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Abstract

We show that GR can be written literally as a Yang–Mills theory
coupled to gravity, where the antiself-dual Weyl curvature (CDJ ma-
trix) plays the role of the coupling constant. On solutions to the Ein-
stein equations, a Hodge duality operator emerges and the Yang–Mills
curvature becomes self-dual. This effect causes a dynamical reduction
of the Yang–Mills theory to Einstein’s GR. We prove this using the
instanton representation of Plebanski gravity combined with the in-
trinsic spatial geometry of Yang–Mills theory. Additionally, we prove
this same result via the metric description of gravity. This result im-
plies the existence of gravitational instanton solutions to the Einstein
equations for spacetimes of Petrov type I, D and O.

1



1 Introduction: Yang–Mills theory

In SU(2) Yang–Mills theory the phase space variables are ΩY M = (Ei
a, A

a
i ),

the Yang–Mills electric field and the SU(2) gauge connection Aa
i . The action

for a SU(2) Yang–Mills theory can be written in first order form as1

IY M =
∫
dt

∫

Σ
d3xEi

aȦ
a
i + Aa

0DiE
i
a −H(E,A), (1)

whereH(E,A) is the Hamiltonian for the theory, written on the phase space
ΩY M . In this paper we will point out some interesting theories which can
result from different choices of H . For ordinary SU(2) Yang–Mills theory
on a flat Minkowski spacetime background we have

HY M =
1
2
δijδab

(
g−2Ei

aE
j
b + g2Bi

aB
j
b

)
= δijT

ij , (2)

where g is the coupling constant and Bi
a = εijk∂jA

a
k + 1

2ε
ijkfabcA

b
jA

c
k is the

Yang–Mills magnetic field. All Yang–Mills theories will have the Gauss’
Law constraint Ga = DiE

i
a, which signifies the invariance of the theory

under SU(2) gauge transformations.
In this paper we will re-write gravity as a Yang–Mills theory. An exam-

ple of such a theory is the Ashtekar formalism of GR ([1],[2],[3]). In this
formalism one complexifies the phase space and makes the identification
Ei

a → σ̃i
a of the electric field with a densitized triad. This densitized triad

can be written as an antisymmetric combination of spatial triads eai , where

σ̃i
a =

1
2
εijkεabce

b
je

c
j −→ f = εijk σ̃

i
adx

j ∧ dxk (3)

which defines a spatial two form f . The spatial triads in symmetric combi-
nation determines a spatial 3-metric hij , given by

hij = eai e
a
j −→ ds2

∣∣∣∣
Σ

= hijdx
i ⊗ dxj . (4)

Equations (3) and (4) presumably encode the same information, and should
lead to alternate but equivalent descriptions of GR. The Ashtekar formalism,
which uses σ̃i

a as a basic momentum space variable, can be written as
1By the convention of the paper, symbols a, b, c, . . . from the beginning part of the

Latin alphabet signify internal indices and symbols i, j, k, . . . from the middle signify
spatial indices in 3-space Σ.
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IAsh =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i + Aa

0Diσ̃
i
a −H(σ̃, A), (5)

with a Hamiltonian given by

HAsh = εijkN
iσ̃j

aB
k
a +

i

2
Nεijkε

abcσ̃i
aσ̃

j
b

(
Bk

c +
Λ
3
σ̃k

c

)
, (6)

where Nµ = (N,N i) are auxilliary fields with N = N(detσ̃)−1/2. The
Ashtekar connection is given by

Aa
i = Γa

i + βKa
i , (7)

where Γa
i is the spin connection compatible with the triad eai , and Ka

i is the
triadic form of the extrinsic curvature of 3-space Σ and β is the Immirzi
parameter.

In this paper we will rewrite general relativity in a form more closely re-
sembling (1) subject to (6), which makes its relation to the 3-geometry more
explicit. Equation (2) is the contraction of the spatial energy momentum
tensor T ij of Yang–Mills theory with a Euclidean 3-metric δij , and there-
fore corresponds to a theory of Yang–Mills theory propagating on a flat
background. We will show that the generalization of (2) to more general
geometries is given by

T ij =
1
2

(
(Ψ−1)bf σ̃i

bσ̃
j
f + ΨbfB

i
bB

j
f

)
, (8)

where and Ψbf ∈ SO(3, C) ⊗ SO(3, C) is a complex three by three ma-
trix taking values in two copies of the special complex orthogonal group
SO(3, C). The energy momentum tensor (8) couples to the quantity Nhij ,
where N = Nh−1/2 is the densitized lapse function and hij is the spatial
part of the metric gµ solving the Einstein equations. The result is a complex
Yang–Mills theory of gravity, where the gravitational degrees of freedom are
neatly encoded in Ψbf , which plays the role of the Yang–Mills coupling con-
stant. In this theory, gravity is coupled to the same Yang–Mills field which
describes gravity, and is in this sense a self-coupling.

To accomplish the aim of the present paper we will harness the relation
of nonabelian gauge theory to intrinsic spatial geometry which has been
exposed by previous authors within the Yang–Mills context. Some of the
main ideas contained in this paper have been applied in [4] and [5], where the
authors uncover a natural spatial geometry encoded within SU(2) and SU(3)
Yang-Mills theory. It is shown how using locally gauge-invariant quantities,
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one obtains a geometrization of these gauge theories. The geometry thus
uncovered is limited to that of Einstein spaces, given by

Rij = khij , (9)

where Rij is the Ricci tensor of a three dimensional space with torsion. The
property of (9) which enables it to describe a four dimensional geometry
directly in terms of an intrinsic spatial 3-geometry is the fact that the space
is allowed to have torsion. In this paper we will generalize (9) to include
more general solutions of the Einstein equations, specifically exhibiting the
two degrees of freedom of GR.

The organization of this paper is as follows. In section 2 we derive the
instanton representation of Plebanski gravity, showing how a spatial 3-metric
and a Hodge duality operator arise dynamically on solutions to the equations
of motion. The implication is that the corresponding spacetime metric solves
the Einstein equations, a proof which we carry out in the remainder of the
paper by explicit construction. Another result of section 2 is the equivalence
on-shell of the instanton representation to Yang–Mills theory with self-dual
curvature. Sections 3 and 4 uses the intrinsic spatial geometry of the Yang–
Mills theory thus described to construct a 3-dimensional Riemann space with
torsion. In section 4 we prove the equivalence of the action for this space
with the aforementioned Yang–Mills action, as well as with the Einstein–
Hilbert action. This latter step required the association of the torsion of
Q(3)

2 Instanton representation of Plebanski gravity

The phase space for the instanton representation of Plebanski gravity is
ΩInst = (Ψae, A

a
i ). Aa

i is the same self-dual SO(3, C) connection of the
Ashtekar variables, and Ψae ∈ SO(3, C)⊗ SO(3, C) known as the CDJ ma-
trix, which is the self-dual part of the Weyl curvature expressed in SO(3, C)
language. We will see that this is actually the same matrix appearing in (8).
We can write (5) on the phase space ΩInst using the CDJ Ansatz

σ̃i
a = ΨaeB

i
e, (10)

Introduced in [6]. Equation (10) holds as long as (detB) 6= 0 and (detΨ) 6= 0,
which we will assume for the purposes of this paper. Substitution of (10)
into (5) and (6) yields
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IInst =
∫
dt

∫

Σ
d3xΨaeB

i
eȦ

a
i + Aa

0B
i
eDiΨae

−εijkN iBj
aB

k
e Ψae − iN(detB)1/2

√
detΨ(Λ + trΨ−1) (11)

where we have used the Bianchi identity DiB
i
a = 0. By integration by parts

combined with discarding of boundary terms as well as using the Bianchi
identity, the first two terms of (11) can be combined into the form

ΨaeB
i
eȦ

a
i + Aa

0B
i
eDiΨae −→ ΨaeB

i
e(Ȧ

a
i −DiA

a
0) = ΨaeB

i
eF

a
0i, (12)

where F a
0i are the temporal components of the curvature of a four dimen-

sional connection Aa
µ. Making the definition Bi

a = 1
2ε

ijkF a
jk , where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , (13)

and defining ε0ijk ≡ εijk with ε123 = 1, we can rewrite (11) by separating
Ψae into symmetric and antisymmetric parts. This yields

IInst =
∫

M
d4x
(1

8
ΨaeF

a
µνF

e
ρσε

µνρσ

+(Bi
[eF

a]
0i − εijkN

iBj
aB

k
e )Ψae − iN(detB)1/2

√
detΨ(Λ + trΨ−1)

)
. (14)

The equation of motion for N i derived from (11) implies that Ψ[ae] = 0, or
that Ψae is symmetric. We can use this to eliminate the first two terms in the
second line of (14). We can write trΨ−1 directly in terms of its eigenvalues
(λ1, λ2, λ3), where Ψae is taken to be symmetric. Additionally, the following
relation will be useful

iN(detB)1/2
√

detΨ = iN
√
h =

√
−g, (15)

the first equality coming from the determinant of (10) and the second equal-
ity coming from the expression of

√
−g =

√
detgµν via its 3+1 decomposi-

tion. Using all of these relations enables us to write (14) on-shell as

IInst =
∫

M
d4x
(1

8
ΨaeF

a
µνF

e
ρσε

µνρσ +
√
−g
(
Λ +

1
λ1

+
1
λ2

+
1
λ3

))
. (16)

Equation (16) will be known as the instanton representation of Plebanski
gravity on the diffeomorphism-invariant phase space Ωdiff , since the diffeo-
morphism constraint has been implemented.2

2The association to Plebanski gravity is derived in [7], where the starting action (17)
is derived directly from the Plebanski starting action. The association to gravitational
instantons will be made precise in the present paper.
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Let us rewrite (16) in the form

IInst =
∫

M
d4x

[
1
8
ΨbfF

b
µνF

f
ρσε

µνρσ − iN(detB)
√

detΨ(Λ + trΨ−1)
]
, (17)

The equation of motion forN for (detB)1/2
√

detΨ 6= 0 implies the constraint

H = Λ +
1
λ1

+
1
λ2

+
1
λ3

= 0, (18)

which enables us to write λ3 explicitly as a function of λ1 and λ2. Then the
equation of motion for Ψbf is given by

δIInst

δΨbf
=

1
8
F b

µνF
f
ρσε

µνρσ − i

2
N(detB)(Ψ−1)bf

√
detΨ(Λ + trΨ−1)

+iN(detB)1/2
√

detΨ(Ψ−1Ψ−1)bf = 0. (19)

The middle term on the right hand side of (19) vanishes on account of the
Hamiltonian constraint (18), which reduces the equation to

1
8
F b

µνF
f
ρσε

µνρσ = −iN(detB)1/2
√

detΨ(Ψ−1Ψ−1)bf . (20)

2.1 Dynamical Hodge duality operator

We will now make more precise the relation of the instanton representation
of Plebanski gravity to gravitational instantons. The action (16) on the
solution to the equations of motion is given by

IInst =
1
8

∫

M
d4xΨbfF

b
µνF

f
ρσε

µνρσ =
1
2

∫

M
ΨbfF

b ∧ F f

∣∣∣∣
H=0

, (21)

where we have defined the curvature two form F a = 1
2F

a
µνdx

µ ∧ dxν . Re-
turning to (20), the physical interpretation arises from the identification

hij = (detΨ)(Ψ−1Ψ−1)bf(B−1)b
i(B

−1)f
j (detB) (22)

with the intrinsic 3-metric of 3-space Σ. Upon use of (10) in the form
Ψ−1

ae = Bi
e(σ̃

−1)a
i equation for nondegenerate metrics (22) yields

hhij = σ̃i
aσ̃

j
a, (23)
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which is the relation of the Ashtekar densitized triad to the 3-metric hij . In
the instanton representation the spacetime metric gµν is a derived quantity
since it does not appear in the starting action (11) except for the tempo-
ral components Nµ = (N,N i) = (g00, g0i), which are needed in order to
implement the initial value constraints. The spacetime metric is given by

ds2 = gµνdx
µdxν = −N2dt2 + hijω

i ⊗ ωj , (24)

where ωi = dxi+N idt and hij is the induced 3-metric on Σ. The prescription
for obtaining hij from the instanton representation is though (22), which
holds for nondegenerate Bi

a and Ψae satisfying the initial value constraints.3

Comparison of (22) with (20) indicates that dynamically on the solution
to the equations of motion,

1
8
F b

µνF
f
ρσε

µνρσ = −iNhijB
i
bB

j
f . (25)

where N = Nh−1/2. Since the initial value constraints must be consistent
with the equations of motion, we can insert (25) into (21), which yields

IInst =
1
2

∫

M
ΨaeF

a ∧ F e = −i
∫

M
NhijΨaeB

i
aB

j
ed

4x. (26)

Using Bi
e = Ψ−1

ae σ̃
i
a from (10) to eliminate Bi

a from (26), one has also that

IInst =
1
2

∫

M
ΨaeF

a ∧ F e = −i
∫

M
Nhij(Ψ−1)eaσ̃i

aσ̃
j
ed

4x. (27)

Hence the action for GR in the instanton representation evaluated on a
classical solution can be written as the average of (26) and (27), which
yields

IInst = −i
∫

M
d4xNhijT

ij (28)

with T ij is given by

T ij =
1
2
(
(Ψ−1)aeσ̃i

aσ̃
j
e + ΨaeB

i
aB

j
e

)
. (29)

Equation (29) admits a physical interpretation of the spatial energy mo-
mentum tensor for a SO(3, C) Yang–Mills theory, where Ψae plays the role

3We will show later in this paper by an independent method that this is precisely the
spatial metric for which gµν as defined in (24) is a solution to the Einstein equations.
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of the coupling constant. Specifically, (28) is the Hamiltonian for the 3+1
decomposition of Yang–Mills theory coupled to gravity, evaluated on solu-
tions to the Gauss’ law and diffeomorphism constraints.4 Starting from the
Yang–Mills action

IY M =
1
4

∫

M

d4x
√
−ggµρgνσF a

µνF
e
ρσΨae (30)

and upon identifying the Yang–Mills electric field Πi
a with the Ashtekar

densitized triad σ̃i
a, the Hamiltonian of (30) upon multiplication by a factor

of i =
√
−1, modulo the Gauss’ law and diffeomorphism constraints (Ga, Hi),

reduces to (29). Therefore on the solution to the the equations of motion of
(11), which requires Ga = Hi = 0, the following objects are equivalent5

IInst =
1
8

∫

M
d4xΨaeF

a
µνF

e
ρσε

µνρσ = − i
4

∫

M
d4x

√
−ggµρgνσF a

µνF
e
ρσΨae = −iIY M .(31)

On-shell, (31) must be true for all Ψae satisfying the kinematic constraints
(Ga, Hi) and for all curvatures F a

µν , which implies that

F a
µ′ν′ = − i

2
√
−g

gµ′µgν′νε
µνρσF a

ρσ . (32)

Equation (32) states that the four dimensional gauge curvature F a
µν of the

four dimensional connection Aa
µ = (Aa

0, A
a
i ) constructed from the self-dual

(self-dual, internally in the SO(3, C) sense) Ashtekar connection Aa
i , must

on-shell be self-dual under Hodge duality for Lorentzian signature. Hence
the instanton representation of Plebanski gravity, which we have derived
from the Ashtekar variables, provides a Hodge operator dynamically on-
shell which exposes the equivalence of gravity and Yang–Mills theory.

Another result which can be obtained is to substitute (16) into (20),
which yields

F b
µνF

f
ρσε

µνρσ = −
√
−g(Ψ−1Ψ−1)bf . (33)

Contraction of (33) with Ψfb and integration over spacetime yields

IInst =
∫

M
d4xΨbfF

b
µνF

f
ρσε

µνρσ = −
∫

M
d4x

√
−gtrΨ−1 = ΛV ol(M), (34)

4This is shown in the appendix.
5This is the same as the solution to the Einstein equation upon implementation of the

Hamiltonian constraint (18) and the identification (22), which we will show in this paper.
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where we have used the Hamiltonian constraint trΨ−1 = −Λ (18). The
quantity V ol(M) is the four dimensional volume of spacetime. Note that
the exponentiation of (34) yields

ψ = eΛ(G~)−1V ol(M), (35)

which forms the dominant contribution to the path integral for gravity due
to gravitational instantons. The difference is that now we have taken into
account Lorentzian signature.

Next, we will expose the link from the instanton representation to grav-
itational instantons through the metric representation, using the instrinsic
spatial geometry of the corresponding Yang–Mills theory.

3 Gauge curvature versus Riemannian curvature

The first step in elucidating the relation of the Yang–Mills description to
metric GR is to write the Ashtekar variables in terms purely of the spatial
geometry of 3-space Σ. Define the affine equivalent Γk

ij of the Ashtekar
connection Aa

i , in direct analogy to [4], such that

Die
a
j = ∂ie

a
j + fabcAb

ie
c
j = Γk

ije
a
k (36)

where Di is the gauge covariant derivative with respect to the SO(3, C)
gauge connection Aa

i . We will be examine the effect of the gauge covariant
derivative on symmetric and and antisymmetric combinations of the triad
eai . Define a densitized triad σ̃i

a and a 3-metric hij by

σ̃i
a =

1
2
εijkεabce

b
je

c
k ; hij = eai e

b
j . (37)

Note also that hij = (detσ̃)(σ̃−1)a
i (σ̃

−1)a
j , which is the same as (23) for

nondegenerate triads.6 The gauge covariant derivative acts on σ̃i
a via

Dmσ̃
i
a = εijkεabce

b
jDme

c
k = εijkεabce

b
jΓ

n
mke

c
n, (38)

where we have used (36) and (37). Equation (38) can then be re-written as

Dmσ̃
i
a = εijkεljnΓn

mk σ̃
l
a =

(
δi
lδ

k
n − δi

nδ
k
l

)
Γn

mk σ̃
l
a = (δi

lΓ
k
mk − Γi

ml)σ̃
l
a. (39)

6Recall that it is sufficient to establish that this is the same 3-metric that must appear
in the Einstein–Hilbert action in order that the instanton representation imply a solution
to the Einstein euqations.
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Let us now impose the Ashtekar Gauss’ law constraint on the densitized
triad Diσ̃

i
a = 0, which is the same as imposing the Gauss’ law constraint on

the Yang–Mills theory that it describes. The trace of (39) is given by

Diσ̃
i
a = (Γk

lk − Γk
kl)σ̃

l
a = 0, (40)

hence Gauss’ law implies that the trace of the torsion of Γi
jk must vanish,

where T i
jk = Γi

[jk] is the torsion. Perform the following decomposition

T i
jk = εjkmS

mi +
1
2
(
δi
jak − δi

kaj

)
(41)

where Smi = Sim is symmetric, reminiscent of the decomposition of the
structure constants of a Bianchi Lie algebra. The Gauss’ law constraint is
the same as T i

ik = 0, which from (41) implies that ak = 0. Therefore the
torsion can be written as T i

jk = εjkmS
mi, which has six degrees of freedom.

Having examined the consequences of the gauge covariant derivative for
an antisymmetric combination of triads, let us examine the consequence on
a symmetric combination. Acting on the 3-metric hij we have

Dmhij = ∂mhij = Dm(eai e
a
j ), (42)

where we have used that the metric hij is a gauge scalar due to the absence
of internal indices. Expanding (42), we have

∂mhij = eai (Dme
a
j ) + (Dme

a
i )e

a
j = eai Γ

n
mje

a
n + Γn

mie
a
ne

a
j (43)

where we have used (36). We can rewrite (43) as

∂mhij − Γn
mjhin − Γn

mihnj = ∇mhij = 0, (44)

which recognizes the covariant derivative of the 3-metric, seen as a second-
rank tensor, with respect to the connection Γk

ij . Equation (44) states that
the connection Γi

jk is compatible with the 3-metric hij constructed from the
triads. Note that this is not the Levi–Civita connection since it has torsion.

We will now compute the curvature of the connection Γi
jk starting from

Dje
a
k = Γm

jke
a
m. (45)

Acting on (45) with a second gauge covariant derivative and subtracting the
result with i and j interchanged, we get
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[Di, Dj]eak =
(
∂iΓn

jk − ∂jΓn
ik + Γn

imΓm
jk − Γn

jmΓm
ik

)
ean = Rn

kije
a
n. (46)

We recognize (46) as the three dimensional Riemann curvature tensor of the
connection Γi

jk , which is a completely spatial tensor of fourth rank. But we
can also express the left hand side of (46), using the properties of the gauge
covariant derivative, to write it in terms of the gauge curvature

[Di, Dj]eak = εijlε
lmnDmDne

a
k = εijlf

abcBl
be

c
k , (47)

where Bi
a = εijk∂jA

a
k+ 1

2ε
ijkfabcA

b
jA

c
k is the magnetic field for the connection

Aa
i . We can then equate (47) with (46), yielding

εijlf
abcBl

be
c
k = Rn

kije
a
n = RnkijE

n
a (48)

where En
a is the matrix inverse of the triad eai , such that En

a e
a
m = δn

m.
Transferring En

a to the left hand side of (48), we have

Rnkij = εijlf
cabecke

a
nB

l
b = εijlεknm σ̃

m
b B

l
b, (49)

where we have used (37).

4 Yang–Mills spatial geometry

In the developments of [4] and [5], the magnetic field Bi
a or a densitized

version plays the role of the triad Ei
a. This enables one to rewrite (49)

completely in terms of a metric φij = Bi
bB

j
b constructed from the magnetic

field Bi
a, thus leading to the Einstein space condition. But we would like to

extend this concept to more general solutions of the Einstein equations. Let
us now introduce the CDJ Ansatz

σ̃k
b = ΨbfB

k
f , (50)

where Ψbf ∈ SO(3, C)⊗ SO(3, C).7 Substituting (50) into (49), we obtain

Rijmn = εijlεmnk σ̃
l
f σ̃

k
b Ψ−1

bf . (51)

7Recall that this is the CDJ matrix, thesame matrix serving as a momentum space
variable in the instanton representation of Plebanski gravity (11). But we will arrive at
this conclusion independently through the metric representation.
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The 3-dimensional Ricci tensor, is obtained by contraction of (51) with hjn

Rim = hjnRijmn = hjnεjliεmnk σ̃
l
f σ̃

k
b Ψ−1

bf

= (deth)−1
(
hlmhik − hlkhim

)
σ̃l

f σ̃
k
b Ψ−1

bf =
(
ebie

f
m − hime

bkefk
)
Ψ−1

bf . (52)

Another contraction of (52) with him will yield the three dimensional cur-
vature scalar

R = himRim = −2(ebkefk)Ψ−1
bf . (53)

From (53) and (52) we can form the Einstein tensor

Gim = Rim − 1
2
himR = ebie

f
mΨ−1

bf . (54)

We see from (54) that the inverse CDJ matrix Ψ−1
bf has the physical interpre-

tation of the Einstein tensor for a three dimensional space Q(3) with torsion,
expressed in the triad frame. Let us perform the following decomposition

Ψ−1
bf = δbfϕ+ ψbf + εbfdψ

d (55)

where ψbf is symmetric and traceless. Setting ψd = 0 and choosing ϕ = −Λ
3 ,

where Λ is the cosmological constant, enables us to write

Ψ−1
bf = −

(Λ
3

)
δbf + ψbf , (56)

whence ψbf takes on the interpretation of the self-dual part of the Weyl
curvature tensor as introduced in [6]. To obtain (56), which is the direct
link to GR, we must impose the following constraints of Ψ−1

bf

εdbfΨ−1
bf = 0; Λ + trΨ−1 = 0. (57)

Equations (57) imply the following constraints on Gij

εkijGij = 0; Λ + himGim = 0. (58)

Note from (53) that this also implies that R = 2Λ.
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Equations (57) constitute four constraints on the nine components of
Ψbf , but general relativity should have two unconstrained degrees of free-
dom. This implies that there must be a constraint on three of the five re-
maining components of Ψbf . To determine this constraint, it will be instruc-
tive to examine the corresponding constraint on Gij . Since Gij is an Einstein
tensor, then it should satisfy the contracted Bianchi identity ∇jGij = 0. We
will obtain this by acting with the gauge covariant derivative Dk on

Gij = ebie
f
j Ψ−1

bf . (59)

Since Gij does not have internal indices, then its gauge covariant derivative is
the same as its partial derivative. Acting with the gauge covariant derivative
on (59), we have for the left hand side that DkGij = ∂kGij . Expanding the
right hand side and using (36), we have

DkGij = ∂kGij = (Dke
b
i)e

f
j Ψ−1

bf + ebi(Dke
f
j )Ψ−1

bf + ebie
f
j (DkΨ−1

bf )

= Γm
kie

b
me

f
j Ψ−1

bf + ebiΓ
m
kje

f
mΨ−1

bf + ebie
f
j (DkΨ−1

bf )

= Γm
kiGmj + Γm

kjGim + ebie
f
j (DkΨ−1

bf ). (60)

Equation (60) can be rewritten as

∇kGij = ebie
f
j (DkΨ−1

bf ), (61)

where we recognize the definition of the covariant derivative of Gij , seen
as a tensor of second rank, with respect to the connection Γk

ij . The right
hand side of (61) will have a part due to ∂kΨ−1

bf and a part free of spatial
gradients. For the first part we will use the matrix identity

∂kΨ−1
bf = −Ψ−1

ba (∂kΨac)Ψ−1
cf . (62)

Hence, expanding (61) while using (62) yields

ebie
f
j (DkΨ−1

bf ) = ebie
f
j

(
−Ψ−1

ba (∂kΨad)Ψ−1
df + fbcdA

c
kΨ

−1
df + ffcdA

c
kΨ−1

bd

)

= ebie
f
j Ψ−1

bf

(
−∂kΨad + ΨagfgcdA

c
k + fgcaA

c
kΨgd

)
Ψ−1

df . (63)

We have used the definition of the covariant derivative of a second rank
internal tensor in (63). Note that Ψ−1

ab = δabk for numerically constant k
causes (63) to vanish, which corresponds to spacetimes of Petrov type O.8

To form the contracted Bianchi identity, contract (61) with hjk , which yields
8This is the Einstein space derived in [4].
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∇jGij = −Ψ−1
ba Ψ−1

df e
b
iE

j
fDjΨad = −(Ψ−1

ba e
b
j)(Ψ

−1
df E

j
f)DjΨad. (64)

Using Ei
a = (detσ̃)−1/2σ̃i

a in conjunction with the CDJ Ansatz (50), then
(64) reduces to

∇jGij = −(GjmE
m
a )(detσ̃)−1/2Bj

dDjΨad. (65)

Defining Bj
dDjΨad ≡ wd{Ψad}, then the Bianchi identity reduces to

∇jGij = −(detσ̃)−1/2(GjmE
m
a )wd{Ψad} = 0. (66)

Hence if we require that wd{Ψad} = 0, then this guarantees that the Bianchi
identity is satisfied. So augmeting the list of constraints (57) and (58) to

εdbfΨ−1
bf = 0; Λ + trΨ−1 = 0; we{Ψae} = 0;

−→ εkijGij = 0; Λ + himGim = 0; ∇jGij = 0 (67)

completes the list of constraints on our system in order that it exhibit two
unconstrained degrees of freedom. Note that the top line of (67) are the
same constraints which appear in the instanton representation (11). The
second line of (67) expresses the same constraints on the Einstein tensor for
a 3-dimensional space having torsion.

5 Einstein–Hilbert action

We have expressed the Riemann curvature of the connection Γi
jk in terms

of gauge-related quantities, which motivates a generalization of spatial 3-
geometries vis-a-vis the CDJ matrix Ψae via the instanton representation.
We will now relate this intrinsic 3-geometry of Q(3) to the 4-geometry of
Einstein’s GR in the metric representation. First expand the full Riemann
curvature using the result of (46)

Rn
kij = ∂iΓn

jk − ∂jΓn
ik + Γn

imΓm
jk − Γn

jmΓm
ik . (68)

Then split the affine connection Γi
jk into a part compatible with the 3-metric

hij and a part due to torsion

Γi
jk = Γi

(jk) + T i
jk, (69)
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where the curvature of the metric compatible part Γi
(jk), namely the Levi–

Civita connection due to symmetry in lower indices, is given by

Rn
kij [h] = ∂iΓn

(jk) − ∂jΓn
(ik) + Γn

(im)Γ
m
(jk) − Γn

(jm)Γ
m
(ik). (70)

Substituting (69) into (68) and using (70), we have

Rn
kij = Rn

kij [h] + Tn
imT

m
jk − Tn

jmT
m
ik

+∂iT
n
jk + Γn

(im)T
m
jk + Γm

(jk)T
n
im − ∂jT

n
ik − Γn

(jm)T
m
ik − Γm

(ik)T
n
jm. (71)

Next, contract (71) by summing over n = i to obtain the three dimensional
Ricci tensor, in conjunction with using T i

im = 0 from (40).9 Then the first
line of (40) reduces to

Rkj = Rkj [h] + T i
imT

m
jk − T i

jmT
m
ik = Rkj [h]− T i

jmT
m
ik , (72)

and the second line of (71) reduces to

∂iT
i
jk + Γi

(im)T
m
jk − Γi

(jm)T
m
ik − Γm

(ik)T
i
jm = ∇iT

i
jk, (73)

where ∇iT
i
jk is the covariant divergence of the torsion T i

ji with respect to
the Levi–Civita connection Γi

(jk). We will next combine (73) with (72) and
contract with hjk to form the three dimensional curvature scalar. Note that
this contraction annihilates (73) due to antisymmetry of the torsion, and we
are left with

R = R[h]− hkjTn
jmT

m
nk . (74)

as implied by (71). Recall the following decomposition due to the Gauss’
law constraint on (41)

Tn
jm = εjmlS

ln. (75)

Subsituting (75) into (74), we obtain the following expression for the term
quadratic in torsion

hkjTn
jmT

m
nk = hkjεksnεjmrS

smSnr

= (deth)−1
(
hnrhsm − hnmhsr

)
SrnSsm = (deth)−1

(
(trS)2 − SsmS

sm
)
. (76)

9Recall that this is a direct consequence of the Gauss’ law constraint in the Ashtekar
variables, and equivalently so in the instanton representation.
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Let us make the definition

Sij = β
√
hKij (77)

where β is a numerical constant.10 Then substitution of (77) into (76) and
(74) yields

R = R[h]− β2
(
(trK)2 − trK2

)
. (78)

Multiplication of (78) by
√
−g = N

√
h and integration over spacetime yields

I =
∫
dt

∫

Σ
d3xN

√
h
(

(3)R[h]− β2
(
(trK)2 − trK2

))
. (79)

If we identify Kij with the extrinsic curvature of 3-space Σ, then the right
hand side of (79) for β = i would correspond to the 3+1 decomposition of
the Einstein–Hilbert action. To make this association, which solidifes the
link between the intrinsic spatial 3-geometry of Yang–Mills theory and a
4-geometry, it suffices to perform a Legendre transformation of (79) into the
Hamiltonian description using a canonical structure πij ḣij , where

πij = β
√
h
(
Kij − hij(trK)

)
(80)

is the momentum canonically conjugate to the 3-metric hij .
We have expressed the Einstein–Hilbert action in terms of an intrinsic

spatial geometry with torsion, and we have shown that the instanton repre-
sentation is equivalent to a Yang–Mills theory where Ψbf plays the role of a
coupling constant. The instanton representation was derived directly from
the Ashtekar formulation of GR, but we would like to derive this directly
from the metric representation. First note on account of the CDJ Ansatz
that (51) can be written in the equivalent form

Rijmn = εijlεmnk σ̃
l
f σ̃

k
b Ψ−1

bf = εijlεmnk σ̃
l
fB

l
fB

k
b Ψbf . (81)

By taking in the average of both forms in (81) we can write the Riemann
curvature tensor as

Rijmn = εijlεmnkT
lk, (82)

10We will ultimately identify β with the Immirzi parameter from the Ashteka variables.
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where T lk is given by (29). The double contraction of (82) yields the curva-
ture scalar

R = himhjnRijmn = (deth)−1hlkT
lk, (83)

where we have used the property of determinants of three by three matrices.
To obtain the Einstein–Hilbert action (79), we multiply (83) by

√−g =
N
√
h and integrate over spacetime. This yields

IEH =
∫

m

d4x
√
−g(4)R =

∫
dt

∫

Σ

d3xNhlkT
lk, (84)

which is the same as (28) derived from the instanton representation. Since
the 3-metric hij appearing in (80) is the same metric which from (22) leads to
the identification of the instanton representation with Yang–Mills theory, it
follows that this same theory is also another representation of the Einstein–
Hilbert action.

6 Discussion and conclusion

In this paper we have shown the following things. (i) The self-dual Ashtekar
formulation of general relativity leads to the instanton representation of Ple-
banski gravity when the Ashtekar magnetic field Bi

a and and the CDJ matrix
Ψae are nondegenerate. On solutions to the diffeomorphism constraint the
instanton representation implies the emergence of a hodge duality operator
when the equation of motion for Ψae is satisfied. This operator arose due to
the equality between the ΨF ∧ F term and the corresponding Yang–Mills
action implied by the emergence of a spatial 3-metric hij = hij [Ψ, A]. This
implies that the curvature F a

µν of the four dimensional gauge connection
Aa

µ = (Aa
0, A

a
i ) is hodge self-dual.11 Additionally, it implies that the CDJ

matrix field Ψae is the coupling constant for this gravitational Yang–Mills
theory.

(ii) Having solidified the gravity/Yang–Mills association via the chain
IAsh → IInst → IY M , the latter link arising on-shell, we moved on to
the metric representation. By expressing the Yang–Mills variables in the
metric representation, we showed that the Gauss’ law constraint implies a
3-dimensional Riemannian space with torsion, defined as Q(3). We estab-
lished the link from this space to the instanton representation via the CDJ
Ansatz, showing that the CDJ matrix is essentially the Einstein tensor for
Q(3). The link carried over the same identification of GR with Yang–Mills
theory, except now with respect to Q(3).

11Note that Yang–Mills instantons also have this property.
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(iii) To finalize the link from Yang–Mills theory to Einstein’s GR, we
showed thatQ(3) is the same as 4-dimensional spacetime solving the Einstein
equations. From the Gauss’ law constraint, the torsion of Q(3) possesses
six rather than nine degrees of freedom. By associating these degrees of
freedom with the extrinsic curvature tensor Kij , we showed that the (3-
dimensional) Riemann curvature tensor of Q(3) is the same as the (four
dimensional) Riemann curvature tensor via the 3+1 ADM decomposition of
GR. It is instructive to perform these steps in reverse, hence the link IEH →
IADM → IY M . The rightmost part of this chain arises from identifying
entrinsic curvature with torsion, which leads to the CDJ Ansatz.

The result is that on-shell, the instanton representation implies a solu-
tion to the Einstein equations for spacetimes where Ψae is nondegenerate as
a three by three matrix.12 Moreover, Einstein’s GR dynamically takes on
the form of a Yang–Mills theory where the Yang–Mills curvature is Hodge
self-dual. This notion of Hodge self-duality arose presicely due to the in-
stanton representation of Plebanski gravity and would not be obvious either
from the Ashtekar formalism or from the metric formalism for such general
spacetimes. For this reason we provide as a result of this paper the precise
association of the instanton representation of Plebanski gravity to gravita-
tional instantons, by which we mean instantons in the Yang–Mills sense.
The following link can be written by association

IEH −→ −i
∫
dt

∫

Σ
d3xNhijT

ij −→ 1
2

∫

m
ΨbfF

b ∧ F f −→ IInst. (85)

The notation in (85) signifies that the action has been evaluated on the
solution to the equations of motion, though we still should have IEH = IInst

irrespective of this. We can take (85) off shell to the spatially diffeomorphism
invariant level, and write it in the form

I =
∫

M

[1
2
ΨbfF

b ∧ F f −
√
−g(Λ + trΨ−1)d4x

]
. (86)

If we associate a Lie algebra element T a to F = T aF a, then equation (85)
amounts to embedding the Hamiltonian constraint of GR into an F ∧ F
term, where the Cartan–Killing form is given by

tr(TaTb) =
1
2
Ψab. (87)

For the case Ψae = kδab for numerically constant k, the Hamiltonian con-
straint implies k = − 3

Λ and we obtain a term reembling the Pontryagin

12This is spacetimes of Petrov types I, D and O where the CDJ matrix possesses three
linearly independent eigenvectors.
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form. This corresponds to spacetimes of Petrov Type O, the Einstein ge-
ometries derived in [4] and [5]. In the more general case, Ψab is now a field
which encodes the gravitational degrees of freedom through the algebraic
classification of the corresponding spacetime that it describes [8].

7 Appendix: Hamiltonian formulation of Yang–

Mills theory

The Lagrangian density for Yang–Mills theory coupled is given by

LY M =
1
4
√
−ggµρgνσF a

µνF
e
ρσΨae, (88)

where Ψae will e regarded as an internal group metric. The 3+1 decompo-
sition of (88) is given by

LLM =
√
−g
2

(
g00gijF a

0iF
e
0j + 2g0igjkF a

0jF
e
ik + gijgklF a

ikF
e
jl

)
Ψae. (89)

We will make use of the 3+1 decomposition of the contraviant spacetime
metric

gµν =

(
− 1

N2
N i

N2

N j

N2 hij − N iN j

N2

)
,

as well as the relations

F a
ij = εijkB

k
a ; hijhklεikmεjln = (deth)−1hmn. (90)

The momentum conjugate to the connection Aa
i is given by

Πi
a =

δSY M

δȦa
i

=
√
−g
(
g00gijF e

0j + g0jgikF e
jk − g0ig0jF e

0j

)
Ψae. (91)

The individual terms in brackets on the right hand side of (91) are given by

√
−gg00gijF e

0j =
√
−gg00

(
hij − N iN j

N2

)
F e

0j =
√
−gg00hijF e

0j +
√
−g
(N iN j

N4

)
F e

0j (92)

for the first term,

√
−gg0jgikF e

jk =
√
−gN

j

N2

(
hik − N iNk

N2

)
εjklB

l
e = −

√
−gg00εjklN

jhikBl
e,(93)
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for the second term, where we have used antisymmetry to eliminate its
second contribution. The third term in brackets in (91) is given by

−
√
−gg0ig0jF e

0j = −
√
−g
(N iN j

N4

)
F e

0j , (94)

which cancels the second term on the right hand side of (92). Combining
(94), (93) and (92), we have that the momentum canonically conjugate to
the connection Aa

i is given by

Πi
a =

√
−gg00

(
hijF e

0j − εjklN
jhikBl

e

)
Ψae. (95)

Inverting the relation in equation (95), we obtain

F e
0m =

( 1√
−gg00

Πi
ahim + εjmlN

jBl
e

)
Ψ−1

ae . (96)

Substitution of (96) into (89) and performing a Legendre transformation,
we obtain the Yang–Mills Hamiltonian

HY M =
∫

Σ

d3x(NHY M +N iHi −Aa
0Ga

)
, (97)

where

H = hij

(
Ψ−1

bf Πi
bΠ

j
f + ΨbfB

i
bB

j
f

)
; Hi = εijkΠj

aB
k
a ; Ga = DiΠi

a. (98)
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