We will now make contact from the previous results to the conventional
formalism, as is best seen in momentum space. Using a Fourier expansion
of εae, given by11

εae(x) =
1

(2π)3/2

∫
d3kφae(k)e

~k·~r, (81)

where ~k = (k1, k2, k3) is the wave vector of the gravitational wave, then the
Gauss’ law constraint is given by

φaeke = 0. (82)

The momentum space version of εae is given by

φae = (ef)aeϕf + (Ef)aeΨf =




ϕ1 Ψ3 Ψ2

Ψ3 ϕ2 Ψ1

Ψ2 Ψ1 ϕ3


 ,

subject to the tracelessness condition ϕ1 + ϕ2 + ϕ3 = 0. The linearized
Gauss’ law constraint efaekeϕf +Ef

aekeΨf = 0 can be written in matrix form



ϕ1 Ψ3 Ψ2

Ψ3 ϕ2 Ψ1

Ψ2 Ψ1 ϕ3






k1

k2

k3


 =




0
0
0


 ,

11We have omitted the time dependence, since the initial value constraints are solved
with respect to a given spatial hypersurface Σt for each time t.
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which can be rewritten as



0 k3 k2

k3 0 k1

k2 k1 0






Ψ1

Ψ2

Ψ3


 = −



k1 0 0
0 k2 0
0 0 k3






ϕ1

ϕ2

ϕ3


 .

This expresses the off-diagonal elements Ψf as the image of the diagonal
elements ϕf under a map

Ψf = Ĵg
fϕg = −(Ef

aeke)−1egadkd{ϕg}, (83)

where Ĵg
f will play the role of the Gauss’ law propagator. When Ĵg

f exists,
then equation (83) in matrix form is given by




Ψ1

Ψ2

Ψ3


 = −




0 k3 k2

k3 0 k1

k2 k1 0




−1


k1 0 0
0 k2 0
0 0 k3






ϕ1

ϕ2

ϕ3


 ,

which hinges upon the ability to invert Ef
aeke, the off-diagonal matrix of

wave vectors. This is given by



Ψ1

Ψ2

Ψ3


 = (2k1k2k3)−1




−k3
1 k1k

2
2 k2

3k1

k2
1k2 −k3

2 k2k
2
3

k2
3k1 k2

2k3 −k3
3





ϕ1

ϕ2

ϕ3


 ,

whence one sees that we must have k1k2k3 6= 0, namely that Ef
aeke must be

a nondegenerate 3 by 3 matrix.
This solution for εae contains two degrees of freedom per point and can

be written completely in terms of the traceless diagonal elements ϕg via the
inverse Fourier transform of the relation

φae =
(
(eg)ae + (Ef)aeĴ

g
f

)
ϕg ≡ (T̂ g)aeϕg. (84)

To make the physical content more apparent in terms of gravitation modes,
let us use a wave vector of the form ~k = (k1, 0, 0), which corresponds to a
wave travelling in the x direction of a Cartesian coordinate system. Since
k2 = k3 = 0, then this Ansatz violates the invertibility condition and Ĵg

f

does not exist. Therefore we must return to the original equation (82). For
k2 = k3 = 0 this is given in matrix form by




0 0 0
0 0 k1

0 k1 0






Ψ1

Ψ2

Ψ3


 = −



k1 0 0
0 0 0
0 0 0






ϕ1

ϕ2

ϕ3


 ,
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which is the Gauss’ law constraint for a gravitational wave travelling in the
x direction. This yields the equations

0 = ϕ1k1; k3Ψ3 = 0; k1Ψ2 = 0, (85)

from which we have that ϕ1 = Ψ2 = Ψ3 = 0. But since εae is traceless with
ϕ1 = 0, then ϕ3 = −ϕ2. The deviation matrix is then of the form

(εae)x = ϕ




0 0 0
0 1 0
0 0 −1


+Ψ




0 0 0
0 0 1
0 1 0


 = ϕ

(
(e2)ae−(e3)ae

)
+Ψ(E1)ae.

We have obtained the two polarizations of a massless spin two field in
SO(3, C) language.

Similarly, for a gravitational wave propagating in the y direction we have
k3 = k1 = 0, which yields the solution

(εae)y = ϕ




1 0 0
0 0 0
0 0 −1


+Ψ




0 0 1
0 0 0
1 0 0


 = ϕ

(
(e1)ae−(e3)ae

)
+Ψ(E2)ae.

For a gravitational wave propagating in the z direction we have k1 = k2 = 0,
and the corresponding analysis yields

(εae)z = ϕ




1 0 0
0 −1 0
0 0 0


+Ψ




0 1 0
1 0 0
0 0 0


 = ϕ

(
(e1)ae−(e3)ae

)
+Ψ(E2)ae.

The result is that we obtain the two expected polarizations of the gravita-
tional wave. Equation (83) covers the nondegenerate configurations, which
as well feature two D.O.F. per point.

3.4 Contact with the standard formalism

We have obtained the massless spin 2 modes for εae, but one is typically
more accustomed to thinking of gravitons in terms of the spacetime metric
gµν , which is now a derived quantity (46). Since Nµ = (N,N i) are gauge
degrees of freedom, it must be that the physical degrees of freedom of GR
must reside within the spatial 3-metric hij . But the instanton representa-
tion is defined on the phase space ΩInst = (Ψae, A

a
i ) and hij is a derived

quantity given by (47), where Ψae and Aa
i are solutions to the initial value

constraints. Since these constraints constrain only Ψae and not Aa
i , it fol-

lows that the gravitational waves must reside within the physical degrees of
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freedom encoded in Ψae. Let us construct hij for the linearized case we have
examined. Using

Ψae = − 3
Λ

(
δae +

Λ
3
εae

)
; Bi

a = a2(δi
a + qi

a), (86)

we have to linearized order that

detΨ = − 27
Λ3

− trε + . . . ; detB = a6(1 + trq + . . .). (87)

Now trε = 0 due to the linearized Hamiltonian constraint and trq = 0 can
be imposed by gauge-fixing. This latter condition is the same as δi

aa
a
i = 0,

namely that the fluctuation in the connection is traceless. To linearized
order we have

(Ψ−1Ψ−1)ae =
Λ2

9
(
δae − 2Λ

3
εae + . . .

)
, (88)

and the 3-metric to linearized order, equation (47), is given by

hij = −
( 27

Λ3

)(Λ2

9

)(
δae − 2Λ

3
εae
) 1
a4

(δa
i − qa

i )(δe
j − qe

j )a
6

= −
(3a2

Λ

)(
δij −

(2Λ
3

)
εij − 2qij

)
. (89)

The 3-metric contains εae but now with spatial indices. Since εae was shown
to exhibit the two massless gravitaton modes, it then follows that hij exhibits
these modes as well. There is also a contribution, to linear order, from qij ,
given by

qij =
1
a2
εimn∂majn +

1
2
aij . (90)

In the transverse–traceless gauge (e.g. symetric, traceless and transverse
connection), then qij forms a contribution to the physical degrees of free-
dom. We have used the condition trq = 0, which implies that ajn = anj

is symmetric and traceless. The remaining gauge fixing condition kiq
i
a = 0

which implies that kia
i
a = 0, must be put in by hand.

3.5 Discussion

It will be instructive to examine the manifestation of gravitational waves in
terms of the self-dual part of the Weyl curvature ψae. The CDJ matrix is
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given by Ψ−1
ae = −Λ

3 δae + ψae, where ψae is symmetric and traceless. Using
(63), ψae can be expressed in terms of εae via the relation

ψae =
Λ2

3

(
εae +

∞∑

n=1

(−1)n
(Λ

3

)n
εaak1

εak1
ak2

. . . εakn−1akn
εkne

)
. (91)

Since ψae encodes the algebraic classification of spacetime, then it is possible
to determine the classification corresponding to the two spin 2 polarizations.
Starting from a general solution to the linearized equations with respect to
a wave propagating along one of the Cartesian coordinate directions

εae =




a b 0
b −a 0
0 0 0


 ,

the algebraic classification is determined by the eigenvalues. Let us perform
an orthogonal transformation of εae parametrized by an angle θ




cosθ −sinθ 0
sinθ cosθ 0
0 0 1






a b 0
b −a 0
0 0 0






cosθ sinθ 0
−sinθ cosθ 0

0 0 1




=



acos2θ − bsin2θ bcos2θ − asin2θ 0
bcos2θ − asin2θ −(acos2θ − bsin2θ) 0

0 0 0


 .

To diagonalize εae we must choose tan2θ = b
a , which implies that cos2θ =

a√
a2+b2

. Then the diagonal form is given by

Diag(εae) =
√
a2 − b2




1 0 0
0 −1 0
0 0 0


 .

Note that there is only one degree of freedom contained in the eigenvalues
εf ∝ (1,−1, 0), with the remaining degree of freedom contained in θ. Never-
theless, the spacetime described by this gravitational wave is of Petrov Type
I, which is algebraically general since the three eigenvalues are unequal.

It appears naively that gravitationalwaves cannot exist purely within the
eigenvalues of εae on account of the tracelessness condition, since the angle θ
contains an additional degree from freedom missing from these eigenvalues.
But recall that this is a special case of the linearized theory where Ef

aeke

is degenerate, whence the missing degree of freedom becomes restored via
the Gauss’ law constraint Ga. However, when Ef

aeke is nondegenerate then
Ĵg

f exists, and Ga expresses Ψf as an image of ϕf under the map Ĵg
f , thus
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preserving the two physical D.O.F. within ϕf .12 This property persists in
the full nonlinear theory as suggested by (53), which enables one to examine
the concept of nonlinear gravitons. This is of importance because it is the
eigenvalues of Ψae to the quantization procedure of this thesis will be applied,
and this should enable the quantization of two D.O.F. per point.

12To linearized order in θ we may identify the diagonal elements of εae with its eigen-
values.
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4 Reduction to the kinematic phase space

In order to quantize the instanton representation we will need first to iden-
tify the canonically conjugate variables. However, (25) is defined on ΩInst,
which as previously noted does not admit a canonical structure. So we will
now obtain a canonical structure via the reduction ΩInst → ΩKin to ΩKin,
defined as the phase space after implementation of the diffeomorphism and
the Gauss’ law constraints. Since Ψae is symmetric from (29), then Ψae can
be diagonalized into the following polar decomposition13

Ψae = (eθ·T )afλf(e−θ·T )fe, (92)

which corresponds to a rotation of the diagonal matrix of eigenvalues λf =
(λ1, λ2, λ3) into an arbitrary SO(3, C) frame parametrized by three complex
angles ~θ = (θ1, θ2, θ3). It will be convenient to define SO(3, C) rotated
versions of the magnetic field Bi

a and the velocity of Aa
i by

bie = (e−θ·T )efB
f
e ; ȧa

i = (e−θ·T )afȦ
f
i . (93)

We will show that that Ȧa
i should transform as indicated in (93), namely

in the same manner as Bi
a under SO(3, C) gauge transformations.14 At the

level of solution to (29), the action (27) reduces to the covariant form

IInst =
∫

M
d4x
[1
8
ΨaeF

a
µνF

e
ρσε

µνρσ − iN(detB)1/2
√

detΨ
(
Λ + trΨ−1

)]
. (94)

This corresponds to the reduction Dim(ΩInst) = (9, 9) → (6, 9), since we
have solved (29) for Ψae with no corresponding restriction on Aa

i . The 3+1
decomposition of (94) is given by

IInst =
∫
dt

∫

Σ
d4x
[
Ψ(ae)B

i
eȦ

a
i +Aa

0B
i
eDi{Ψ(ae)} − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)]
.(95)

The Gauss’ law constraintGa can still be implemented on ΩInst by variation
of Aa

0 in (95). Combined with the decomposition (92), this yields

Ga = Bi
eDi{(eθ·T )afλf(e−θ·T )fe} = 0 (96)

13Note, according to [40], that this requires the existence of three linearly independent
eigenvectors. Additionally, we will restrict attention to nonvanishing eigenvalues λf .

14Heuristically speaking, the velocity Ȧa
i lives in the tangent space to configuration

space ΓInst, which implies that the velocity of the angles θ̇a should not explicitly appear.
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which we will regard as a triple of differential equations for ~θ. In other
words, for each (λ1, λ2, λ3) and Aa

i , (96) should in principle enable one to
find the angles ~θ = ~θ[~λ, A] which define (92), whereupon (95) reduces to

IInst =
∫
dt

∫

Σ
d4x
[
Ψ(ae)B

i
eȦ

a
i − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)]∣∣∣∣
Ga=0

=
∫
dt

∫

Σ
d4x
[
λf(e−θ[A,~λ]·T )fa(e−θ[A,~λ]·T )feB

i
eȦ

a
i

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)]
(97)

where we have used the complex orthogonal property det(e−~θ[A,~λ]·T ) = 1.
Note that there has been no restriction on Aa

µ = (Aa
0, A

a
i ) at this point.

On the other hand, substitution of (92) directly into (94) prior to per-
forming the 3+1 decomposition yields

IInst =
1
8

∫

M
d4xλf((e−θ·T )faF

a
µν [A])((e−θ·T )feF

e
ρσ[A])εµνρσ

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)]
, (98)

where we have used det(e−~θ·T ) = 1 with ~θ now arbitrary. Note that the
internal index on each curvature in (98) has been rotated by e−θ·T , which
corresponds to a SO(3, C) gauge transformation. Therefore for each ~θ there
exists a curvature

fa
µν [α] = (e−θ·T )aeF

e
µν [A] (99)

corresponding to some four dimensional connection αa
µ. The relation be-

tween αa
µ and fa

µν , which contains no explicit reference to the SO(3, C)
angles ~θ, is given by fa

µν = ∂µα
a
ν − ∂να

a
µ + fabcαb

µα
c
ν . It then follows that αa

µ

is a SO(3, C) gauge transformed version of the connection Aa
µ, related by15

αa
µ = (e−θ·T )aeA

e
µ − 1

2
εabc(∂µ(e−θ·T )bf)(e−θ·T )cf . (100)

Defining βi
a = 1

2ε
ijkfa

jk as the magnetic field of αa
i , and using the complex

orthogonal property det(eθ·T ) = 1, then (94) can also be written as
15Note that the spatial part αa

i contains six degrees of freedom (D.O.F.) per point,

namely nine D.O.F. in Aa
i minus three D.O.F. contained in ~θ.
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IInst =
∫

M
d4x
[1
8
λff

f
µνf

f
ρσε

µνρσ − iN(detβ)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)]
,(101)

which contains no explicit reference to the angles ~θ. The 3+1 decomposition
of (101) is given by

IInst =
∫
dt

∫

Σ
d3x
[
λfβ

i
f α̇

f
i + αf

0β
i
fDi{λf} − iN(detβ)1/2

√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)]
,(102)

where now D ≡ (Dac)i = δac∂i + fabcαb
i is the covariant derivative with re-

spect to αa
i . Variation of αf

0 in (102) would result in an additional constraint
on λf which is unsatisfactory, since we would like to use λf for the physical
degrees of freedom which input into (96). Therefore we must choose αf

0 = 0,
which reduces (102) to

IKin =
∫
dt

∫

Σ

d3x
[
λfβ

i
f α̇

f
i − iN(detβ)1/2

√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)]
.(103)

Comparison of (103) with (97), in view of (93), leads to the following con-
sistency conditions

~θ = ~θ[A,~λ]; αa
i = aa

i −→ βi
a = bia; Aa

0 = (e−
~θ·T )

d

dt
(e

~θ·T )
∣∣∣∣
~θ=~θ[A,~λ]

, (104)

which is basically the requirement that the polar decomposition of (94)
commute with its 3+1 decomposition. Then the action on the kinematic
phase space ΩKin is given by

IKin =
∫
dt

∫

Σ

d3x
[
λfb

i
f ȧ

f
i − iN(detb)1/2

√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)]
,(105)

and there is no occurrence of velocities θ̇a in the canonical structure.
Note, at the level of (105), that Dim(ΩKin) = (3, 6), since implementa-

tion of the Gauss’ law constraint has reduced both the configuration as well
as momentum space by the three D.O.F. contained in the SO(3, C) angles
~θ. The overall effect has been to rotate all variables into the SO(3, C) frame
~θ[A,~λ] corresponding to the solution of the Gauss’ law constraint. Then we
are left just with the Hamiltonian constraint, given by variation of N

H =
δIKin

δN
= (detb)1/2

√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)
. (106)
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On account of the nondegeneracy of Bi
a and Ψae, then (106) is equivalent

to the vanishing of the term in large brackets which leads to the following
relation amongst the eigenvalues

λ3 = − λ1λ2

Λλ1λ2 + λ1 + λ2
, (107)

which is independent of ~θ.

4.1 Canonical structure

We would like to determine whether the kinematic phase space ΩKin ad-
mits a canonical structure suitable for quantization. The variation of the
canonical one form θKin defined by (105) yields

δθKin = δ
(∫

Σ

d3xλfb
i
fδa

f
i

)

=
∫

Σ
d3x
[
bifδλf ∧ δaf

i + λf(εijkDjδa
f
k) ∧ δaf

i

]
, (108)

which in analogy to (26) does not yield a symplectic two form ΩKin of
canonical form Ω = δ(pδq) = δp ∧ δq. The configuration space part of θKin

splits into two contributions bifδa
f
i = mf + nf , where

mf = εijk(∂ja
f
k)δaf

i ; nf =
1
2
εijkffgha

g
ja

h
kδa

f
i . (109)

Note that mf contains spatial gradients of af
i , while nf is free of spatial

gradients. A sufficient condition for (108) to admit a canonical structure on
ΩKin is that the second term on the right hand side of (108) vanishes, which
is tantamount to the requirement that mf in (109) be zero for all f . Let us
determine the configurations af

i for which this is the case by expanding mf

and rearranging the terms into the following form

mf = (∂2a
f
3 − ∂3a

f
2)δaf

1 + (∂3a
f
1 − ∂1a

f
3)δaf

2 + (∂1a
f
2 − ∂2a

f
1)δaf

3

=
(
(δaf

2)∂3 − (δaf
3)∂2

)
af

1 +
(
(δaf

3)∂1 − (δaf
1)∂3

)
af

2 +
(
(δaf

1)∂2 − (δaf
2)∂1

)
af

3 .(110)

From (110) it is clear that a sufficient condition for mf = 0 is that all except
three matrix elements of af

i be zero, with the nonzero elements arranged such
that no two appear in the same row or column. In other words, we must
have (detaf) 6= 0, which restricts the connection to one of the six forms
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aa
i =




a1
1 0 0
0 a2

2 0
0 0 a3

3


 ,




a1
1 0 0
0 0 a2

3

0 a3
2 0


 ,




0 a2
1 0

a1
2 0 0
0 0 a3

3


 ,




0 a2
1 0

0 0 a3
2

a1
3 0 0


 ,




0 0 a3
1

a1
2 0 0
0 a2

3 0


 ,




0 0 a3
1

0 a2
2 0

a1
3 0 0


 ∈ Γq ,

where Γq defines what we will refer to as the quantizable configurations of
configuration space. Hence for af

i ∈ Γq , we have that mf = 0, and that nf

is given by

nf =
1
2
εijkffgha

g
ja

h
kδa

f
i = (deta)(a−1)i

fδa
f
i . (111)

Recall that Dim(ΩKin) = (3, 6), which constitutes a mismatch in D.O.F.
between momentum and configuration space. A cotangent bundle structure
can be restored to ΩKin by choosing af

i ∈ Γq , which implements the re-
duction Dim(ΩKin) = (3, 6) → (3, 3). Note, while spatial gradients do not
appear in θKin for af

i ∈ Γq that af
i = af

i (x, t) still has two degrees of freedom
per point. Therefore this is the full theory and not minisuperspace.

4.2 Densitized momentum space variables

For illustrative purposes in what follows we will use a diagonal connection
Aa

i = δa
i A

a
a, with no summation over a.16 The diagonal connection in matrix

form along with its magnetic field are given by

Aa
i =



A1

1 0 0
0 A2

2 0
0 0 A3

3


 ; Bi

a =




A2
2A

3
3 −∂3A

2
2 ∂2A

3
3

∂3A
1
1 A3

3A
1
1 −∂1A

3
3

−∂2A
1
1 ∂1A

2
2 A1

1A
2
2


 .

The configuration space contribution to the canonical one form θKin is

Bi
eȦ

a
i =




A2
2A

3
3Ȧ

1
1 −(∂3A

2
2)Ȧ

2
2 (∂2A

3
3)Ȧ

3
3

(∂3A
1
1)Ȧ

1
1 A3

3A
1
1Ȧ

2
2 −(∂1A

3
3)Ȧ

3
3

−(∂2A
1
1)Ȧ

1
1 (∂1A

2
2)Ȧ

2
2 A1

1A
2
2Ȧ

3
3.


 .

Note that the spatial gradients occur in the off-diagonal positions, which
yields a canonical one form free of spatial gradients

16Note that the following procedure and its results can equally be applied to any of the
six configurations Aa

i ∈ Γq.
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θKin =
i

G

∫

Σ

d3xλfB
i
fδA

f
i

=
i

G

∫

Σ
d3x

(
λ1A

2
2A

3
3δA

1
1 + λ2A

3
3A

1
1δA

2
2 + λ3A

1
1A

2
2δA

3
3

)
. (112)

Equation (112) in present form does not have a globally holonomic coordi-
nate on the kinematic configuration space ΓKin. We remedy this by defining
densitized momentum space variables

λ̃1 = λ1(A1
1A

2
2A

3
3); λ̃2 = λ2(A1

1A
2
2A

3
3); λ̃3 = λ3(A1

1A
2
2A

3
3), (113)

where (detA) = A1
1A

2
2A

3
3 6= 0. In the densitized momentum variables (113),

then (112) is given by

θKin =
i

G

∫

Σ
d3x

(
λ̃1

(δA1
1

A1
1

)
+ λ̃2

(δA2
2

A2
2

)
+ λ̃3

(δA3
3

A3
3

))
. (114)

Next, rewrite (114) in the form

θKin =
i

G

∫

Σ
d3x

(
(λ̃1 − λ̃3)

δA1
1

A1
1

+ (λ̃2 − λ̃3)
δA2

2

A2
2

+λ̃3

(δA1
1

A1
1

+
δA2

2

A2
2

+
δA3

3

A3
3

))
(115)

and re-define the momentum space variables on PKin as

λ̃1 − λ̃3 = Π1; λ̃2 − λ̃3 = Π2; λ̃3 = Π. (116)

For the configuration space variables on ΓKin define

δA1
1

A1
1

= δX ;
δA2

2

A2
2

= δY ;
δA1

1

A1
1

+
δA2

2

A2
2

+
δA3

3

A3
3

= δT. (117)

Equation (117) provides holonomic coordinates (X, Y, T ) ∈ ΓKin, given by

X = ln
(A1

1

a0

)
; Y = ln

(A2
2

a0

)
; T = ln

(A1
1A

2
2A

3
3

a3
0

)
, (118)

where a0 is a numerical constant of mass dimension [a0] = 1. The ranges of
the coordinates are −∞ < (|X |, |Y |, |T |) < ∞ corresponding to 0 < |Af

f | <
∞, and the mass dimensions of all variables are
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[Π1] = [Π2] = [Π] = 1; [X ] = [Y ] = [T ] = 0. (119)

In the variables (116) and (118), the canonical one form θKin is given by

θKin =
i

G

∫

Σ
d3x
(
ΠδT + Π1δX + Π2δY

)
. (120)

Note, with the fundamental phase space variables as defined, that (120)
implies a symplectic two form of canonical form

ΩKin =
i

G

∫

Σ

d3x
(
δΠ1 ∧ δX + δΠ2 ∧ δY + δΠ ∧ δT

)
= δθKin. (121)

Consequently, the obstruction to quantization of ΩInst has been eliminated
by choosing densitized variables on ΩKin = (PKin,Γq). Equation (120) pro-
vides canonical pairs, which upon promotion to quantum operators satisfy
the equal time canonical commutation relations

[
T̂ (x, t), Π̂(y, t)

]
=
[
X̂(x, t), Π̂1(y, t)

]
=
[
Ŷ (x, t), Π̂2(y, t)

]
= (~G)δ(3)(x, y)(122)

with all other relations vanishing.
We must also express the Hamiltonian constraint in terms of the phase

space variables of (120). The Hamiltonian constraint reduces on ΩKin to

H = Λ + trΨ−1 = Λ +
1
λ1

+
1
λ2

+
1
λ3

= 0. (123)

Let us put (123) into polynomial form by multiplication by λ1λ2λ3 6= 0.
Using (113), this yields for (detΨ) 6= 0, (detB) 6= 0 and (detA) 6= 0 that

(detA)−2
(
λ̃1λ̃2 + λ̃2λ̃3 + λ̃3λ̃1 + Λ(detA)−1λ̃1λ̃2λ̃3

)
= 0. (124)

Since (detA) 6= 0, then we can omit the pre-factor of (detA)−2. Then upon
using (116) and (118) we have the following Hamiltonian constraint

H = Π(Π + Π1) + (Π + Π1)(Π + Π2) + (Π + Π2)Π

+
( Λ
a3

0

)
e−T Π(Π + Π1)(Π + Π2)

= 3Π2 + 2(Π1 + Π2)Π + Π1Π2 +
( Λ
a3

0

)
e−T Π(Π + Π1)(Π + Π2) = 0 ∀x.(125)

In this thesis we will solve the quantum version of (125) both for vanishing
and for nonvanishing cosmological constant. Note for Λ = 0 that (125) is
invariant under a rescaling of the momenta.
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5 Hilbert space for Λ = 0, discretized

We will now construct a Hilbert space of states satisfying the Hamiltonian
constraint for Λ = 0, starting with a discretized version of space and then
generalizing to the continuum limit. Define by ∆N(Σ), a discretization of
3-space Σ into a lattice of N points, where ν is the size of an elementary
cell given by

ν =
L3

N
, (126)

where [ν] = −3 and where L is some characteristic linear dimension associ-
ated to Σ. Define at each x ∈ ∆N(Σ) a kinematic Hilbert space HKin(x) of
entire analytic functions f in the holomorphic representation, based upon
the resolution of the identity

I =
∫
δµx

∣∣Tx, Xx, Yx

〉〈
Tx, Xx, Yx

∣∣, (127)

where the measure δµx at point x is given by

δµx =
∏

x

δXxδXxδYxδY xexp
[
−
(
|Xx|2 + |Yx|2

)]
. (128)

Then f belongs toHKin if it is square integrable with respect to the measure
(128).17 The inner product of two functionals f and f ′ is given by

〈
fx

∣∣f ′x
〉

=
∫

Γ
f(Xx, Yx)f ′(Xx, Yx)δµx. (129)

Using (127), an arbitrary state
∣∣ψx

〉
can be expanded in the basis states〈

Xx, Yx, Tx

∣∣ to produce a wavefunctionψx ≡ ψ[Xx, Yx, Tx] =
〈
Xx, Yx, Tx

∣∣ψx

〉
.18

The configuration space operators act on ψ by multiplication

T̂xψ(Xy) = δxyTxψ(Xy); X̂xψ(Xy) = δxyXxψ; Ŷxψ(Xy) = δxyYxψ(Xy),(130)

and the momentum space operators by differentiation
17We will use the subscript x to signify that the quantity in question is defined with

respect to the elementary cell containing the point x. So we may view the cell as one copy
of a minisuperspace, where all x in the cell are equivalent.

18Note that
〈
ψx

∣∣ψy

〉
= δxy

∣∣ψx

〉∣∣2 ∀x, y ∈ ∆ν(Σ), where δxy is the Kronecker delta
of x and y (not the Dirac delta function). This signifies that the Hilbert spaces at each
separate point are independent of each other.
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Π̂xψ(Xy) = δxy(~G)ν−1 ∂

∂Tx
ψ(Xy);

(Π̂1)xψ(Xy) = δxy(~G)ν−1 ∂

∂Xx
ψ(Xy); (Π̂2)xψ(Xy) = δxy(~G)ν−1 δ

δYx
ψ(Xy).(131)

Starting from a set of states at the point x labelled by complex quantum
numbers αx, βx and γx

∣∣λ, α, β
〉
x

=
∣∣αx

〉
⊗
∣∣βx

〉
⊗
∣∣λx

〉
, (132)

construct a family of plane wave-type wavefunctions in the holomorphic
representation of the kinematic configuration space (ΓKin)x at x using

〈
Xx, Yx, Tx

∣∣λx, αx, βx

〉
= N(αx, βx)eν(~G)−1(αxXx+βxYx+λxTx), (133)

where N(αx, βx) is a normalization constant which depends on αx and βx.
Let the states (132) be eigenstates of the momentum operators

Π̂x

∣∣λx

〉
= λx

∣∣λx

〉
; (Π̂1)x

∣∣αx

〉
= αx

∣∣αx

〉
; (Π̂2)x

∣∣βx

〉
= βx

∣∣βx

〉
. (134)

Upon quantization of (125) for Λ = 0, the Hamiltonian constraint at x
becomes promoted to an operator Ĥx, given by

Ĥx =
(
Π̂Π̂ +

2
3
(Π̂1 + Π̂2)Π̂ +

1
3
Π̂1Π̂2

)
x
. (135)

Note that the states (133) are also eigenstates of Ĥ, with eigenvalue

ν−2(~G)2
[ ∂2

∂T 2
x

+
2
3

( ∂

∂Xx
+

1
3
∂

∂Yx

) ∂

∂Tx
+

∂2

∂Xx∂Yx

]
ψx

=
(
λ2

x +
2
3
(αx + βx)λx +

1
3
αxβx

)
ψx. (136)

We now search for states ψx ∈ Ker{Ĥx} solving the Hamiltonian con-
straint, by requiring (136) to vanish. This leads to the dispersion relation

λx ≡ γ±x = −1
3

(
αx + βx ±

√
α2

x − αxβx + β2
x

)
∀x ∈ ∆N (Σ). (137)

Defining λx ≡ (λα,β)x, the wavefunctions ψx ∈ Ker{Ĥx} are given by
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∣∣λα,β, α, β
〉
x

= N(α, β)eν(~G)−1(αxXx+βxYx+γ±
x Tx), (138)

which are labelled by two free parameters αx and βx per point x.
The measure (128) guarantees square integrability of the wavefunctions.

Hence for the norm we have that

∣∣∣
∣∣λα,β, α, β

〉
x

∣∣∣
2

= |N |2
∫
δµxe

ν(~G)−1(α∗
xXx+β∗

xY x+λ∗
xTx)eν(~G)−1(αxXx+βxYx+λxTx)

= |N |2eν2(~G)−2(|αx|2+|βx|2)exp
[
2ν(~G)−1Re{λxTx}

]
= 1.(139)

We have not performed an integration over the variable Tx since we will
use Tx as a clock variable on configuration space (ΓKin)x and we will be
interested in the evolution of our states with respect to Tx. For Λ = 0 the
state at x is labelled by two arbitrary complex numbers αx and βx. The
normalization factor is given by

N ≡ N(α, β) = exp
[
ν(~G)−1Re{λxTx}

]
exp
[1
2
ν2(~G)−2

(
|αx|2 + |βx|2

)]
,(140)

which leads to the following normalized state

∣∣λα,β, α, β
〉

= eiν(~G)−1Im{λxTx}e
− 1

2
ν2(~G)−2

(
|αx|2+|βx|2

)
e(~G)−1(αxXx+βxYx).(141)

Note that the dependence of the normalized state (141) on the variable Tx

designated as the configuration space time variable, is just a phase factor.
Hence the overlap of two normalized Λ = 0 states is given by

∣∣〈λα,β, α, β
∣∣λζ,σ, ζ, σ

〉
x

∣∣2 = e−ν2(~G)−2 |αx−ζx|2e−ν2(~G)−2|βx−σx|2 , (142)

whence the phase factor cancels out leaving an overlap characterized com-
pletely by the degrees of freedom excluding Tx. Hence for each pair of
complex numbers αx and βx, there are two states corresponding to Λ = 0.
The labels (αx, βx) define a point on C2, a two dimensional complex Eu-
clidean manifold, for which these states are in two to one correspondence.
If one uses the flat metric to measure distance on C2 as in

d(αx, βx; ζx, σx) = |αx − ζx|2 + |βx − σx|2, (143)

then it is clear that there is always a nontrivial overlap of the form e−d

between any two states.
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5.1 Passing to the continuum limit

We have constructed an overcomplete Hilbert space Hx of states satisfying
the Hamiltonian constraint for Λ = 0 at one point x ∈ ∆N(Σ). The un-
normalized solution at x is

ψx = eν(~G)−1αxXxeν(~G)−1βxYxeν(~G)−1γ±
x Tx . (144)

But we would like for our wavefunctions to have support on all of 3-space Σ
in the continuum limit limN→∞∆N (Σ). We will pass to the continuum limit
in two stages. First, we will associate a wavefunctional Ψ = Ψ(∆N(Σ)) to
the full discretization ∆N by taking the direct product of N copies of (144)
over the entire lattice

Ψ(∆N(Σ)) =
⊗

x

ψx =
N∏

k=1

ψ(xk). (145)

Then we pass to the continuum limit by taking the limit as ν approaches
zero and as N approaches infinity in (126). In the continuum limit, the
direct product of the wavefunctions should become a wavefunctional. For
example we have

Ψ(∆N(Σ)) =
∏

x

eν(~G)−1αxXx = exp
[
(~G)−1

N∑

k=1

να(xk)X(xk)
]
, (146)

which in the continuum limit becomes

limN→∞Ψ(∆N(Σ)) = exp
[
(~G)−1

∫

Σ
d3xα(x)X(x)

]
≡ e(~G)−1α·X . (147)

We see that in the continuum limit, the argument of the exponential ap-
proaches a Riemannian integral.

We must also understand the manner in which partial derivatives in
the functional space at x become promoted to functional derivatives in the
continuum limit. For the functional space at x we have

ν−1 ∂

∂Tx
F (Ty) = δxyF

′(T ) −→ δ

δT (x)
F (T (y)) = δ(3)(x, y)F ′(T ) (148)

where F ′(T ) = ∂F/∂T . Observe that the inverse size ν−1 of the elementary
cell of the discretization enters as part of the definition of the derivative.
Though T is dimensionless, this implies that the functional derivative with
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respect to T is of mass dimension 3. This is consistent with the definition
of the 3-dimensional Dirac delta function of the continuum limit since

∫

Σ
d3xδ(3)(x, y) = 1, (149)

implying that the mass dimension of the three dimensional Dirac delta func-
tion is [δ(3)(x, y)] = 3. Hence, the adaptation of the definition of the func-
tional derivative in terms of its action on (145) is given by

(~G)
δ

δT (x)
Ψ[T ] = λ(x)Ψ[T ] −→ (~G)ν−1 ∂

∂Tx
Ψ = λxΨ. (150)
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6 Continuum Hilbert space structure for Λ = 0

We will now redo the previous steps for the continuum limit for Λ = 0,
applying the construction of [26] to infinite dimensional spaces. Define a
kinematic Hilbert space HKin of entire analytic functionals f [X ] in the
holomorphic representation, based upon the resolution of the identity

I =
∫
Dµ
∣∣T,X, Y

〉〈
T,X, Y

∣∣, (151)

where the measure Dµ is given by

Dµ =
∏

x

δXδXδY δY exp
[
−ν ′−1

∫

Σ
d3x
(
|X(x)|2 + |Y (x)|2

)]
, (152)

with ν ′ a numerical constant of mass dimension [ν ′] = −3 necessary to make
the argument of the exponential dimensionless. Then f belongs to HKin if
it is square integrable with respect to the measure (152). The inner product
of two functionals f [X ] and f ′[X ] is given by

〈
f
∣∣f ′
〉

=
∫

Γ
f [X ]f ′[X ]Dµ (153)

which is an infinite product of integrals in the functional space Γ, one integral
for each spatial point x ∈ Σ.

Using (151), an arbitrary state
∣∣ψ
〉

can be expanded in the basis states〈
X, Y, T

∣∣ to produce a wavefunctional ψ ≡ ψ[X, Y, T ] =
〈
X, Y, T

∣∣ψ
〉
. The

configuration and momentum space operators act respectively on ψ by mul-
tiplication

T̂ (x)ψ[X ] = T (x)ψ[X ]; X̂(x)ψ[X ] = X(x)ψ; Ŷ (x)ψ[X ] = Y (x)ψ[X ],(154)

and by functional differentiation

Π̂(x)ψ[X ] = (~G)
δ

δT (x)
ψ[X ];

Π̂1(x)ψ[X ] = (~G)
δ

δX(x)
ψ[X ]; Π̂2(x)ψ[X ] = (~G)

δ

δY (x)
ψ[X ]. (155)

Starting from a set of states

∣∣λ, α, β
〉

=
∣∣α
〉
⊗
∣∣β
〉
⊗
∣∣λ
〉

(156)
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construct a family of plane wave-type states in the holomorphic representa-
tion of ΓKin using

〈
X, Y, T

∣∣λ, α, β
〉

= N(α, β)e(~G)−1(α·X+β·Y +λ·T ), (157)

where N(α, β) is a normalization constant which depends on α and β. The
dot in (157) signifies a Riemannian integration over 3-space Σ, as in19

α ·X = limν→0;N→∞

N∑

n=1

να(xn)X(x) =
∫

Σ
d3xα(x)X(x), (158)

where ν is the volume of an elementary cell in the discretization ∆N(Σ). In
(157) α, β and λ are at this stage time independent arbitrary functions of
position, with no functional dependence on (X, Y, T ). The states (157) are
eigenstates of the momentum operators

Π̂(x)
∣∣λ
〉

= λ(x)
∣∣λ
〉
; Π̂1(x)

∣∣α
〉

= α(x)
∣∣α
〉
; Π̂2(x)

∣∣β
〉

= β(x)
∣∣β
〉
. (159)

Upon quantization the Hamiltonian constraint becomes promoted to an op-
erator Ĥ , given by

Ĥ = Π̂Π̂ +
2
3
(Π̂1 + Π̂2)Π̂ +

1
3
Π̂1Π̂2. (160)

Note that the states (157) are also eigenstates of Ĥ, with eigenvalue

(~G)2
[ δ2

δT (x)δT (x)
+

2
3

( δ

δX(x)
+

1
3

δ

δY (x)

) δ

δT (x)
+

δ2

δX(x)δY (x)

]
ψ

=
(
λ2 +

2
3
(α+ β)λ+

1
3
αβ
)
ψ = (λ+ γ−)(λ+ γ+)ψ.(161)

Note that the action of the quantum Hamiltonian constraint ψ is free of ul-
traviolet singularities in spite of the multiple functional derivatives acting at
the same point, since the momentum labels (α, β, λ) are functionally inde-
pendent of the configuration variables (X, Y, T ). Therefore a regularization
of (161) is not necessary. However, we will perform a regularization in order
to make the link to the discretization formalism presented earlier.

19Hence, [α] = [β] = [γ] = 1 so that the exponential is dimensionless on account of the
volume factor from integration over Σ, which is of mass dimension −3.
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6.1 Regularization of the Hamiltonian constraint

Let us now examine the effect of regularizing the Hamiltonian constraint.
Let us start from a wavefunction of the form

Ψα,β = e(~G)−1α·Xe(~G)−1β·Yψ[T ], (162)

where the part dependent on T is given by the following semiclassical Ansatz

ψ[T ] = exp
[
(~G)−1

∫

Σ
d3xI(T )

]
, (163)

where for each x ∈ Σ,

I(T (x)) =
∫

Γ
λ(T (x))δT (x). (164)

Equation (164) is the antiderivative (in the functional sense) of the exact
one form λδT ∈

∧1(ΓKin), which is defined at each spatial point x ∈ Σ.
The Hamiltonian constraint is given by

Ĥψ =
(
(~G)

δ

δT (x)
+ γ−(x)

)(
(~G)

δ

δT (x)
+ γ+(x)

)
ψ = 0, (165)

where we have made the definition

γ+ = −1
3

(
α+ β +

√
α2 − αβ + β2

)
;

γ− = −1
3

(
α + β −

√
α2 − αβ + β2

)
(166)

so that the dispersion relation is given by (λ+γ−)(λ+γ+) = 0. To deal with
the double functional derivatives at the same point in (165) let us introduce
a regulating function fε(x, y), such that

∫

Σ
d3xfε(x, y)φ(y) = φ(x) (167)

for all φ(x) ∈ C∞(Σ), where ε is a continuous parameter. Next, perform
a point splitting regularization of (165) in accordance with [27] and [28],
which requires that the factors appearing in an operator product be smeared
individually with smearing functions. Hence the regularized Hamiltonian
constraint is given by20

20Note, since there are only two functional derivatives, that it is necessary only to smear
one of the factors in the operator product.
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Ĥε(x)ψ =
∫

Σ
d3yfε(x, y)

(
(~G)

δ

δT (y)
+ γ−(y)

)(
(~G)

δ

δT (x)
+ γ+(x)

)
ψ.(168)

Using (163) and (164), equation (168) is given by

Ĥε(x)ψ =
∫

Σ
d3yfε(x, y)

(
(~G)

δ

δT (y)
+ γ−(y)

)(
λ(T (x)) + γ+(x)

)
ψ

=
∫

Σ
d3yfε(x, y)

[(
λ(T (x)) + γ+(x)

)(
λ(T (y)) + γ−(y)

)
+ (~G)

(∂λ(T )
∂T

)
x
δ(3)(y, x)

]
ψ.(169)

Performing the integration over the delta function, we obtain

Ĥε(x)ψ =
[(
λ(T (x)) + γ+(x)

)(
λε(T (x)) + γ−ε (x)

)
+ (~Gfε(0))

(∂λ(T )
∂T

)
x

]
ψ = 0,(170)

where we have defined fε(0) = fε(x, x).
We must now remove the regulator by taking the limit ε → 0. Appli-

cation of (167) to the semiclassial term of (170), namely the term of zeroth
order in ~G, yields

limε→0

(
λ(T (x)) + γ+(x)

)(
λε(T (x)) + γ−ε (x)

)
= (λ(T ) + γ+)x(λ(T ) + γ−)x(171)

for each x ∈ Σ, which is finite. However, the term of order (~Gfε(0)) be-
comes singular and blows up as ε→ 0. We would like for our wavefunctions
ψ to identically solve the Hamiltonian constraint and also be regularization-
independent. A necessary and sufficient condition for this is that the coef-
ficient of (~Gfε(0)) vanishes ∀ε, which by definition vanishes faster than fε

can conceivably blow up as ε → 0. This requires that ∂λ/∂T = 0, or that
λ is functionally independent of T . Additionally, the semiclassical term of
(170) must be required to vanish which imposes the condition λ+ γ± = 0.
This is simply the condition that the Hamiltonian constraint be satisfied at
the classical level.

6.2 Construction of the solution space

We now search for states ψ ∈ Ker{Ĥ} solving the constraints, which re-
quires that (170) vanish in the limit of removal of the regulator. This leads
to the dispersion relation

λ ≡ λα,β = −1
3

(
α+ β ±

√
α2 − αβ + β2

)
∀x. (172)
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The wavefunctions ψ ∈ Ker{Ĥ} are given by

∣∣λα,β, α, β
〉

= N(α, β)e(~G)−1(α·X+β·Y +λα,β ·T ), (173)

which are labelled by two free functions of position α and β, which are
directly related to the densitized eigenvalues of Ψ(ae). Additionally, there
is a choice of two Hilbert spaces, corresponding to either of the two roots
(172).

Since the variables are complex, as is the case generally for a spacetime
of Lorentzian signature, we require a Gaussian measure in order to have
square integrable wavefunctions. Hence for the norm we have that

∣∣∣
∣∣λα,β, α, β

〉∣∣∣
2

= |N |2
∫
Dµ(X, Y )e(~G)−1(α∗·X+β∗·Y +λ∗T)e(~G)−1(α·X+β·Y +λ·T )

= |N |2eν′(~G)−2(|α|2+|β|2)exp
[
2(~G)−1

∫

Σ
d3xRe{λT}

]
= 1.(174)

In direct analogy to the discretized version, we have not performed an in-
tegration over the variable T since we will use T as a clock variable on
configuration space ΓKin. For Λ = 0 the state is labelled by two arbitrary
functions (α(x), β(x)) ∈ C0(Σ), and the normalization factor is given by

N ≡ N(α, β) = exp
[
(~G)−1

∫

Σ
d3xRe{λT}

]
exp
[
−ν ′(~G)−2

∫

Σ
d3x
(
|α|2 + |β|2

)]
.(175)

The overlap of two normalized Λ = 0 states is given by

∣∣〈λα,β, α, β
∣∣λζ,σ, ζ, σ

〉∣∣2 = e−ν′(~G)−2|α−ζ|2e−ν′(~G)−2 |β−σ|2 , (176)

whence the λα,β part of the label becomes superflous. For Λ = 0 there is a
two to one correspondence between states and points in C2 ⊗ C2 ⊗ C2 . . . ,
one copy of C2 per point x ∈ Σ, and the overlap is of the form e−d, where d
is given by

d(α, β; ζ, σ) =
∫

Σ
d3x
(∣∣α(x) − ζ(x)

∣∣2 +
∣∣β(x)− σ(x)

∣∣2
)
. (177)

Hence the transition from the discrete into the continuum may be described
as follows. Starting from a discretization ∆N (Σ) of 3-space Σ, construct
Ψ(∆N(Σ)) ∈ Ker{Ĥ} as in (145). Note that this forms a Cauchy sequence
as N increases, such that

limN→∞Ψ(∆N(Σ)) = Ψ(∆∞(Σ)) ∈ Ker{Ĥ}. (178)
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The result is that for vanishing cosmological constant, the solution for the
continuum limit is an element of the same Hilbert space of any discretization
satisfying the Hamiltonian constraint. Therefore for Λ = 0 the Hilbert space
of solutions H is in this sense Cauchy complete.

7 Incorporation of a nonzero cosmological constant

Having constructed an overcomplete Hilbert space of normalizable states for
Λ = 0, we will now generalize the construction to incorporate a nonvanishing

Λ. The effect of a nonzero Λ will be to introduce a length scale l ∼
√

1
Λ

into the theory, which destroys the invariance of the Hamiltonian constraint
under rescaling of momenta enjoyed in the Λ = 0 case. The polynomial form
of the Hamiltonian constraint at the classical level for Λ 6= 0 is given by

O = −re−TQ, (179)

where we have defined the numerically constant length scale r, given by

r =
( Λ

3a3
0

)
(180)

and we have defined

O = Π2 +
2
3
(Π1 + Π2)Π +

1
3
Π1Π2; Q = Π(Π + Π1)(Π + Π2). (181)

The quantum version of the operators O and Q have the following action
on the states (157)

Ô
∣∣λ, α, β

〉
= (λ+ γ−)(λ+ γ+)

∣∣λ, α, β
〉
;

Q̂
∣∣λ, α, β

〉
= λ(λ+ α)(λ+ β)

∣∣λ, α, β
〉
, (182)

with γ± as given in (166). We will now quantize the Hamiltonian constraint
(179) for an operator ordering with e−T sandwiched between O and Q for
illustrative purposes. The quantum Hamiltonian constraint is given by

Ô
∣∣ψ
〉

= −re−T Q̂
∣∣ψ
〉
. (183)

Recall from the previous section that ψ ∈ Ker{Ô} solve the Hamiltonian
constraint for Λ = 0. These states are given by

44



∣∣(λ+)α,β, α, β
〉

= e(~G)−1α·Xe(~G)−1β·Y e(~G)−1γ+ ·T ;
∣∣(λ−)α,β, α, β

〉
= e(~G)−1α·Xe(~G)−1β·Y e(~G)−1γ−·T , (184)

with γ− and γ+ as in (166). We will solve (183) by expansion about the
states (184).21 First, assuming that Ô is invertible, we act on both sides of
(183) with Ô−1 to obtain

∣∣ψ
〉

=
∣∣λα,β, α, β

〉
− rÔ−1e−T Q̂

∣∣ψ
〉
. (185)

Then we re-arrange (185) into the form

(
1 + rÔ−1e−T Q̂

)∣∣ψ
〉

=
∣∣λα,β, α, β

〉
, (186)

where
∣∣λα,β

〉
∈ Ker{Ô} are elements of the Hilbert space corresponding to

Λ = 0. From (186) we can now perform the inversion

∣∣ψ
〉

=
( 1

1 + rÔ−1e−T Q̂

)∣∣λα,β

〉
≡
( 1

1 + q̂

)∣∣λα,β, α, β
〉
. (187)

Equation (187) on the surface appears formal, but it will be justified by the
fact that the operator q̂ has a well-defined action on the Λ = 0 Hilbert space.
We will in fact use the following operator expansion in powers of r

(1 + q̂)−1 =
∞∑

n=1

(−r)n(Ô−1e−T Q̂)n, (188)

to solve the constraint. Note that the zeroth order term of (187) is simpy
given by

∣∣λα,β, α, β
〉
. This approach bears an analogy to the Lippman–

Schwinger method of quantum mechanics applied to perturbation theory,
where Ô plays the role of a kinetic operator on ΓKin with propagator Ô−1,
and Q̂ plays the role of an interaction term.

21Since the Hamiltonian constraint must be satisfied point by point, we apply this
method independently at each point x ∈ Σ, and then to reconstruct the full wavefunction
we take the direct product of the Hilbert spaces at each point. A regularization can be
adopted in which the size of an elementary cell of a lattice is given by ν. We should obtain
the continuum limit by taking ν → 0.
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7.1 Action of the constituent operators

We will encounter an issue commonly encountered in the continuum limit of
quantum field theory, namely that composite operators acting at the same
spatial point produce ultraviolet singularities. The action of the conjugate
momentum Π̂(x) on the state

∣∣λ
〉

is finite without regularization, since

Π̂(x){e(~G)−1λ·T} = (~G)
δ

δT (x)
exp
[
(~G)−1

∫

Σ
d3yλ(y)T (y)

]

=
[∫

Σ
d3yδ(3)(x, y)λ(y)

]
e(~G)−1λ·T = λ(x)e(~G)−1λ·T (189)

on account of the integration of the delta function over 3-space Σ. How-
ever the action of Π̂(x) on e−T (x), which is evaluated at a single point x,
would yield a δ(3)(0) singularity. To deal with this we will use (167). The
regularized action of the functional derivative on e−T is given by

Π̂ε(x){e−T} = (~G)
∫

Σ

d3yfε(x, y)
δ

δT (y)
exp
[
−T (x)

]

= −(~G)
∫

Σ

d3yfε(x, y)δ(3)(x, y)exp
[
−T (x)

]
= −(~G)fε(0)e−T , (190)

where we have defined fε(0) ≡ fε(x, x). Define a new constant µ′ by

µ′ = (~G)fε(0). (191)

Since [fε] = 3, then eigenvalue of (190) has mass dimension of [µ′] = 1, the
same as [λ]. Hence we have the following relation

Π̂(x){e(~G)−1λ·Te−T } → (λ(x)− µ′)e(~G)−1λ·Te−T , (192)

which suggests the identification of e−T with a state

∣∣µ′
〉
≡ exp

[
−(~G)−1

∫

Σ
d3y
( (~G)
V olε(Σ)

)
T (x)

]
= e−T (x), (193)

whereupon the volume factor cancels upon integration. Defining

∣∣λα,β

〉
≡
∣∣α
〉
⊗
∣∣β
〉
e(~G)−1λα,β ·T (194)

then we have
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e−T
∣∣λα,β

〉
=
∣∣λα,β − µ′

〉
. (195)

For Re{λ} < 0 q̂ acts as a raising operator on Λ = 0 states, and for Re{λ} >
0 it acts as a lowering operator.

One may at first balk that in the limit of removal of the regulator,
limε→0fε(0) = ∞, since the increments of µ′ in relation to the densitized
eigenvalues λ, α and β would be infinite. However, recall that the undensi-
tized eigenvalue λ is given by

λ ∼ Π(detA)−1 = Πa0
−3e−T . (196)

Hence equation (195), which corresponds to a decrement of Π in steps of
size µ′, actually corresponds to a decrement in λ of size

∆λ =
(~G)fε(0)

a3
0

. (197)

The mass scale a0 of the connection Aa
i has thus far remained unspecified.

A choice a0 = (fε(0))1/3 sets the scale of incrementation of λf in steps of
l2P l = ~G, where lP l is the Planck length. Hence the action of q̂ on the
states would provide very small, though still discrete, increments of the
(undensitized) CDJ matrix Ψae in comparison.

With this interpretation, we now continue from (183), obtaining

q̂
∣∣λ, α, β

〉
= rÔ−1e−T Q̂

∣∣λ, α, β
〉

= rλ(λ+ α)(λ+ β)Ô−1e−T
∣∣λ, α, β

〉

= rλ(λ+ α)(λ+ β)Ô−1
∣∣λ− µ′, α, β

〉

= rλ
( λ+ α

λ+ γ− − µ′

)( λ+ β

λ+ γ+ − µ′

)∣∣λ− µ′, α, β
〉
. (198)

Repeating this n times, we have

q̂n
∣∣λ, α, β

〉
= rn

∏n−1
k=0(λ− kµ′)(λ+ α− kµ′)(λ+ β − kµ′)∏n

k=1(λ+ γ− − kµ′)(λ+ γ+ − kµ′)
∣∣λ− nµ′, α, β

〉
.(199)

Then the full solution using (188) is given by

∣∣ψα,β

〉
=
∑

n

(−µ′r)n

(∏n−1
k=0

(
λ
µ′ − k

)(
λ+α
µ′ − k

)(
λ+β
µ′ − k

)

∏n
k=1

(
λ+γ−

µ′ − k
)(

λ+γ+

µ′ − k
)

)
∣∣λ− nµ′, α, β

〉

=
∑

n

(−µ′re−T )n

(∏n−1
k=0

(
λ
µ′ − k

)(
λ+α
µ′ − k

)(
λ+β
µ′ − k

)

∏n
k=1

(
λ+γ−

µ′ − k
)(

λ+γ+

µ′ − k
)

)
∣∣λ, α, β

〉
(200)

which has acquired the label of the Λ = 0 basis states.
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7.2 Sufficient condition for convergence of the state

Let us define the dimensionless quantities

a ≡ α

µ′
; b ≡ β

µ′
; c ≡ λ

µ′
, (201)

which expresses the densitized eigenvalues of the CDJ matrix in units of the
regulating factor µ′. Then using the Pochammer symbols (pk), defined by

(p)k =
Γ(p+ k)

Γ(p)
= p(p+ 1) . . .(p+ k − 1), (202)

the solution can be written

∣∣ψα,β

〉
= Pα,β(T )

∣∣λα,β

〉
(203)

where we have defined the hypergeometric series

Pa,b(T ) =
∞∑

n=0

(c)n(a)n(b)n

(c− + 1)n(c+ + 1)n
(−µ′re−T )n. (204)

In order to obtain a sensible wavefunction, we must require (203) to con-
verge. However, the numerator Q of each term exceeds the denominator O
and for large n this goes roughly as n → ∞, yielding a zero radius of con-
vergence. In order to have convergent wavefunctions, a sufficient condition
is that the series (200) be required to terminate at finite order by setting
the numerator to zero. This leads to three possibilities, namely λ = Nµ′,
λ = Nµ′ −α or λ = Nµ′ − β for some integer N , so that the series becomes
truncated at orderN .22 This amounts to a restriction of the allowable states,
which can be seen from the dispersion relation

3λ2 + 2(α+ β)λ+ αβ = 0, (205)

which determines the Λ = 0 states that are being used for determine the
Λ 6= 0 counterparts. The solution to (205) is given by

β = −λ
(3λ+ 2α

2λ+ α

)
; α = −λ

(3λ+ 2β
2λ+ β

)
. (206)

22This N is not to be confused with the N which we used previously to denote the
number of lattice sites in a discretization of 3-space Σ, nor should it be confused with the
lapse function.
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There are three possibilities for each state. For λ = Nµ′ we have

β

µ′
= −N

(3N + 2α
µ′

2N + α
µ′

)
, (207)

for λ = Nµ′ − α we have

β

µ′
= −

(
N − α

µ′

)(3N − α
µ′

2N − α
µ′

)
, (208)

and for λ = Nµ′ − β we have

α

µ′
= −

(
N − β

µ′

)(3N − β
µ′

2N − β
µ′

)
. (209)

The result is that the Λ 6= 0 states are labelled by one continous index
α = α(x) and one discrete index n ∈ Z at each point, which are arbitrary.
Recall for Λ = 0 that the state labels define a two dimensional complex
manifold (α, β) ∈ C2 per point. The effect of a nonzero Λ is to cause a
reduction C2 → C1 ⊗ T 1, where C1 is the complex plane and T 1 is the one-
dimensional torus with spacing l2P l, thus implying a quantization according
to the three cases analyzed above. One may relabel the states using the
index n as

∣∣ψn;α

〉
, which corresponds to an infinite tower of states

ψ = Pn,α[T (x)]e(~G)−1α·X(x)e(~G)−1βα;n·Y (x)e(~G)−1λα;n·T (x), (210)

which produces a Hilbert space of normalizable states at each point x. To
form a Hilbert space with support on 3-space we must take the direct product
of (210) over all points x ∈ Σ,

Ψ = P n,α[T ]e(~G)−1α·Xe(~G)−1β·Y . (211)

However, since the argument of the exponentials in (211) is directly propor-
tional to µ′, which blows up in the continuum limit, then such a wavefunction
can be used only for discretized 3-space.23 This brings us to the improved
momentum sequence of the next section.

While the reduction of the state manifold C2 → C1 ⊗ T 1 has produced
convergent quantum states, it would be unsatisfactory if the presence of a
nonzero Λ were to cause a reduction in the available states. This means that
there must be additional states which the above procedure has missed.

23Hence, while we obtain a convergent hypergeometric solution, the state is not finite
in the sense of [31] on account of the field-theoretical infinities induced upon removal of
the regulator.
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8 Expansion in inverse Λ

Given that the expansion in powers of Λ has led to restrictions required for
convergence of solutions to the Hamiltonian constraint, let us instead try an
expansion in inverse powers of Λ. Redefine the operators

Ô = Π̂(Π̂ + Π̂1)(Π̂ + Π̂2); Q̂ = Π̂2 +
2
3
(Π̂1 + Π̂2)Π̂ +

1
3
Π̂1Π̂2, (212)

so that the operators in (182) have switched roles. Also redefine the constant
r such that

r =
(3a3

0

Λ

)
. (213)

For an operator ordering of momenta to the left of the coordinates, the
quantum Hamiltonian constraint is now given by

Ô
∣∣ψ
〉

= −rQ̂eT
∣∣ψ
〉
. (214)

The action of (212) on the Λ = 0 basis states is given by

Ô
∣∣λ, α, β

〉
= λ(λ+ α)(λ+ β)

∣∣λ, α, β
〉
;

Q̂
∣∣λ, α, β

〉
= (λ+ γ−)(λ+ γ+)

∣∣λ, α, β
〉

=
(
λ2 +

2
3
(α+ β) +

1
3
αβ
)∣∣λ, α, β

〉
,(215)

with γ− and γ+ given by (166). From (212) one sees that Ô annihlates states
with λ = 0, λ = −α and λ = −β, namely states with (detΨ) = 0. Therefore

∣∣λα,β, α, β
〉

=
{∣∣0, α, β

〉
,
∣∣−α, α, β

〉
,
∣∣−β, α, β

〉}
∈ Ker{Ô} (216)

are the desired states about which we will perform the Lippman–Schwinger
type expansion. These states are given in the Schrödinger representation by

∣∣0, α, β
〉

= e(~G)−1α·Xe(~G)−1β·Y ;
∣∣−α, α, β

〉
= e(~G)−1α·(X−T )e(~G)−1β·Y ;

∣∣−β, α, β
〉

= e(~G)−1α·Xe(~G)−1β·(Y −T ). (217)

The physical interpretations are as follows: If we view T as a time variable
on configuration space ΓKin, then

∣∣0, α, β
〉

is a timeless state, and
∣∣−α, α, β

〉

and
∣∣−β, α, β

〉
correspond to plane waves travelling at unit speed in respec-

tively the X and in the Y directions for each x ∈ Σ. In other words, we
have chosen to perform the expansion about states of degenerate Ψae which
mimic the motion of a free particle on a two dimensional configuration space
per point. We will now compute the analogue of (188) for expansion about
(217).
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8.1 Solution with momenta to the left

Let us use an operator ordering with the momenta to the left to the coor-
dinates upon quantization. The analogue of the steps leading from (185) to
(188) yields

∣∣ψα,β

〉
=
( 1

1 + q̂

)∣∣λα,β

〉
=
(
1 − q̂ + q̂2 − q̂3 + . . .

)∣∣λα,β

〉
, (218)

where

q̂ = rÔ−1Q̂eT . (219)

The action of q̂ on the state (157) is given by

q̂
∣∣α, β, λ

〉
= rÔ−1Q̂eT

∣∣λ, α, β
〉

= rÔ−1Q̂
∣∣λ+ µ′, α, β

〉

= r
(λ+ γ− + µ′)(λ+ γ+ + µ′)

(λ+ µ′)(λ+ α + µ′)(λ+ β + µ′)

∣∣λ+ µ′, α, β
〉
. (220)

Repeating (220) n times, we obtain the nth term of the series

q̂n
∣∣λ, α, β

〉
=
( r
µ′

)nn!
n!

∏n
k=1

(
λ+γ−

µ′ + k
)(

λ+γ+

µ′ + k
)

∏n
k=1

(
λ
µ′ + k

)(
λ+α
µ′ + k

)(
λ+β
µ′ + k

)∣∣λ+ nµ′, α, β
〉
,(221)

where we have divided the numerator and the denominator of each term by
a common factor of µ′. Bringing out the exponential factor of eT from the
state, we have

q̂n
∣∣λ, α, β

〉
=

1
n!

(reT
µ′

)n (1)n

(
λ+γ−

µ′ + 1
)

n

(
λ+γ+

µ′ + 1
)

(
λ
µ′ + 1

)
n

(
λ+α
µ′ + 1

)
n

(
λ+β
µ′ + 1

)
n

∣∣λ, α, β
〉
. (222)

Defining the dimensionless variable z, given by

z ≡ reT

µ′
=

3a3
0e

T

~GΛfε(0)
=

3(detA)
~GΛfε(0)

, (223)

then the full solution is given by
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∣∣ψα,β,λ

〉
=
∑

n

(−q̂)n
∣∣λ, α, β

〉

=
∞∑

n=0

(−z)n

n!

(1)n

(
λ+γ−

µ′ + 1
)

n

(
λ+γ+

µ′ + 1
)

n(
λ
µ′ + 1

)
n

(
λ+α
µ′ + 1

)
n

(
λ+β
µ′ + 1

)
n

∣∣λ, α, β
〉

(224)

Equation (224) can be written as a hypergeometric function

3F3

(
1,
λ+ γ−

µ′
+ 1,

λ+ γ+

µ′
+ 1;

λ

µ′
+ 1,

λ+ α

µ′
+ 1,

λ+ β

µ′
+ 1; z

)∣∣λ, α, β
〉
, .(225)

which solves the hypergeometric differential equation

z
d

dz

(
z
d

dz
+
λ

µ′

)(
z
d

dz
+
λ+ α

µ′

)(
z
d

dz
+
λ+ β

µ′

)
ψ(z)

= z
(
z
d

dz
+ 1
)(
z
d

dz
+
λ+ γ−

µ′
+ 1
)(
z
d

dz
+
λ+ γ+

µ′
+ 1
)
ψ(z). (226)

For α(x) = β(x) = 0 ∀x, (225) reduces to

3F3

(
1, 1, 1; 1, 1; z

)
= ez = ez(x) (227)

for each x. To obtain the Hilbert space we must form the direct product of
the solution ∀x ∈ ∆N(Σ), and then take the continuum limit

Ψ0,0 =
⊗

x

ez(x) = limε→0

∏

n

exp
[
−3(~GΛfε(0))−1a3

0e
T (xn)

]
. (228)

We recognize the reciprocal of the regulating function fε(0) as ν, the size
of an elementary lattice cell in the discretization ∆N (Σ). In this sense the
argument of the exponential in (228) in the limit of removal of the regulator
approaches the Riemannian integral

exp
[
−3(~GΛ)−1limε→0

∑
ν(detA(xn))

]
= exp

[
−3(~GΛ)−1

∫

Σ
d3xlCS

]
= ψKod,(229)

where we have used (detA) = a3
0e

T . We have obtained the proper limit for
α = β = 0, namely the Kodama state evaluated on the diagonal connection
used for quantization.24

24This corresponds to spacetimes of Petrov Type O, where all three eigenvalues of the
CDJ matrix are equal.
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8.2 Verification of the Hamiltonian constraint

The previous exercise has demonstrated two things. First, the correct op-
erator ordering must have the momenta to the left of the coordinates, in
order to produce the Kodama state ψKod which is a known solution to the
Hamiltonian constraint for α = β = 0. Secondly, we have proven that

limN→∞ψKod(∆N(Σ)) = ψKod(∆∞(Σ)) ∈ Ker{Ĥ}. (230)

This is another way of saying that the solution space is Cauchy complete with
respect to ψKod, since its continuum limit is part of the same solution space
each discretized version identically annihilated by the same Hamiltonian
constraint. Having obtained the ψKod in the proper limit, we may now
attempt to construct the solution in the general case (α, β) 6= (0, 0). But
first, note that the operator ordering of (226) has z to the left on the right
hand side, whereas the ordering which has produced ψKod must have z to
the right. So we must verify the consistency with (226) with the correct
operator ordering. Using the identity

z
(
z
d

dz
+ 1
)
F = z

d

dz
(zF ), (231)

we can commute the factor of z to the right, subtracting 1 for each differential
operator traversed. The result is that (226) is the same as

z
d

dz

(
z
d

dz
+
λ

µ′

)(
z
d

dz
+
λ+ α

µ′

)(
z
d

dz
+
λ+ β

µ′

)
ψ(z)

= z
d

dz

(
z
d

dz
+
λ+ γ−
µ′

)(
z
d

dz
+
λ+ γ+

µ′

)
zψ(z). (232)

The common operator z d
dz in front can be dropped, yielding

(
z
d

dz
+
λ

µ′

)(
z
d

dz
+
λ+ α

µ′

)(
z
d

dz
+
λ+ β

µ′

)
ψ(z)

=
(
z
d

dz
+
λ+ γ−
µ′

)(
z
d

dz
+
λ+ γ+

µ′

)
zψ(z). (233)

The quantum Hamiltonian constraint for an operator ordering of momenta
to the left of the coordinates is given in the Schrödinger representation by

µ′
δ

δT

(
µ′

δ

δT
+ α

)(
µ′

δ

δT
+ β

)
ψ = −

(3a3
0

Λ

)(
µ′

δ

δT
+ γ−

)(
µ′

δ

δT
+ γ+

)
eTψ,(234)
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where µ′ will be fixed by consistency condition. Dividing (234) by µ′3, we
obtain

δ

δT

( δ

δT
+
α

µ′

)( δ

δT
+
β

µ′

)
ψ = −

( 3a3
0

µ′Λ

)( δ

δT
+
γ−
µ′

)( δ

δT
+
γ+

µ′

)
eTψ. (235)

Upon comparison of (235) with (233) we can make the identification µ′ =
~Gfε(0), since this is precisely the regularization term induced by the action
of the functional derivative on eT . The general solution is given by

ψα,β(z) = 2F2

(γ−
µ′

+ 1,
γ+

µ′
+ 1;

α

µ′
,
β

µ′
; z(x)

)
Φα,β(X, Y ) (236)

where we have identified Φα,β with the Λ = 0 basis states

Φα,β = e(~G)−1α·Xe(~G)−1β·Y , (237)

with the T dependence given by z = eT .

8.3 Hypergeometric functional formalism

We will put the Hamiltonian constraint into standard notation, for ease of
identification with known functions. Define the dimensionless quantities

a =
α

µ′
; b =

β

µ′
; c± =

γ±
µ′
. (238)

The Hamiltonian constraint for the appropriate operator ordering necessary
to produce ψKod in the correct limit is given by25

z
d

dz

(
z
d

dz
+ a
)(
z
d

dz
+ b
)
ψ(z) =

(
z
d

dz
+ c+

)(
z
d

dz
+ c−

)
zψ(z). (239)

To put (239) into the form of the hypergeometric differential equation, we
commute z to the left on the right hand side of (239), yielding

z
d

dz

(
z
d

dz
+ a
)(
z
d

dz
+ b
)
ψ(z) = z

(
z
d

dz
+ c+ + 1

)(
z
d

dz
+ c− + 1

)
ψ(z).(240)

The quantum wavefunction satisying the constraint is given by
25We have replaced the action of the operators on the part of the wavefunctional that

depends on X and Y with their eigenvalues.
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∣∣ψa,b(x)
〉

= Pa,b(z(x))
∣∣a, b

〉
x
, (241)

where the subscript x labels the point at which the solution is evaluated. The
pre-factor Pa,b(z) is also evaluated at the same point x and is the solution
to (240), given by

Pa,b(z) = 2F2

(
c− + 1, c+ + 1; a, b; z

)
. (242)

The full state is then a direct product over all points in Σ

∣∣Ψa,b

〉
=
⊗

x

∣∣ψa,b(x)
〉
. (243)

The Kodama state ψKod corresponds to the choice a = b = 0, whence the
infinite product of hypergeometric functionals is measurable.

Using the hypergeometric formalism, we can also write a general solution
for the states at the opposite extreme which in an earlier section we required
to terminate at finite order in the series. Starting from (240), which is the
hypergeometric form of the Hamiltonian constraint, divide by z to obtain

1
z

(
z
d

dz

)(
z
d

dz
+ a
)(
z
d

dz
+ b
)
ψ(z) =

(
z
d

dz
+ c+ + 1

)(
z
d

dz
+ c− + 1

)
ψ(z).(244)

Now make the following transformation

u =
1
z
; z

d

dz
= −u d

du
. (245)

Inserting (245) into (244), we obtain

−u
(
u
d

du

)(
u
d

du
− a
)(
u
d

du
− b
)
Φ(u) =

(
u
d

du
− c− − 1

)(
u
d

du
− c+ − 1

)
Φ(u),(246)

where Φ(u) = ψ(1/z). Now act on (238) with u(d/du)

u
d

du

(
u
d

du
− c− − 1

)(
u
d

du
− c+ − 1

)
Φ(u)

= −
(
u
d

du

)
u
(
u
d

du

)(
u
d

du
− a
)(
u
d

du
− b
)
Φ(u), (247)

then commute u to the left to put into the standard form

55



u
d

du

(
u
d

du
− c− − 1

)(
u
d

du
− c+ − 1

)
Φ(u)

= −u
(
u
d

du

)
u
(
u
d

du
+ 1
)(
u
d

du
− a
)(
u
d

du
− b
)
Φ(u). (248)

The solution to (248) is given by

Φa,b(u) = 4F2

(
0, 1,−a,−b;−c−,−c+; u

)
. (249)

This converges only when a or b is an integer whence the series terminates
as in (211). This yields an infinite tower of states obtained by replacing Φa,b

with ψa,b in (243).

8.4 States for α = β 6= 0

It is an easy matter to verify the case where two eigenvalues are equal and
nonvanishing, which corresponds to one degree of freedom. For Λ = 0 the
dispersion relation (172) still holds, quoted here for completeness

λ ≡ λα,β = −1
3

(
α+ β ±

√
α2 − αβ + β2

)
∀x. (250)

But we must now restrict (250) to the case α = β, which yields the solution
λα,β ≡ λα, given by

λα,α = (−α,−1
2
α). (251)

in the case Λ = 0. This corresponds to states of the form

Φα,β = Φα,α = e(~G)−1α·(X−T ); e(~G)−1α·(X− 1
3
T )eλα,α·T , (252)

which correspond to plane waves travelling at speeds 1 and 1
3 in the X

direction of a one-dimensional configuration space per point. To obtain the
Λ 6= 0 case, we may perform an expansion about (252) using the momentum
ordering to the left. The classical Hamiltonian constraint for Λ 6= 0 and
α = β 6= 0 is given by

(3Π + α)(Π + α)reT = Π(Π + α)2. (253)

We can cancel the common factor Π+α to reduce the order of the equation
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(3Π + α)reT = Π(Π + α). (254)

Upon making the identification z = reT , with r = − 3
a3
0Λ

, this yields a
quantum version of

(
z
d

dz
+
a

3

)
zψ(z) = z

d

dz

(
z
d

dz
+
a

3

)
ψ(z). (255)

Commuting the factor of z into the standard form of a hypergeometric equa-
tion

z
(
z
d

dz
+
a

3
+ 1
)
ψ(z) = z

d

dz

(
z
d

dz
+
a

3

)
ψ(z), (256)

we see that the solution is given by

ψ = 1F2

(a
3

+ 1; 0,
a

3
; z
)
. (257)

This should correspond to Type D spacetimes, with two equal eigenvalues
of the CDJ matrix.
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9 Normalizability of the Kodama state

We have constructed a a Hilbert space of states solving the Hamiltonian
constraint of GR, which provides a possible resolution to the issue of nor-
malizability of the Kodama state raised in [4] and [5]. The Kodama state is
given by

ψKod[A] = e−3(~GΛ)−1ICS [A], (258)

where ICS [A] is the Chern–Simons functional of the Ashtekar connection,
given in two form notation by

ICS =
∫

Σ
A ∧ dA+

2
3
A ∧ A ∧A. (259)

For DeSitter spacetime the Petrov classification is type O, which corresponds
to three equal (undensitized) eigenvalues of Ψae given by

λ1 = λ2 = λ3 = − 3
Λ
. (260)

In this case α = β = 0 and one is reduced to a single degree of freedom on
per point configuration space Γ, namely T (x).26 Hence, (258) is given by

(ψKod)Inst = exp
[
−3a3

0(~GΛ)−1

∫

Σ
d3xeT (x)

]
= ψKod[T ]. (261)

The Chern–Simons functional depends completely on T , which plays the
role of a time variable on configuration space ΓKin. The proposed resolution
to [4] then simply is that one does not normalize a wavefunction in time.
However, one does normalize the wavefunction with respect to the physi-
cal degrees of freedom which are orthogonal to the time direction, namely
(X, Y ), and we have done so using a Gaussian measure for the states in the
holomorphic representation.

9.1 Doublecheck of the procedure

We will now doublecheck the consistency of our procedure for passing from
the the discretized quantum theory to the continuum limit, starting with

26The cosmological constant Λ fixes the characteristic length scale of the universe at
l ∼ Λ−1/2, which is large compared to the discreted Planck length sized scale of quantized
increments of the undensitized Ψae.
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the Kodama state. Start from the functional differential equation defining
the Hamiltonian constraint in the case α = β = 0

Λ
3a3

0

(~G)3
δ3

δT 3
ψ = −(~G)

δ2

δT 2
eTψ. (262)

Factoring out a pair of functional derivatives we have

(~G)2
δ2

δT 2

((~GΛ
3a3

0

) δ

δT
+ eT

)
ψ = 0. (263)

We require the argument of the wavefunctional ψ to have support on 3-
space, therefore it must be expressible as an integral over 3-space Σ. Hence

ψ[T ] = eI[T ], (264)

where the integral is defined by the limit of a Riemann sum for an discretiza-
tion of lattice size ν

I [T ] = limν→0

∑

n

νL(xn) =
∫

Σ
d3xL(x). (265)

Equation (263) then reduces to the term in brackets, which is given by

(~GΛ
3a3

0

) δI

δT (x)
+ eT (x) = 0. (266)

The usual field-theoretical method to integrate (266) would be to perform
a contraction over all of 3-space

(~GΛ
3a3

0

)∫

Σ
d3x

δI

δT (x)
δT (x) = −

∫

Σ
d3xeT (x)δT (x). (267)

Since the left hand side is just the functional variation of I , this leads to

δI = −3a3
0(~GΛ)−1

∫

Σ

d3xδ(eT (x)). (268)

Since both sides of (268) are exact variations in the functional space of fields,
we may use the usual rules of antidifferentiation to obtain27

27This is in the functional sense, where the antidifferentiation is carried out indepen-
dently at each spatial point x ∈ Σ. Note from [31] that functional variation in Γ must
commute with spatial variation in Σ.
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I = −3a3
0(~GΛ)−1

∫

Σ
d3xeT (x). (269)

We will now derive this result as the continuum limit of discretization
without recourse to field theory, starting with the discretized version of (268)

δIx = −3a3
0(~GΛ)−1eTxδTx ∀x, (270)

as follows. Since both sides of (270) are exact functional variations, we
should be able to integrate it with respect to T at each point x of the
discretization

Ix =
∫

Γ
δIx = −3a3

0(~GΛ)−1

∫

Γ
eTxδTx, (271)

which brings us to the question of how to perform
∫
δTx at a fixed spa-

tial point. The functional derivative in the continuum limit of field theory
involves the following action at a single point upon point-splitting regular-
ization

( δ

δT (x)
eT (x)

)
ε
=
∫

Σ
d3xfε(x, y)

δ

δT (y)
eT (x) = fε(0)eT (x). (272)

The analogue for the discretized case is exemplified by (148), (149) and (150)

δ

δTx
eTx ≡ ν−1 ∂

∂Tx
eTx =

1
ν
eTx , (273)

whence one identifies the regularization function fε(0) = 1
ν with the inverse

of the size of the elementary cell of the discretization ∆N (Σ). Since the
inverse operation of differentiation is antidifferentiation, then the functional
integral for the discretized case should be given by

∫
δTxe

Tx = νeTx . (274)

Therefore the regularized functional integral, which plays the role of an
antiderivative on functional space, is given in the continuum limit by

∫

Γ
eT (x)δT (x) =

1
fε(0)

eT (x) ≡ νeT (x) (275)

whence the volume ν of the elementary lattice cell comes into play. The
prescription for obtaining the wavefunctional is to take the direct product
of the exponential of (275) over all points, which produces the Kodama state.
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9.2 Continuum limit in the general case α, β 6= 0

We will now attempt to obtain the continuum limit of the T -dependent
part of the wavefunctional for algebraically general spacetimes. Utilizing
the previous discretization, assign a value to each point of z(xn) = νT (xn)
for each n. The hypergeometric part of the solution is of the form

Φ(z) = 1 + Az +Bz2 + · · · = elnΦ(z). (276)

It will suffice to demonstrate this result to second order in ν, and the re-
maining orders automatically follow. Now expand the logarithm

ln
(
1 +Az + Bz2 + . . .

)
= Az +

(
B − A2

2
)
z2 + . . . . (277)

Inserting (277) into the right hand side of (276), and taking a product over
all n, we have

N∏

n=1

eνA(xn)T (xn)eν
2(B(xn)−A2(xn)/2)T 2(x) . . . (278)

which is the exponential of the sum

exp
[ N∑

n=1

νA(xn)T (xn)
]
exp
[ N∑

n=1

ν2
(
B(xn) − 1

2
A2(xn)

)
T 2(xn)

]
· · · = P1P2 . . . .(279)

Recalling that ν is the fundamental volume per lattice site of the discretiza-
tion, we see that the first term of (278) approaches a Riemannian integral

limν→0;N→∞P1 = limN→∞;ν→0

N∑

n=1

νA(xn)T (xn) =
∫

Σ
d3xA(x)T (x). (280)

We have assumed that the space of lattice points is measurable in writing
(280), since it has been shown to be measurable in the case of the Kodama
state ψKod. For the second term of (279) we have

limν→0;N→∞P2 = exp
[
ν

∫

Σ
d3x
(
B(x) − 1

2
A2(x)

)
T 2(x)

]
→ 1. (281)

Assuming that the integral is convergent, then ν can be set to zero, which
causes this term to vanish. The same effect occurs for higher orders of ν. In
the continuum limit, the T dependent part of the state would be given by
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Ψ[T ] = exp
[
−6(~GΛ)−1

∫

Σ
d3xa3

0e
T (c+ c− + 1)(c+ c+ + 1)

(c+ 1)(c+ a+ 1)(c+ b+ 1)

]
. (282)

We will assume that (282) is not annihilated by the Hamiltonian constraint
in the continuum limit, since the exact solution for all discretizations requires
all the higher order terms of (279). Hence, while ψα,β(∆N(Σ)) ∈ Ker{Ĥ},
we have that

limN→∞ψα,β(∆N(Σ)) = Ψα,β(∆∞(Σ)) 6⊂ Ker{Ĥ} (283)

unless α = β = 0. The result is that for Λ = 0 the solution space to the
Hamiltonian constraint is Cauchy complete, but for Λ 6= 0 it is not Cauchy
complete except for the Kodama state. One obtains an exact solution by
hypergeometric series for any discretization ∆N (Σ) ∀N < ∞. Equation
(282) is not a solution in the continuum limit, but all solutions in the dis-
cretized case get arbitrarily close to (282) as N → ∞. This is analogous to
approximating a real number using rational numbers, whence the latter set
is dense in the former. We may complete the Hilbert space by enlarging it
to include the states (282), which with the exception of ψKod is excluded
from the space of solutions.28

28Hence while not a solution to the Hamiltonian constraint, (282) can be used as a good
approximation for the solution provided that Σ remains discrete. Then the only question
is the appropriate length scale for the discretization, which can be chosen to be the Planck
length.
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10 Hamiltonian dynamics on ΩKin

Having quantized and found a Hilbert space for our theory the next natural
step should be to verify the semiclassical limit, which entails computing the
Hamiltonian dynamics on ΩKin. The starting action is given by

IKin =
i

G

∫
dt

∫

Σ

d3x
(
Π1Ẋ + Π2Ẏ + ΠṪ

)
−H [N ], (284)

which is a totally constrained system with Hamiltonian H [N ] given by

H [N ] = −ia3/2
0

∫

Σ
d3xNUe−T/2

√
Π(Π + Π1)(Π + Π2)

[( Λ
a3

0

)
+ eT

( 1
Π

+
1

Π + Π1
+

1
Π + Π2

)]
. (285)

We have defined U ≡ (detA)−1(detB)1/2 such that (detB) = (detA)2 + r
where the remainder r, which contains all spatial gradients, is given by

r = (∂2A
3
3)(∂3A

1
1)(∂1A

2
2) − (∂3A

2
2)(∂1A

3
3)(∂2A

1
1)

+
1
4

[
∂1(A2

2)
2∂1(A3

3)
2 + ∂2(A3

3)
2∂2(A1

1)
2 + ∂3(A1

1)
2∂3(A2

2)
2
]
. (286)

In equation (286) one must make the substitutions A1
1 = a0e

X , A2
2 = a0e

Y ,
and A3

3 = a0e
T−X−Y . Equation (284) will form the starting point for ap-

plication of the Dirac procedure for constrained systems [10]. From the
canonical structure one can read off the following Poisson brackets between
phase space functions f and g

{f, g} =
∫

Σ

d3x
[ δf
δΠ1

δg

δX
− δg

δΠ1

δf

δX
+

δf

δΠ2

δg

δY
− δg

δΠ2

δf

δY
+
δf

δΠ
δg

δT
− δg

δΠ
δf

δT

]
.(287)

Since there is no occurence of Ṅ in (284) then ΠN , the momentum conjugate
to N , must vanish which yields the primary constraint

ΠN =
δIKin

δṄ
= 0. (288)

The preservation of ΠN in time yields the secondary constraint

Π̇N =
δIKin

δN
= H = 0. (289)
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Hence the equation of motion for the lapse function N implies29

Φ =
( Λ
a3

0

)
+ eT

( 1
Π

+
1

Π + Π1
+

1
Π + Π2

)
= 0, (290)

where we have omitted the pre-factors from (285), which are nonvanishing
due to the nondegeneracy condition.

We must also check for the preservation of (290) in time, which entails the
computation of the smeared algebra of the Hamiltonian constraint. Using
the Poisson brackets (287), we have (see Appendix B for derivation)

{H [M ], H [N ]} =
∫

Σ
d3xqi

(
M∂iN −N∂iM

)
H, (291)

where qi = qi(ΩKin) are functions, whose specific form is not important. The
result of (291) is that two Hamiltonian constraints Poisson-commute into a
Hamiltonian constraint. This means that (i) the algebra on ΩKin is Dirac
consistent.30 (ii) This is unlike the case for ΩAsh, where two Hamiltonian
constraints Poisson-commute into a diffeomorphism constraint. Hence, it
is not possible on ΩAsh to obtain a Dirac-consistent reduced phase space
in the full theory of dynamics preserved under the Hamiltonian constraint.
(iii) Lastly, the phase space ΩKin is preserved under Hamiltonian evolution,
and is therefore truly decoupled from the Gauss’ law constraint.

Having dealt with the constraint, we are now ready to compute the
Hamilton’s equations of motion on ΩKin. Note that we can exploit the
vanishing of (290) in computing the equations of motion for the remaining
variables. For the configuration space variables we have

Ẋ =
δH [N ]
δΠ1

= ia
3/2
0 NUeT/2

√
Π(Π + Π1)(Π + Π2)

( 1
Π + Π1

)2
;

Ẏ =
δH [N ]
δΠ2

= ia
3/2
0 NUeT/2

√
Π(Π + Π1)(Π + Π2)

( 1
Π + Π2

)2
;

Ṫ =
δH [N ]
δΠ

= ia
3/2
0 NUeT/2

√
Π(Π + Π1)(Π + Π2)

[( 1
Π

)2
+
( 1

Π + Π1

)2
+
( 1

Π + Π2

)2]
.(292)

For the momentum space variables we have

Π̇1 = −δH [N ]
δX

= 0; Π̇2 =
δH [N ]
δY

= 0;

Π̇ = −δH [N ]
δT

= −iΛa3/2
0 NUe−T/2

√
Π(Π + Π1)(Π + Π2), (293)

29We will regard (290) as the Hamiltonian constraint H, since Φ is directly proportional
to H up to nonvanishing pre-factors.

30Also in Appendix B we have computed the algebra of the quantum Hamiltonian
constraint, demonstrating off-shell closure in direct analogy to its classical counterpart.
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where we have again used (290) to obtain the second line of (293), and the
vanishing spatial gradients of (290) to obtain the first line. In the integration
of the equations of motion there are two cases Λ = 0 and Λ 6= 0, which we
will consider separately.

10.1 Case (i): Vanishing cosmological constant

For Λ = 0 the bottom line of (293) vanishes as well as the top line and we
have Π̇1 = Π̇2 = Π̇ = 0, which implies that

Π1(x, t) = α(x); Π2(x, t) = β(x); Π(x, t) = λα.β(x) (294)

which are completely defined by two arbitrary time-independent functions
of position α(x) and β(x). Hence for Λ = 0 equation (290) implies that

Π = λα,β(x) =
1
3

[
−(α + β) ±

√
α2 − αβ + β2

]
. (295)

It will be convenient to define the following quantities

pα,β(Π) =

(
1

Π+α

)2

(
1
Π

)2
+
(

1
Π+α

)2
+
(

1
Π+β

)2 ; qα,β(Π) =

(
1

Π+β

)2

(
1
Π

)2
+
(

1
Π+α

)2
+
(

1
Π+β

)2 ;

ηα,β(Π) =
√

Π(Π + α)(Π + β)
[( 1

Π

)2
+
( 1

Π + α

)2
+
( 1

Π + β

)2]
.(296)

Then for Λ = 0, we have that pα,β(Π), qα,β(Π) and ηα,β(Π) depend only
on position and are independent of time. It then make sense to adopt the
following notation

pα,β ≡ pα,β(λα,β); qα,β ≡ qα,β(λα,β); ηα,β ≡ ηα,β(λα,β). (297)

Then the first and second lines of (292) read Ẋ = pα,βṪ and Ẏ = qα,βṪ ,
which integrate directly to

X(x, t) = X(x, 0) + pα,β(x)
(
T (x, t)− T (x, 0)

)
;

Y (x, t) = Y (x, 0) + qα,β(x)
(
T (x, t)− T (x, 0)

)
. (298)

One sees that X and Y at each spatial point evolve linearly with respect
to T , seen as a time variable on configuration space. To obtain the explicit
evolution of T we must return to the third line of (292), which for Λ = 0
reduces to
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e−T/2Ṫ = −2
d

dt
e−T/2 = ia

3/2
0 NUηα,β. (299)

Equation (299) integrates to

T (x, t) = ln
(
exp
[
−1

2
T (x, 0)

]
− ia

3/2
0

2
ηα,β(x)ρ(x, t;T (x, t))

)−2
, (300)

where we have defined

ρ(x, t) =
∫ t

0
N(x, t′)U [T (x, t′)]dt′. (301)

We will outline the solution to (300) to encapsulate the more general Λ 6= 0
case. Note that the Λ = 0 solution determines a Hamilton–Jacobi functional

δSHJ =
∫

Σ
d3x
[
Π1(x, t)δX(x, t)+ Π2(x, t)δY (x, t) + Π(x, t)δT (x, t)

]
.(302)

The variations δ occur in the functional space of fields, which commutes
with integration on spatial hypersurfaces. Therefore one can use the usual
rules of antidifferentiation to obtain

SΛ=0 =
∫

Σ
d3x
[
α(x)X(x, t)+ β(x)Y (x, t) + λα,β(x)T (x, t)

]
. (303)

Note that (303) is labelled by α and β, which are independent of T . The
exponentiation of (303) in units of (~G) has the same form of the quantum
states constructed in the previous chapters, where T is a time variable.

10.2 Case (ii): Nonvanishing cosmological constant

For Λ 6= 0 equation (290) yields a cubic equation for Π containing T depen-
dence, whose solution we will not display. Note that the top line of (293)
still vanishes implying that

Π1(x, t) = α(x); Π2(x, t) = β(x) (304)

are time-independent functions of position. So using (304) in conjunction
with (290) we can write

a
−3/2
0 e−T/2

√
Π(Π + α)(Π + β) =

√
− 3

Λ

√
Π2 +

2
3
(α+ β)Π +

1
3
αβ. (305)
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Substitution of (305) into the bottom line of (293) yields the following equa-
tion of motion for Π

Π̇ = ±
√

3ΛNU

√
Π2 +

2
3
(α+ β)Π +

1
3
αβ, (306)

which directly integrates to

√
Π2 +

2
3
(α+ β)Π +

1
3
αβ + Π +

1
3
(α+ β) = ke±

√
3Λρ (307)

where k = k(x) is a function of position which will be determined. We can
now solve (307) directly for Π(x, t), which yields

Π =
α2 − αβ + β2

18ke±
√

3Λρ
− 1

3
(α+ β) +

k

2
e±

√
3Λρ. (308)

As a consistency condition we must require limΛ→0Π = λα,β, where λα,β is
given by (295). This fixes k to be k(x) = 1

3

√
α2 − αβ + β2, which upon

substitution back into (308) yields

Π(x, t) =
1
3

[
−(α + β) +

√
α2 − αβ + β2cosh

√
3Λρ

]
. (309)

Equation (309) shows that for Λ 6= 0, Π now evolves in time in generalization
of (295). The evolution of the configuration space variables is now more
complicated for Λ 6= 0. We have that

Ẋ = pα,β(Π)Ṫ ; Ẏ = qα,β(Π)Ṫ , (310)

where Π is now given by (309). It is clear from (310) that the evolution of X
and Y is no longer given by (298), but is now more complicated on account
of the time dependence in Π. Similarly, the evolution of T is no longer given
by (300) but is now

T (x, t) = ln
(
exp
[
−1

2
T (x, 0)

]
− ia

3/2
0

2

∫ t

0
ηα,β(Π)N(x, t′)UX,Y [T (x, t′)]dt′

)−2
.(311)

The notation UX,Y (T ) higlights the T dependence in U , which involves spa-
tial gradients of all the configuration variables. Note that the analogue of
(303) for Λ 6= 0 is given by
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SΛ6==0 =
∫

Σ
d3x
[
α(x)X(x, t) + β(x)Y (x, t) +

∫

ΓT

Πα,β [T (x, t)]δT
]
, (312)

where the notation
∫
ΓT

signifies a functional integration in the configuration
space T (x) at each x. Again, note that α and β are still independent of T ,
exactly as for the quantum states. For Λ = 0, equation (312) reduces to
(303) since Πα,β becomes independent of T . For Λ 6= 0 the T dependence is
more complicated. These results are consistent with the quantum theory.

10.3 Pickard iteration procedure

To obtain a general solution to (311) one must first specify the initial data
T0 = T (x, 0), X0 = X(x, 0) and Y0 = Y (x, 0) on the initial spatial hyper-
surface Σ0, along with the functions α(x) and β(x). Then one must choose
a lapse function N(x, t), which will determines the manner of evolution of
the initial data to any final hypersurface Σt. To find T define a sequence
Tn(x, t), where T0(x, t) = T (x, 0), and the following recursion relation holds

Tn+1(x, t) = ln
(
exp
[
−1

2
T (x, 0)

]
− ia

3/2
0

2

∫ t

0

ηα,β(Π)N(x, t′)UX,Y [Tn(x, t′)]dt′
)−2

.(313)

Note that the spatial gradients in U(x, t) act on the initial data (X0, Y0, T0),
the labels (α, β) and the lapse function N(x, t) to higher orders with each
iteration, which should produce a kind of nonlinear Taylor expansion. The
full solution, if it converges, is then given by

T (x, t) = limn→∞Tn(x, t). (314)

This procedure is applicable for Λ 6= 0 as well as Λ = 0, but is less tedious
in practice for the latter case.

10.4 Gravitational waves from ΩKin

We will now verify the existence of gravitational waves, using ΩKin as the
starting point. Recall that we have already demomnstrated the existence of
gravitational waves on ΩInst for DeSitter spacetime. Therefore the rationale
will be to show that the reduction ΩInst → ΩKin preserves the physical
degrees of freedom. The Hamiltonian constraint on ΩKin is given by

Λ +
( 1

Π
+

1
Π + Π1

+
1

Π + Π2

)
(detA) = 0. (315)
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Since we will be expanding about DeSitter spacetime where Π1 = Π2 = 0,
we will regard Π1 and Π2 as perturbations about Π, where

|Π1|, |Π2| << |Π|. (316)

We will now expand (316) to linear order in Π1 and Π2, as in

Λ +
(detA)

Π

[
1 +

(
1 +

Π1

Π

)−1
+
(
1 +

Π2

Π

)−1]

= Λ +
3
Π

(detA) − (detA)
Π2

(Π1 + Π2) + · · · = 0. (317)

We should also linearize (detA) inX and Y , the degrees of freedom conjugate
to Π1 and Π2. However, since (detA) = a3

0e
T depends only on the time

variable T , it is by definition of zeroth order in X and Y . The Hamiltonian
constraint must be satisfied to zeroth order in (317), which implies that

Π = −
(3a3

0

Λ

)
eT ≡ (~G)

δS

δT
, (318)

where S is a Hamilton–Jacobi functional. Integration of (318) yields

S = 3(~GΛ)−1

∫

Σ
d3xa3

0e
T = 3(~GΛ)−1SCS [T ], (319)

which is just the Chern–Simons functional. The exponentiation of (319)
yields the Kodama state ψKod, which confirms that the we are linearizing
about spacetimes of Petrov Type O.

We must also require that (317) be satisfied to first order in (Π1,Π2),
which leads to the condition

Π1 + Π2 = 0, (320)

which is just the condition that the perturbation be traceless. So the devi-
ation is given by the matrix

εae = Π1




0 0 0
0 1 0
0 0 −1




and all permutations thereof. It appears naively that the gravitons on ΩKin

have only one polarization whereas in the full theory we have shown there
to be two. This is where the Gauss’ law constraint comes in. The full CDJ
deviation matrix is given by the polar decomposition
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ε(ae) = (eθ·T )afεf (e−θ·T )fe, (321)

where εf = (ε1, ε2, ε3) are the eigenvalues. We will use the Gauss’ law
constraint to find the angles ~θ from (321) to linearized order. Equation
(321) is given by

εae =
(
δaf + θA(TA)af + . . .

)
εf
(
δfe + θA(TA)fe + . . .

)

= εfδfaδfe + θA(TA)ae(λe − λa) + . . . . (322)

This is given to linearized order in ~θ, in matrix form, by

εae =




ε1 θ3(ε2 − ε1) θ2(ε1 − ε3)
θ3(ε2 − ε1) ε2 θ1(ε3 − ε2)
θ2(ε1 − ε3) θ1(ε3 − ε2) ε3




Choosing ε1 = 0, ε2 = Π1 and ε3 = −Π1 as the traceless matrix, the Gauss’
law constraint on this matrix to linearized order for a gravitational wave
travelling in the x direction is given by

εaeke = Π1




0 θ3 θ2

θ3 1 −2θ1

θ2 −2θ1 −1





k1

0
0


 =




0
0
0


 .

This leads to the condition (0, θ3k1, θ
2k2) = 0, namely that θ2 = θ3 = 0 and

θ1 is arbitrary. So the deviation matrix to first order is given by

εae = Π1




0 0 0
0 1 0
0 0 −1


+ θ1Π1




0 0 0
0 0 1
0 1 0


 ,

whence the two graviton modes have indeed been restored to the linearized
reduced theory on ΩKin due to the Gauss’ law constraint Ga. Since this
is an exact replica of what happened in the full theory, then this exercise
provides support for preservation of the physical degrees of freedom of GR
under the reduction ΩInst → ΩKin.
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11 Relation to the Bianchi formalism

In the so-called Bianchi cosmological models one chooses a special Ansatz
for the Ashtekar connection of the form

Aa
i (x, t) = aa

I (t)χ
I
i (x), (323)

which absorbs all position dependence into left invariant one forms χI =
χI

i dx
i satisfying the Maurer–Cartan relations

εijk∂jχ
I
k +

1
2
εijkf I

JKχ
J
j χ

K
k = 0. (324)

In (323) the dynamical degrees of freedom reside in aa
I (t) which depends only

on time, therefore one is restricted to minisuperspace models. The structure
constants f I

JK of the Bianchi group can be parametrized as

f I
JK = εJKNn

NI +
1
2
(
δI
JaK − δI

KaJ

)
, (325)

where aK = fJ
JK and nMI = 1

2ε
(MJKf

I)
JK . For Bianchi Class A models

aK = 0 and for Class B we have that aK 6= 0. The Bianchi types can further
be classified according to the eigenvalue structure of nMI . The spacetime
metric can be written in the form

ds2 = −N2dt2 +mIJχ
I
iχ

J
j dx

i ⊗ dxj . (326)

We would like to examine which Bianchi types can be accomodated in the
instanton representation. We will need the magnetic field Bi

a and the mag-
netic helicity density matrix Cae = Aa

iB
i
e, given by

Bi
a = εijk∂jA

a
k +

1
2
εijkfabcA

b
jA

c
k ; Cbe = εijkAb

i∂jA
e
k + δbe(detA). (327)

Using (323) and (324) in (327), we have

Bi
a =

1
2
εijk
(
−aa

If
IJK + fabcab

Ja
c
K

)
χJ

j χ
K
k

=
1
2
(detχ)(χ−1)i

M ε
MJK

(
−aa

If
I
JK + (deta)(a−1)I

aεIJK

)
. (328)

Using the relation εMJKf I
JK = 2nMI + εMIKaK ≡ 2QMI , we have the

following relations
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Bi
a = (detχ)(χ−1)i

M

(
−aa

IQ
MI + (deta)(a−1)M

a

)
;

va = Bi
a∂i =

(
−aa

IQ
MI + (deta)(a−1)M

a

)
(detχ)(χ−1)i

M∂i;

Cbe = (detχ)
(
−ae

IQ
IJab

J + δbe(deta)
)
. (329)

On the kinematic phase space ΩKin we have the following canonical structure

θKin =
∫
dt

∫

Σ
d3xλfb

i
f ȧ

f
i . (330)

Using the Ansatz (323) for ΓKin, we have

θKin =
∫

Σ

d3x(detχ)(χ−1)i
M

(
−af

IQ
IM + (deta)(a−1)M

f

)
δaf

Jχ
J
i

=
∫

Σ
d3x(detχ)λf

(
−af

IQ
IJ δaf

J + (deta)(a−1)J
f δa

j
J

)
. (331)

To obtain quantizable configurations, which entails the use of densitized
momentum space variables λ̃f = λf(deta), one sees that we must have
QIJ = 0. Since aI can still be arbitrarily chosen, this restricts one to
Bianchi Types I and V .31

11.1 The full theory

We would like to generalize the concept of the Bianchi formalism from min-
isuperspace to the full theory. One requirement is that the dynamical degrees
of freedom be independent at each spatial point. All connections Aa

i must
satisfy the identity

Aa
i (x, t) = aa

I (x, t)δ
I
i , (332)

which seen as a generalization of (323) implies that χI
i (x) = δI

i . Then
the application of (324) implies in the full theory that f I

JK = 0. From
this perspective the reduction from from the full theory to minisuperspace
aa

I (x, t) → aa
I (t), would in the language of (332) restrict one to Bianchi

Type I models. Therefore, connections satisfying the Ansatz (323) must be
regarded in a different light. It is not minisuperspace, but rather a special
configuration of the full theory where the spatial and time dependence are
decoupled.

31These are the Bianchi types obtainable by minisuperspace reduction of quantizable
configurations from the full theory. It is conceivable that the remaining Bianchi types
may be derivable from nonquantizable configurations.
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In the Bianchi models the objects χI
i are the generators of isometries

of a spatial manifold. Since the metric in the instanton representation is a
derived quantity, then there is no a-priori metric to preserve and there are
no isometries. The 3-metric is constructed according to the relation

hij = (detΨ)(Ψ−1Ψ−1)ae(B−1)a
i (B

−1)e
j(detB), (333)

which upon comparison with (326) suggests that (B−1)a
i plays the analogous

role for the full theory that χI
i plays for minisuperspace. From Bi

a can be
constructed vector fields va = Bi

a∂i, satisfying the commutator bracket

[va,vb] = hc
abvc, (334)

with structure functions hc
ab are given by

hc
ab = (B−1)c

j

(
va{Bj

b} − vb{Bj
a}
)
. (335)

Note that hc
ab = hc

ab(x, t) play the role in the full theory that f I
Jk play for

minisuperspace. They are no longer constants, but can depend on space and
time on account of the space-time dependence of Bi

a = Bi
a(x, t).

The vector fields va must still satisfy the Jacobi identity

[
va, [vb,vc]

]
+
[
vb, [vc,va]

]
+
[
vc, [va,vb]

]
= 0, (336)

which implies the relation

va{he
bc} + vb{he

ca} + vc{he
ab} + hd

bch
e
ad + hd

cah
e
bd + hd

abh
e
cd = 0. (337)

Let us define he
eb ≡ ab = −he

be as the trace of the structure functions. Then
summation over a = e in (337) yields

va{he
bc} − vb{ac} + vc{ab} + hd

bcad + hd
ceh

e
bd + hd

ebh
e
cd = 0. (338)

Upon relabelling of indices the last two terms of (338) vanish, which implies
the relation

ve{he
bc}+ aeh

e
bc = vb{ac} − vc{ab}. (339)

Let us perform the following decomposition of the structure functions in
analogy to (325)
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he
bc = εbcdn

de +
1
2
(
δe
bac − δe

cab

)
, (340)

where now af = af (x, t) and nde = nde(x, t) are no longer constants, but
functions of space and time. By contracting (340) with ae, and also acting
with ve, we obtain the relations

aeh
e
bc = εbcdn

deae; ve{he
bc} = εbcdve{nde}+

1
2
(
vb{ac} − vc{ab}

)
. (341)

Note whereas ndeae = 0 in minisuperspace where the variables are constant,
that this is no longer the case in the full theory. Defining we ≡ ve + ae and
substituting (341) into (339), we obtain the relation

εbcdwe{nde} =
1
2
(
vb{ac} − vc{ab}

)
. (342)

In minisuperspace (342) would be identically trivially satisfied on account
of spatial homogeneity and ndeae = 0. But in the full theory it corresponds
to three differential equations for the six components of nde. We can solve
for the off-diagonal elements as functions of the diagonal elements and ae

via the relation



n23

n31

n12


 =




0 w3 w2

w3 0 w1

w2 w1 0




−1 [
−




w1 0 0
0 w2 0
0 0 w3





n11

n22

n33




+
1
2




0 −v3 v2

v3 0 −v1

−v2 v1 0





a1

a2

a3



]
.

So one generalizes from minisuperspace to the full theory by choosing (n11, n22, n33)
and (a1, a2, a3), which speficies the Bianchi type at each spacetime point,
and from this determines (n23, n31, n12).

74



12 Conclusion and discussion

In this thesis we have quantized the kinematic phase space of the instan-
ton representation of Plebanski gravity for spacetimes of Petrov Type I ,
D and O. The momentum space variables of the instanton representation
are chosen to be the densitized eigenvalues of the CDJ matrix, which are
directly related to the algebraic classification of spacetime. We have demon-
strated the existence of a natural Hilbert space structure of states labelled
by these eigenvalues. For vanishing cosmological constant the construction
of the states is straightforward due to scale invariance of the Hamiltonian
constraint, and the continuum limit lies within the same Hilbert space as the
discretized version. The Λ 6= 0 case introduces a length scale into the theory,
which admits an expansion of the state in powers of this length scale. We
have utilized a Lippman–Scwhinger like approach to perform the expansion
in the length scale and its inverse. In the former case criterion of conver-
gence requires that the series be terminated at finite order, resulting in an
infinite tower of states labelled by one free function and the integers. In
the latter case the automatic convergence of the series lifts this restriction,
whence the states revert to the continuous labels of the Λ = 0 states. We
have expressed the general solution for the states in a compact notation in
terms of hypergeometric functions. The continuum limit of the Λ 6= 0 states
do not solve the Hamiltonian constraint, while the discretized versions do.

The last main area regards the address of the normalizability of the
Kodama state ψKod. The term ‘state’ is a misnomer in that ψKod is depen-
dent entirely upon a variable T , which plays the role of a clock variable on
the configuration space of the instanton representation. The salient char-
acteristics of the state are encapsulated in the aformentioned Hilbert space
structure, which is labelled by two functions α and β and depend on con-
figuration space variables (X, Y ) which are orthogonal to the T direction.
ψKod is a state in the sense that it corresponds to Type O spacetimes, where
α = β = 0. But this is the direct analogue of minisuperspace on functional
configuration space ΓInst, since it depends only on ‘time’.32 The resolution
to the issue normalizability raised by [4]) is that ψKod is a time variable,
and one should not normalize a wavefunction in time. For α = β = 0 the
normalizable degrees of freedom X and Y become eliminated from the state
and there is nothing to normalize. But when nonzero, namely for space-
times not of Petrov Type O, there is (X, Y ) dependence in the state and
one carries out a normalization of the state with respect to X and Y , while
leaving the T dependence intact. The degrees of freedom (X, Y ) are or-
thogonal to the T direction in the same manner that space is orthogonal to
time in a spacetime manifold. In the case of gravity, the time dependence
of the state is fixed a hypergeometric function of ψKod labelled by α and β,

32Note that it is still the full theory with respect to 3-space Σ.
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which is the solution to a hypergeometric differential equation in the time
T . Hence the instanton representation provides a new approach which can
be applied to the quantization of the full theory of GR. In this approach
the gravitational labels (α, β) are stationary with respect to the time T . We
have not implemented reality conditions on the instanton representation or
on the Ashtekar variables.

12.1 Solvable sectors of GR

We have shown that in order to contruct a solution to the Einstein equations,
one must first solve the initial value constraints. In the instanton represen-
tation of Plebanski gravity the initial value constraints constrain only the
CDJ matrix Ψae, which constitutes the momentum space. Hence one may
in principle associate with each pair of eigenvalues (λ1, λ2) an equivalence
class of solutions labelled by the connection Aa

i which apparently is freely
specifiable. We have seen that only certain connections Aa

i correspond to
quantizable configurations Γq on the kinematic phase space ΩKin. So the
relevant question becomes what sectors of full unreduced GR map into the
reduced phase space ΩKin = (PKin,Γq) upon implementation of the initial
value constraints. As we will see it is more intuitively obvious to phrase this
question in reverse from a bottom-up, rather than a top-down perspective.
In other words, starting from ΩKin = (PKin,Γq) perform the transforma-
tions Q, complementary to the constraints, necessary to obtain the large
unconstrained phase space ΩKin. The resulting phase space corresponds to
the sectors of GR which can be solved by the method of this thesis, simply
by applying corresponding inverse transformations Q−1.

Starting with the physical momentum space of Dim(PPhys) = 2 one
identifies a pair of eigenvalues (λ1, λ2), which span a two dimensional com-
plex manifold at each point. From each pair one constructs λ3, given by

λ3[λ1, λ2] = − λ1λ2

λ1 + λ2 + Λλ1λ2
. (343)

One can then take λ3 off-shell so that it is unconstrained. To preserve the
physical degrees of freedom one then performs the augmentation (λ1, λ2) →
(λ1, λ2, λ3) in conjunction with introducing the Hamiltonian constraint into
the theory. To construct the kinematic phase space ΩKin one introduces a
connection aa

i ∈ Γq, restricted to one of the six quantizable configurations.
At this level the phase space is of dimension Dim(ΩKin) = (3, 3), sufficient
for implementation of the classical and quantum dynamics of the theory.

One then defines a SO(3, C)⊗SO(3, C) matrix Ψae by augmenting PKin

by three degrees of freedom ~θ = (θ1, θ2, θ3), and an additional three degrees
of freedom by introducing a SO(3, C) 3-vector ψd, as in
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Ψae = εaedψ
d + λf(e−θ·T )fa(e−θ·T )fe, (344)

which satisfies the constraints

εdaeΨae = 0; we{Ψae} = 0. (345)

One can then take Ψae off-shell with Dim(Ψae) = 9, in conjunction with
appending the constraints (345) to the theory. So at the unconstrained
level, one is free to choose any nondegenerate Ψae, which leaves remaining
the question of which connections Aa

i are allowable.
Since the initial value constraints (343) and (345) do not place any limita-

tions on Aa
i , then there is considerable freedom in the choice of its remaining

six degrees of freedom. First, we must undo the SO(3, C) rotation which
brought Aa

i into a quantizable configuration Γq , via the transformation

Aa
i = (eθ·T )aeaei +

1
2
εabc(e−θ·T )bf∂i(e−θ·T )cf , (346)

where aei is symmetric and ~θ satisfies the second equation of (345). Taking
this relation off-shell increases Aa

i from three to six degrees of freedom. One
must remember to perform (346) in reverse when reducing the configuration
space of the theory to Γq. Last remains the diffeomorphism constraint. Cor-
responding to the constraint ψd = 0 one is free to set any three components
of Aa

i to zero in arriving at (346). So augmenting Aa
i as defined in (346) to

Aa
i → Aa

i +wa
i , where wa

i is any 3 by 3 matrix with three arbitrary nonzero
off-diagonal entries with the remaining entries zero, one brings Aa

i from six
to nine degrees of freedom. This comes along with the prescription of set-
ting wa

i = 0 upon implementation of the diffeomorphism constraint.33 So
the prescription for reducing the full phase space ΩInst to the reduced phase
space involves the task of performing the aforementioned transformations in
reverse and then quantizing the theory.

33Note that wa
i can be incorported either before or after (346), with the provision that

one must remember which wa
i one chose.
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13 Appendix A: Self-dual Weyl curvature tensor

The main idea of this thesis is that the physical degrees of freedom of gravity
may be encoded within the self dual part of the Weyl curvature tensor,
denoted Weyl. The Weyl curvature tensor Cµνρσ is the traceless part of the
Riemann curvature Rµνρσ , given by [9]

Rµνρσ =
1
6
(
gρνgµσ − gρµgνσ

)
R+ Cµνρσ

+
1
2
(
gρµRνσ − gρνRµσ − gσµRνρ + gσνRµρ

)
. (347)

The Weyl curvature tensor describes the nonlocal effects of radiation on
curvature not including matter fields and encodes the algebraic classification
of spacetime. Equation (347) can be decomposed into electric and magnetic
parts Eµν and Bµν with respect to an observer with 4-velocity uµ tangent
to a congruence of timelike integral curves as [7]

Qµρ = (Cµνρσ + i∗Cµνρσ)uνuσ . (348)

Note that Qµνu
ν = 0, namely that Qµν lives in the three dimensional space

orthogonal to uµ. For uµ = δµ
0 the tensor Qµν is purely spatial, and can

be written as a symmetric traceless three by three matrix Qij = Eij + iBij .
When Qij is diagonalizable, it can be written in a canonical frame such that
it is diagonal

Qij =




λ1 0 0
0 λ2 0
0 0 λ3


 .

The eigenvalues of Qij define the algebraic properties of spacetime which are
invariant under coordinate transformations and the choice of a tetrad frame.
At most two eigenvalues are independent due to the tracefree condition

Qi
i = λ1 + λ2 + λ3 = 0. (349)

The Petrov classification distinguishes between algebraically general (Petrov
Type I) and algebraically special spacetimes (Petrov types II, III, N, D, O)
according to the degeneracy of eigenvalues and eigenvectors of Qij . One
defines invariants I and J , given by [36]

I =
1
2
trQ2 =

1
2
(
λ2

1 + λ2
2 + λ2

3

)
; J =

1
6
trQ3 =

1
6
(
λ3

1 + λ3
2 + λ3

3

)
, (350)

and finds the eigenvalues from the characteristic equation for Qij
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λ3 − Iλ+ 2J = 0. (351)

The real and the imaginary parts of I are given by [37]

Re[I ] =
1
2
(
EijE

ij − BijB
ij
)
; Im[I ] =

1
2
EijB

ij , (352)

which is reminiscent of the radiative invariants ~E · ~E − ~B · ~B and ~E · ~B for
electromagnetism. From the invariants I and J can be defined a specialty
index S, given by

S =
27J2

I3
, (353)

where S = 1 for algebraically special spacetimes. For Petrov types III, N
and O the invariants I = J = 0, and for Petrov types II and D they are
nontrivial.

13.1 Two component spinor SL(2,C) formalism

To place the CDJ matrix Ψae into context, it is instructive to establish its
relation to the SL(2, C) formalism of GR [38]. Introduce at each point of
spacetime M , a tangent 2-dimensional complex space c. Define two compo-
nent spinors ηA and their complex conjugates ηA in c, where A and A′ re-
spectively denote left handed and right handed SL(2, C) spinorial indices.34

These indices are raised and lowered by the two dimensional Levi–Civita
symbol εAB in accordance with the following conventions:

ηA = εABηB; ηB = ηAεAB ; ηA′
= εA

′B′
ηB′; ηB′ = ηA′

εA′B′ . (354)

To connect the internal spinor space c to objects containing world indices µ,
one can define ∀x ∈M a set of soldering forms σµ

AA′ .35 The soldering forms
satisfy the relation

gµνσ
µ
AB′σ

ν
CD′ = εAC εB′D′ . (355)

34Spinorial indices take on the values 0 and 1 for both primed and unprimed indices.
Note that SL(2, C) is the covering group for SO(3, C), and we regard the CDJ matrix
Ψae as taking values in two copies of the left-handed SO(3, C).

35In a locally Cartesian coordinate frame the soldering froms may be taken to be the
unit matrix and thre three Pauli matrices, but we will not need an explicit knowledge of
any one set of σµ

AA′ .
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The soldering forms σµ
AA′ define an isomorphism between 4-vectors and

spinorial pairs in the (1
2 ,

1
2) representation at each point of M , and a 4-

vector Vµ decomposes as

VAA′ = Vµσ
µ
AA′ ; V µ = σµ

AA′V
AA′

. (356)

Tensors of multiple rank decompose by generalization of (356) as

VA1A′
1A2A′

2 ...AnA′
n

= Vµ1µ2 ...µnσ
µ1

A1A′
1
σµ2

A2A′
2
. . . σµn

AnA′
n

(357)

and similarly

Vµ1µ2 ...µn = σ
A1A′

1
µ1 σ

A2A′
2

µ2 . . . σAnA′
n

µn
VA1A′

1A2A′
2...AnA′

n
. (358)

Any pair of left handed null two component spinors nA and lA in M
satisfying the normalization conditions

nAnA = lAlA = 0; nAlA = 1, (359)

in conjunction with the soldering form σµ
AA′ defines a null tetrad

lµ = σµ
AA′ l

Al
A′

; nµ = σµ
AA′n

AnA′
; mµ = σµ

AA′n
Al

A′
; mµ = σµ

AA′ l
AnA′

,(360)

such that

lµlµ = mµm
µ = mµm

µ = nµnµ = 0;
lµm

µ = lµm
µ = nµm

µ = nµm
µ = 0;

lµn
µ = −mµm

µ = 1. (361)

The null vectors lµ and nν are real and span a time-like 2-plane in Tp(M),
the tangent space at each point of spacetime M . The null vectors mµ and
mµ are complex, and span the orthogonal space-like 2-plane in Tp(M). The
tetrad (lµ, nµmµ, mµ) is useful in the Penrose approach to GR [?], which is
suited to characterizing the radiation properties of spacetime [39].

The spinors (nA, lA) induce an orthonormal basis ηa
AB in spin space [38]

η1
AB =

√
2il(AnB); η2

AB =
i√
2

(
lAlB + nAnB

)
; η3

AB =
i√
2

(
lAlB − nAnB

)
,(362)

such that
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ηa
ABη

AB
f = δa

f . (363)

Thsese objects define an isomorphism between internal 3-vector indices a =
(1, 2, 3) and symmetric SU(2) index pairs (00), (01) and (10). Any dyad
can be expressed in the basis (362) as

φAB =
3∑

m=1

χm(ηm)AB, (364)

where χm are the components. A SL(2, C) transformation g, acting on the
column vector (lA, nA), given by

g =
(
a b
c d

)
; ad− bc = 1,

induces a transformation of the basis and the corresponding components



φ′1
φ′2
φ′3


 =



a2 2ab b2

ac bc+ ad bd
c2 2cd d2





φ1

φ2

φ3


 .

The following transformation matrices will be of interest

g1(z) =
(

1 0
z 1

)
; g2(z) =

(
z 0
0 z−1

)
; g3(z) =

(
1 z
0 1

)
,

where z is a complex number. The transformations g1(z) and g3(z) are
complex null-rotations with leave lA and nA, respectively, invariant.

The basis (362) also induces an orthonormal basis of completely sym-
metric four-spinors, given by [38]

η0
ABCD =

1√
2

(
lAlBlClD + nAnBnCnD

)
;

η1
ABCD =

√
2i
(
l(AlBlCnD) + l(AnBnCnD)

)
;

η2
ABCD =

√
6l(AlBnCnD);

η3
ABCD =

√
2
(
l(AlBlCnD) − l(AnBnCnD);

η4
ABCD =

i√
2

(
lAlBlC lD − nAnBnCnD

)
, (365)

satisfying orthonormality relations

ηα
ABCD(ηβ)ABCD = δαβ. (366)
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13.2 Principal null directions of spacetime

By application of (357) and (358), the Riemann curvature tensor can be
written in spinorial form, taking into account its symmetries, as

Rµνρσσ
µ
AA′σ

ν
BB′σ

ρ
CC′σ

σ
DD′ = εA′B′εC′D′ψABCD + . . . , (367)

where ψABCD = ψ(ABCD) is Weyl, the self-dual part of the Weyl curvature
tensor, and the dots signify the remaining components which will not concern
us in this thesis. Using the basis (365), Weyl can be written as

ψABCD = 2
4∑

f=0

Ψαη
α
ABCD, (368)

where Ψα are defined as the Weyl scalars. In a suitable adapted frame, the
Weyl scalars may be shown to admit the following physical interpretations
in vacuum spacetimes: (i) Ψ0 and Ψ4 are transverse components of gravi-
tational radiation propagating in the lµ and the nµ directions respectively.
(ii) Ψ1 and Ψ3 are longitudinal components propagating in the lµ and the
nµ directions respectively. (iii) Ψ2 is a Coulombic component.

The principal null directions of spacetime can be computed directly by
performing an SL(2, C) transformation to eliminate Ψ4(Ψ0), which leaves
lµ(nµ) as the principal null direction. For example a null rotation g1(z)
around lA transforms Ψ4 into

Ψ′
4 = Ψ4 + 4Ψ3z + 6Ψ2z

2 + 4Ψ1z
3 + Ψ0z

4. (369)

The condition for lµ to be a principal null direction is that Ψ′
4 = 0. This

yields a quartic polynomial equation in z, with four roots. The multiplic-
ity of each principal null direction is the same as the multiplicity of the
corresponding root. The roots zi for i = 1, . . .4 can be parametrized as [35]

zi = tan(θi/2)e−iφi , (370)

which can be put in one-to-one correspondence with points on the two-sphere
by stereographic projection of zi. The principal null directions are given by

P a
(i) = cosθiẑa + sinθicosφix̂

a + sinθisinφiŷ
a, (371)

where (θi, φi) coordinatize angular position on the two-sphere. The number
and multiplicity of principal null directions determines the Petrov classifi-
cation of Weyl. The Petrov classification scheme then is as follows
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Type I (1, 1, 1, 1); Type II (2, 1, 1); Type D (2, 2);
Type III (3, 1); Type N (4); Type O(Conformally flat). (372)

In brackets we have indicated the multiplicity of PNDs within each category.
From ψABCD one can form the invariants

I =
1
2
ψABCDψ

ABCD; J =
1
6
ψABCDψ

CDEFψAB
EF , (373)

which in direct analogy to (353) define a specialty index S given by

S ′ =
I3

J2
− 27. (374)

13.3 Relation to the CDJ matrix

We will now establish a direct correspondence from the principal null direc-
tions of spacetime to the CDJ matrix Ψae.36 Using the basis (362), Weyl
can also be decomposed into the following form

ψABCD =
3∑

a,e=1

ψaeη
a
ABη

e
CD, (375)

which defines a symmetric and traceless matrix ψae. The relation between
ψae and the Weyl scalars in this basis Ψα is given by [38]

ψae =




−2Ψ2 i(Ψ1 + Ψ3) (Ψ3 − Ψ1)
i(Ψ1 + Ψ3) 1

2(2Ψ2 + Ψ0 + Ψ4) i
2(Ψ0 − Ψ4)

(Ψ3 − Ψ1) i
2(Ψ0 − Ψ4) 1

2(2Ψ2 − Ψ0 − Ψ4)


 .

The invariants of ψae are given by

2I = trψ2 = 2Ψ0Ψ4 − 8Ψ1Ψ3 + 6Ψ2
2;

6J = detΨ = 2
(
Ψ0Ψ2Ψ4 − Ψ0Ψ2

3 − Ψ4Ψ2
1 + 2Ψ1Ψ2Ψ3 − Ψ3

2

)
(376)

which imply the characteristic equation

r3 − Ir+ 2J = 0. (377)
36It is the eigenvalues of Ψae which constitute the basis for quantization in this thesis.
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The roots r1, r2 and r3 of (377) depend explicitly on I and J from (376),
and the CDJ matrix Ψae is defined by the addition of a spin 0 part to ψae,
hence the relation

Ψ−1
ae − δaeϕ = ψae, (378)

where ϕ = 1
3(trΨ−1) = −Λ

3 . Equation (378) can be inverted to yield Ψae =(
δaeϕ+ψae

)−1. Therefore, since ψae = ψae(I, J) encodes the algebraic clas-
sification of the spacetime, it follows that the CDJ matrix Ψae = Ψae(I, J)
also encodes this algebraic classification.

The Petrov Type is determined according to the possible numbers of
eigenvalues and eigenvectors of ψae. By the following notation P (A) =
(B,C), we denote a Petrov Type A as corresponding to B distinct eigenval-
ues and C linearly independent eigenvectors.

P (I) = (3, 3); P (D) = (3, 2); P (0) = (3, 1);
P (II) = (2, 2); P (N) = (2, 1);

P (III) = (1, 1). (379)

The components of ψae are fixed by the Gauss’ law constraint Ga for each
triple of eigenvalues λf satisfying the Hamiltonian constraint. Hence for
each λf and each connection Aa

i , one may in principle determine the PNDs
and the Petrov Type of a given spacetime for Petrov types I , D and O.
A Weyl spinor ψABCD of Petrov Type I, has four distinct PNDs at any
point, which in a certain frame form the vertices of a disphenoid [8]. This
disphenoid represents the intersection of a spacelike plane with S+, the cone
of null directions at that point.

The decomposition of Weyl into electric and magnetic parts is generally
known. But also in four spacetime dimensions, there is a three dimensional
vector space W− spanned by the triple of self-dual SO(3, C) two forms
Σa [43]. Expansion of (347) with respect to W− yields a symmetric and
traceless three by three matrix ψae, related to the self-dual part of Weyl by

Cµνρσ = ψaeΣa
µνΣe

ρσ, (380)

which can also be seen from (375). Using (348), the following relation can
be written

Qµν = ψaeΣa
µρΣ

e
νσu

ρuσ, (381)

which relates the spacetime object Qµν to the purely internal object ψae.
For uµ = δ

µ
0 , the decomposition reads
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Qij = ψaeΣa
0iΣ

e
0j , (382)

which involves the temporal components Σa
0i of the two forms. Hence it

is clear that Qµν contains the same number of D.O.F. as does ψae, since
Σa

µνu
µuν = 0. We will regard ψae as being the fundamental object, with Qij

being derived upon specification specification of a self-dual two form and a
choice of Lorentz observer.

14 Appendix B: Closure of the Hamiltonian con-

straint algebra on ΩKin

In the implementation of the Gauss’ law and the diffeomorphism constraints
(Hi, Ga) on the full phase space ΩInst, we have performed a reduction to
the kinematic phase space which is of dimension Dim(ΩKin) = (3, 3). This
suggests that the dynamics on ΩKin would be driven completely by the
Hamiltonian constraint H , and that ΩKin be preserved under Hamiltonian
evolution, with this evolution decoupled from the transformations generated
by the kinematic constraints (Hi, Ga). If this is indeed the case, then the
physical degrees of freedom of GR would have been isolated, the degrees of
freedom which have been quantized. A rigorous proof of this must demon-
strate that the Dirac algebra of the Hamiltonian constraint is a first class
algebra. That this cannot be the case in the Ashtekar or metric variables
is evident from the observation that the commutator of two Hamiltonian
constraints is a diffeomorphism constraint. We will show for the instanton
representation that the algebra of the Hamiltonian constraint closes off-shell,
both classically and at the quantum level. The implication is that the dy-
namics are consistent in the Dirac sense and the algebra is free of anomalies.

14.1 Poisson algebra of the Hamiltonian constraint

We will now compute the Poisson algebra of two Hamiltonian constraints
using the Hamiltonian

H [N ] =
∫

Σ
d3xNUe−T/2

√
Π(Π + Π1)(Π + Π2)

[( Λ
a3

0

)
+ eT

( 1
Π

+
1

Π + Π1
+

1
Π + Π2

)]
, (383)

where we have omitted numerical factors to avoid carrying them around. It
will be convenient to define the quantity

Φ =
√

Π(Π + Π1)(Π + Π2)
[( Λ
a3

0

)
+ eT

( 1
Π

+
1

Π + Π1
+

1
Π + Π2

)]
, (384)
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which is directly proportional to the Hamiltonian constraint H via the re-
lation H = 1

U e
T/2Φ. Since we assume that 0 < |UeT/2| <∞, then it follows

that Φ = 0 is sufficient for the Hamiltonian constraint to the satisfied. The
functional derivatives of (383) with respect to momentum space variables
are of the form

δH [N ]
δΠ1(x)

= N(x)q1(x);
δH [N ]
δΠ2(x)

= N(x)q2(x);
δH [N ]
δΠ(x)

= N(x)q3(x), (385)

where qI = qI(ΩKin), are functions on the kinematic phase space, whose
specific form is not important. For functional derivatives of (383) with re-
spect to the configuration space variables there will be spatial gradients from
U which act on everything that the spatial gradient terms were originally
multiplied with under the integral. We have that

δH [M ]
δX(x)

= ∂i(ηi
1MΦ);

δH [M ]
δY (x)

= ∂i(η2
1MΦ);

δH [M ]
δT (x)

= ∂i(ηi
3MΦ) +MC,(386)

where ηi
J = ηi

J(ΩKin) and C = C(ΩKin) are phase space functions whose
specific form is not important. Note that the terms of (386) with spatial
gradients acting on Φ vanish when the Hamiltonian constraint is satisfied.

Let us now compute the individual terms contributing to the Poisson
brackets. For the contribution due to (Π1, X) we have

∫

Σ
d3x
( δH [N ]
δΠ1(x)

δH [M ]
δX(x)

− δH [M ]
δΠ1(x)

δH [N ]
δX(x)

)

=
∫

Σ
d3x
(
(Nq1)∂i(ηi

1MΦ) − (Mq1)∂i(ηi
1NΦ)

)
. (387)

Since this is antisymmetric in M and N , then it becomes clear that the only
nontrivial contributions to (387) are due to spatial gradients action on the
lapse functions M and N . So (387) simplifies to

∫

Σ
d3xq1ηi

1

(
N∂iM −M∂iN

)
Φ (388)

which is directly proportional to the Hamiltonian constraint, since it is di-
rectly proportional to Φ. Similarly, the (Π2, Y ) contribution yields

∫

Σ
d3x
( δH [N ]
δΠ2(x)

δH [M ]
δY (x)

− δH [M ]
δΠ2(x)

δH [N ]
δY (x)

)

=
∫

Σ
d3xq2ηi

2

(
N∂iM −M∂iN

)
Φ. (389)
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For the contribution due to (Π, T ) we have

∫

Σ
d3x
(δH [N ]
δΠ(x)

δH [M ]
δT (x)

− δH [M ]
δΠ(x)

δH [N ]
δT (x)

)

=
∫

Σ
d3x
(
(Nq3)

(
∂i(ηi

3MΦ) +MC
)
− (Mq1)

(
∂i(ηi

3NΦ) +NC
))

=
∫

Σ
d3x
(
(Nq3)∂i(ηi

3MΦ) − (Mq3)∂i(ηi
3NΦ)

)
+
∫

Σ
d3x
[
(Nq3)MC − (Mq3)NC)

]
.(390)

The second integral on the last line on the right hand side of (390) vanishes,
and the first integral simplifies to

∫

Σ
d3xq3ηi

3

(
N∂iM −M∂iN

)
Φ. (391)

Combining the results of (391), (389) and (388), we have that

{H [N ], H[M ]}=
∫

Σ
d3xqIηj

I(N∂iM −M∂iN)Φ = H [N,M ], (392)

namely that the Poisson bracket of two Hamiltonian constraints is a Hamilto-
nian constraint with phase space dependent structure functions. The result
is that the classical Hamiltonian constraints algebra closes off-shell and the
classical evolution on ΩKin is Dirac consistent.

14.2 Quantum algebra of the Hamiltonian constraint

We must now verify off-shell closure of the quantum algebra of the Hamilto-
nian constraint, taking operator ordering into account. We must prove for
all quantum states

∣∣ψ
〉

that

[
Ĥ[M ], Ĥ[N ]

]∣∣ψ
〉

= Ĥ [M,N ]
∣∣ψ
〉
, (393)

with the Hamiltonian constraint operator appearing to the right. In what
follows we will make use of the operator identity

[
ÂB̂, ĈD̂

]
= Ĉ [Â, D̂]B̂ + Â[B̂, Ĉ]D̂ + [Â, Ĉ]B̂D̂ + ĈÂ[B̂, D̂], (394)

where Â, B̂, Ĉ and D̂ are bosonic operators. Also, let us define the operators

η̂(x) = Û(x)e−T̂(x)/2;

Φ̂ =
√

Π̂(Π̂ + Π̂1)(Π̂ + Π̂2)
[( Λ
a3

0

)
+
( 1

Π̂
+

1
Π̂ + Π̂1

+
1

Π̂ + Π̂2

)
eT̂
]
, (395)
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where Φ̂ is directly proporional to the quantum Hamiltonian constraint Ĥ .
Note that we have chosen an operator ordering in (395) with eT̂ to the right
of the momenta, the same ordering which is needed to obtain the Kodama
state in the appropriate regime of the Hilbert space. The smeared quantum
Hamiltonian constraint is a composite operator given by

Ĥ[N ] =
∫

Σ
d3xN(x)η̂(x)Φ̂(x). (396)

Note, since Φ̂ appears to the right, that (396) annihilates all quantum states∣∣ψ
〉

satisfying the Hamiltonian constraint. Therefore the result of the alge-
bra must necessarily have Φ̂ to the right if it is to be free of anomalies. We
are now ready to compute the quantum constraints algebra

[
Ĥ [M ], Ĥ[N ]

]
=
∫

Σ
d3x

∫

Σ
d3yM(x)N(y)

[
η̂(x)Φ̂(x), η̂(y)Φ̂(y)

]

=
∫

Σ
d3x

∫

Σ
d3yM(x)N(y)

[
η̂(y)[η̂(x), φ̂(y)]φ̂(x) +N(x)η̂(y)[Φ̂(x), η̂(y)]Φ̂(y)

+[η̂(x)η̂(y)]Φ̂(x)Φ̂(y) + η̂(x)η̂(y)[Φ̂(x), Φ̂(y)]
]
,(397)

where we have used (394). The third term of (397) vanishes since it is the
commutator purely of configuration space variables. The fourth term can be
shown to vanish by expanding it and relabelling dummy continuous indices.
So we are left with the second term. Make the definitions

δΦ(x)
δΠ1(y)

= Q1(x)δ(3)(x, y);
δΦ(x)
δΠ2(y)

= Q2(x)δ(3)(x, y);
δΦ(x)
δΠ(y)

= Q3(x)δ(3)(x, y),(398)

where Qi(x) are functions on ΩKin whose form is not important. Likewise
make the definitions

δη(x)
δX(y)

= ηj
1(x)δ

(3)(x, y)
( ∂

∂xj

)
;

δη(x)
δY (y)

= ηj
2(x)δ

(3)(x, y)
( ∂

∂xj

)
;

δη(x)
δT (y)

= ηj
3(x)δ

(3)(x, y)
( ∂

∂xj

)
. (399)

The notation in (399) signifies that the partial derivatives will act on all
objects with x dependence which multiply the terms that the derivatives
originally came from. Using (398) and (399), we have the following operator
relations
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[
η̂(x), Φ̂(y)

]
= η̂j

I(x)Q̂
I(y)δ(3)(x, y)

( ∂

∂xi

)
;

[
Φ̂(x), η̂(y)

]
= −η̂j

I(y)Q̂
I(x)δ(3)(x, y)

( ∂

∂yi

)
. (400)

Hence it is apparent from (400) that ∂
∂xi acts on objects containing x de-

pendence, and ∂
∂yi acts on objects containing y dependence. So continuing

from (397) and using (400), we have

[
Ĥ[M ], Ĥ[N ]

]
=

∫

Σ
d3x

∫

Σ
d3yM(x)N(y)

[
η̂(y)η̂j

I(x)Q̂
J(y)

( ∂

∂xj

)
Φ̂(x)

−η̂(x)η̂j
I(y)Q̂

J(x)
( ∂

∂xj

)
Φ̂(y)

]
δ(3)(x, y)

=
∫

Σ
d3x

∫

Σ
d3y

[
N(y)η̂(y)

∂

∂xj
(M(x)η̂jI(x)Q̂I(y)Φ̂(x))

−M(x)η̂(x)
∂

∂yj
(N(y)η̂jI(y)Q̂I(x)Φ̂(y))

]
δ(3)(x, y) (401)

Integration with respect to y collapses the delta function, which yields

∫

Σ

d3x
[
Nη̂

∂

∂xj
(Mη̂j

IQ̂
I Φ̂) −Mη̂

∂

∂xj
(Nη̂j

IQ̂
I Φ̂)
]

=
∫

Σ
d3x
(
N∂iM −M∂iN

)
η̂η̂j

IQ̂
I Φ̂, (402)

whence the operator Φ̂ appears to the right. Since Φ̂ is proportional to the
Hamiltonian constraint it follows that

[
Ĥ[M ], Ĥ[N ]

]∣∣ψ
〉

= Ĥ [M,N ]
∣∣ψ
〉
, (403)

namely that the commutator of two Hamiltonian constraints is a Hamilto-
nian constraint. The quantum algebra of the Hamitonian constraint closes,
and it closes in direct analogy to its classical counterpart (392). More-
over, the algebra closes with the proper ordering taken into account with
the Hamiltonian constraint operator to the right. The quantum constraints
algebra is Dirac consistent and is anomaly-free.
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