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Abstract

We show that GR can be written literally as a Yang—Mills theory
coupled to gravity, where the antiself-dual Weyl curvature (CDJ ma-
trix) plays the role of the coupling constant. On solutions to the Ein-
stein equations, a Hodge duality operator emerges and the Yang—Mills
curvature becomes self-dual. This effect causes a dynamical reduction
of the Yang—Mills theory to Einstein’s GR. We prove this using the
instanton representation of Plebanski gravity combined with the in-
trinsic spatial geometry of Yang—Mills theory. Additionally, we prove
this same result via the metric description of gravity. This result im-
plies the existence of gravitational instanton solutions to the Einstein
equations for spacetimes of Petrov type I, D and O.



1 Introduction: Yang—Mills theory

In SU(2) Yang-Mills theory the phase space variables are Qyy = (E¢, A%),
the Yang-Mills electric field and the SU(2) gauge connection A¢. The action
for a SU(2) Yang-Mills theory can be written in first order form as!

IYM = /dt/ dslﬂEéA?‘i’AgDzEé_H(E?A)’ (1)
b

where H(E, A) is the Hamiltonian for the theory, written on the phase space
Qy . In this paper we will point out some interesting theories which can
result from different choices of H. For ordinary SU(2) Yang-Mills theory
on a flat Minkowski spacetime background we have
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Hyys = 560u(9 ELE] + g°ByB]) = 6,77, @)

where g is the coupling constant and B! = eijkajAz + %eijk fabcAgAz is the
Yang—Mills magnetic field. All Yang—Mills theories will have the Gauss’
Law constraint G, = D;E!, which signifies the invariance of the theory
under SU(2) gauge transformations.

In this paper we will re-write gravity as a Yang—Mills theory. An exam-
ple of such a theory is the Ashtekar formalism of GR ([1],[2],[3]). In this
formalism one complexifies the phase space and makes the identification
Ei — &% of the electric field with a densitized triad. This densitized triad
can be written as an antisymmetric combination of spatial triads e, where

1 o

o, = §ewkeabce;’»e§ — f = €jpo,dz? A dz* (3)
which defines a spatial two form f. The spatial triads in symmetric combi-
nation determines a spatial 3-metric h;;, given by

— d82 = hwdllﬁl & d:l?j. (4)
b

Equations (3) and (4) presumably encode the same information, and should

lead to alternate but equivalent descriptions of GR. The Ashtekar formalism,

which uses o}, as a basic momentum space variable, can be written as

!By the convention of the paper, symbols a,b,c,... from the beginning part of the
Latin alphabet signify internal indices and symbols i,j,k,... from the middle signify
spatial indices in 3-space .



L = / dt / Pa5i A 4 ASDF — H(5, A), (5)
b
with a Hamiltonian given by

. ) i A
H 4y, = EijkNZUng + §ﬂ€ijk€abcazag (Béf + §U§>’ (6)

where N#* = (N, N?) are auxilliary fields with N = N(dets)~/2. The
Ashtekar connection is given by

AY =Y + BKY, (7)

where I'{ is the spin connection compatible with the triad ef, and K is the
triadic form of the extrinsic curvature of 3-space ¥ and 3 is the Immirzi
parameter.

In this paper we will rewrite general relativity in a form more closely re-
sembling (1) subject to (6), which makes its relation to the 3-geometry more
explicit. Equation (2) is the contraction of the spatial energy momentum
tensor T% of Yang-Mills theory with a Euclidean 3-metric 0;5, and there-
fore corresponds to a theory of Yang—Mills theory propagating on a flat
background. We will show that the generalization of (2) to more general
geometries is given by
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where and U,y € SO(3,C) ® SO(3,C) is a complex three by three ma-
trix taking values in two copies of the special complex orthogonal group
SO(3,C). The energy momentum tensor (8) couples to the quantity Nh;,
where N = Nh~/2 is the densitized lapse function and hi; is the spatial
part of the metric g, solving the Einstein equations. The result is a complex
Yang—Mills theory of gravity, where the gravitational degrees of freedom are
neatly encoded in Wyy, which plays the role of the Yang-Mills coupling con-
stant. In this theory, gravity is coupled to the same Yang—Mills field which
describes gravity, and is in this sense a self-coupling.

To accomplish the aim of the present paper we will harness the relation
of nonabelian gauge theory to intrinsic spatial geometry which has been
exposed by previous authors within the Yang—Mills context. Some of the
main ideas contained in this paper have been applied in [4] and [5], where the
authors uncover a natural spatial geometry encoded within SU(2) and SU(3)
Yang-Mills theory. It is shown how using locally gauge-invariant quantities,



one obtains a geometrization of these gauge theories. The geometry thus
uncovered is limited to that of Einstein spaces, given by

R;; = kh;j, 9)

where R;; is the Ricci tensor of a three dimensional space with torsion. The
property of (9) which enables it to describe a four dimensional geometry
directly in terms of an intrinsic spatial 3-geometry is the fact that the space
is allowed to have torsion. In this paper we will generalize (9) to include
more general solutions of the Finstein equations, specifically exhibiting the
two degrees of freedom of GR.

The organization of this paper is as follows. In section 2 we derive the
instanton representation of Plebanski gravity, showing how a spatial 3-metric
and a Hodge duality operator arise dynamically on solutions to the equations
of motion. The implication is that the corresponding spacetime metric solves
the Einstein equations, a proof which we carry out in the remainder of the
paper by explicit construction. Another result of section 2 is the equivalence
on-shell of the instanton representation to Yang—Mills theory with self-dual
curvature. Sections 3 and 4 uses the intrinsic spatial geometry of the Yang—
Mills theory thus described to construct a 3-dimensional Riemann space with
torsion. In section 4 we prove the equivalence of the action for this space
with the aforementioned Yang—Mills action, as well as with the Einstein—
Hilbert action. This latter step required the association of the torsion of

Q(3)

2 Instanton representation of Plebanski gravity

The phase space for the instanton representation of Plebanski gravity is
Qrnst = (Yge, AY). A is the same self-dual SO(3,C) connection of the
Ashtekar variables, and ¥, € SO(3,C) ® SO(3,C) known as the CDJ ma-
trix, which is the self-dual part of the Weyl curvature expressed in SO(3, C)
language. We will see that this is actually the same matrix appearing in (8).
We can write (5) on the phase space Qs using the CDJ Ansatz

ol =W, B!, (10)

Introduced in [6]. Equation (10) holds as long as (detB) # 0 and (det¥) # 0,
which we will assume for the purposes of this paper. Substitution of (10)
into (5) and (6) yields



Irnst = / dt / BV, B AY + AYB.D;V .
%

_EZJICNZBZ,BE\Pae _ZN(detB)l/z\/M(A—|—tr\Ij_1) (11)

where we have used the Bianchi identity D; B = 0. By integration by parts
combined with discarding of boundary terms as well as using the Bianchi
identity, the first two terms of (11) can be combined into the form

W BLAY + ASB.D; W, — U, BY(AY — D;AS) = U, BLFS,, (12)

where F{; are the temporal components of the curvature of a four dimen-
sional connection Af,. Making the definition Bl = %eiij quv where

FS, = 0,A% — 9,A% + [ AL A, (13)
and defining *9% = €% with €'?® = 1, we can rewrite (11) by separating
U, into symmetric and antisymmetric parts. This yields

Ilnst:/ d4 ( v, Fﬁprecr etre
+(BFy] —eijkNiBng)\Ifae—z’N(detB)l/z\/det\I!(A—|—tr\If_1)>. (14)

The equation of motion for N derived from (11) implies that Wi = 0, or
that W, is symmetric. We can use this to eliminate the first two terms in the
second line of (14). We can write tr® ! directly in terms of its eigenvalues
(A1, A2, Ag), where W, is taken to be symmetric. Additionally, the following
relation will be useful

iN(detB)Y/2V/det¥ = iNVh = /=g, (15)

the first equality coming from the determinant of (10) and the second equal-
ity coming from the expression of \/—g = ,/detg,, via its 34+1 decomposi-
tion. Using all of these relations enables us to write (14) on-shell as

1 1
Iinst = d4<\IfFaFe woo /= (A —+—+5)) (16
Inst /M 3 ot po€ + + ‘|‘ /\2 + /\3 ( )
Equation (16) will be known as the instanton representation of Plebanski
gravity on the diffeomorphism-invariant phase space €4;f, since the diffeo-
morphism constraint has been implemented.?

2The association to Plebanski gravity is derived in [7], where the starting action (17)
is derived directly from the Plebanski starting action. The association to gravitational
instantons will be made precise in the present paper.



Let us rewrite (16) in the form

1
Trnst = / d%[gllfbeﬁl,Fer“”p"—z’N(detB)\/det\If(A—I—tr\If_l) . (17)
M

The equation of motion for N for (detB)'/2v/det¥ # 0 implies the constraint

1 1 1
H=A+—+4—+—=0, 18
+ N + e + " (18)
which enables us to write A3 explicitly as a function of A1 and Ao. Then the
equation of motion for Wy is given by

I 1 ]
Oinst _ L po pr cwer _ L n(get B) (0 ) VATB(A + oY)
OWy g w P 2

+iN(detB)Y?Vdet W (¥ 1w~ = 0. (19)

The middle term on the right hand side of (19) vanishes on account of the
Hamiltonian constraint (18), which reduces the equation to

1
gFﬁyF,g;e“W = —iN(detB)Y/?Vdet @ (U 1o 1)b/ (20)

2.1 Dynamical Hodge duality operator

We will now make more precise the relation of the instanton representation
of Plebanski gravity to gravitational instantons. The action (16) on the
solution to the equations of motion is given by

1 1
Tinet = = / d'xWy FY Pl e = / Uy FO A FY ‘ : (21)
8 Jm 2 Ju H=0

where we have defined the curvature two form F¢ = %F udat A dz”. Re-

turning to (20), the physical interpretation arises from the identification

(2

hij = (det®) (T~ W), (B~H)Y(B™1) ! (detB) (22)

with the intrinsic 3-metric of 3-space X. Upon use of (10) in the form
Ul = B{(671)¢ equation for nondegenerate metrics (22) yields

hh' =Gl 5, (23)



which is the relation of the Ashtekar densitized triad to the 3-metric h;;. In
the instanton representation the spacetime metric g, is a derived quantity
since it does not appear in the starting action (11) except for the tempo-
ral components N* = (N, N%) = (goo, go;), which are needed in order to
implement the initial value constraints. The spacetime metric is given by

d32 = guydgpﬂdgpy = —detz + hwwl X wj, (24)

where w! = dz'+N'dt and hi; is the induced 3-metric on . The prescription
for obtaining h;; from the instanton representation is though (22), which
holds for nondegenerate B! and ¥, satisfying the initial value constraints.?

Comparison of (22) with (20) indicates that dynamically on the solution
to the equations of motion,

1 o
gngFg;eWW = —iNh;; ByBj. (25)

where N = Nh=1/2. Since the initial value constraints must be consistent
with the equations of motion, we can insert (25) into (21), which yields

1 o
Itnst = 5/ \IjaeFa NF© = _Z/ MhijqjaeBngdéllﬂ- (26)
M M

Using B! = ¥, !5% from (10) to eliminate B from (26), one has also that

1 i
It = 3 / N / Nhy; (05 5 d. (27)
M M

Hence the action for GR in the instanton representation evaluated on a
classical solution can be written as the average of (26) and (27), which
yields

i = i [ dbeNhy T (28)
M
with T% is given by
1 e .
TV = S((07)"“5i5] + Vae B, BY). (29)

Equation (29) admits a physical interpretation of the spatial energy mo-
mentum tensor for a SO(3, C) Yang-Mills theory, where ¥,. plays the role

3We will show later in this paper by an independent method that this is precisely the
spatial metric for which g,, as defined in (24) is a solution to the Einstein equations.



of the coupling constant. Specifically, (28) is the Hamiltonian for the 3+1
decomposition of Yang—Mills theory coupled to gravity, evaluated on solu-
tions to the Gauss’ law and diffeomorphism constraints.* Starting from the
Yang—Mills action

1
Iyy = Z/ d4$\/—gg“pg”0FﬁyF§U\Pae (30)
M

and upon identifying the Yang-Mills electric field IT{ with the Ashtekar
densitized triad ¢, the Hamiltonian of (30) upon multiplication by a factor
of i = v/—1, modulo the Gauss’ law and diffeomorphism constraints (G, H;),
reduces to (29). Therefore on the solution to the the equations of motion of
(11), which requires G, = H; = 0, the following objects are equivalent®

1 .
Itnst = ] /M d4$qjaeFﬁuF§creuypg = _% /M d4$\/ _ggupgl/UFﬁpreU\Ijae = —ilynm.(31)

On-shell, (31) must be true for all ¥, satisfying the kinematic constraints

(Ga, H;) and for all curvatures Fj,, which implies that

Fﬁ’u’ = —Jﬁgwygl/u
Equation (32) states that the four dimensional gauge curvature F| 1 of the
four dimensional connection A}, = (Af, AY) constructed from the self-dual
(self-dual, internally in the SO(3, C) sense) Ashtekar connection AY, must
on-shell be self-dual under Hodge duality for Lorentzian signature. Hence
the instanton representation of Plebanski gravity, which we have derived
from the Ashtekar variables, provides a Hodge operator dynamically on-
shell which exposes the equivalence of gravity and Yang—Mills theory.

Another result which can be obtained is to substitute (16) into (20),
which yields

o e (32)

Fﬁng‘Ueﬂ”ﬁg = —/—g(T e hHb/, (33)

Contraction of (33) with Wy, and integration over spacetime yields

Irnst = / d'xWy FY P e = — / dz\/—gtrU~! = AVol(M), (34)
M M

4This is shown in the appendix.
5This is the same as the solution to the Einstein equation upon implementation of the
Hamiltonian constraint (18) and the identification (22), which we will show in this paper.



where we have used the Hamiltonian constraint tr¥ ! = —A (18). The
quantity Vol(M) is the four dimensional volume of spacetime. Note that
the exponentiation of (34) yields

= eA(Gh)*lVol(M)7 (35)

which forms the dominant contribution to the path integral for gravity due
to gravitational instantons. The difference is that now we have taken into
account Lorentzian signature.

Next, we will expose the link from the instanton representation to grav-
itational instantons through the metric representation, using the instrinsic
spatial geometry of the corresponding Yang—Mills theory.

3 Gauge curvature versus Riemannian curvature

The first step in elucidating the relation of the Yang-Mills description to
metric GR is to write the Ashtekar variables in terms purely of the spatial
geometry of 3-space Y. Define the affine equivalent I' fj of the Ashtekar
connection A¢, in direct analogy to [4], such that

Diet = 0yt + fobe Ales = Thief (36)

where D; is the gauge covariant derivative with respect to the SO(3,C)
gauge connection Af{. We will be examine the effect of the gauge covariant
derivative on symmetric and and antisymmetric combinations of the triad
e?. Define a densitized triad &% and a 3-metric h;; by

1

.= Ee”keabce?ez; hij = e?eb». (37)
Note also that h;; = (detE)(E‘l)?(E_l);?, which is the same as (23) for
nondegenerate triads. The gauge covariant derivative acts on &' via

~q ijk b c ijk byn c
Dy,o., =€ €abcej Dimey, = € J €abcCi L pen, (38)

where we have used (36) and (37). Equation (38) can then be re-written as

Do, = €¥ eIy 00, = (5552 - 5Z5f)rﬁnk52 = (6iTF,, —Th )5k, (39)

SRecall that it is sufficient to establish that this is the same 3-metric that must appear
in the Einstein—Hilbert action in order that the instanton representation imply a solution
to the Einstein euqations.



Let us now impose the Ashtekar Gauss’ law constraint on the densitized
triad D;a% = 0, which is the same as imposing the Gauss’ law constraint on
the Yang—Mills theory that it describes. The trace of (39) is given by

D5l = (T, — Tfy)ah = 0, (40)

hence Gauss’ law implies that the trace of the torsion of I' ;k must vanish,
where T Jlk =T fjk] is the torsion. Perform the following decomposition

. 1 .
Tj), = €jkmS™ + 3 (5;»% — 5,@(1)') (41)

where S™ = S is symmetric, reminiscent of the decomposition of the
structure constants of a Bianchi Lie algebra. The Gauss’ law constraint is
the same as T}, = 0, which from (41) implies that a; = 0. Therefore the
torsion can be written as T’ ;k = ejkmSmi, which has six degrees of freedom.

Having examined the consequences of the gauge covariant derivative for
an antisymmetric combination of triads, let us examine the consequence on
a symmetric combination. Acting on the 3-metric h;; we have

Dphij = Ophij = Di(€f€}), (42)

where we have used that the metric h;; is a gauge scalar due to the absence
of internal indices. Expanding (42), we have

Omhij = €f (Dme]) + (Dmef)ej = ey, eq + T ened (43)

where we have used (36). We can rewrite (43) as

amhij — F:Lnjhm — F:Lmhnj = thw = 0, (44)

which recognizes the covariant derivative of the 3-metric, seen as a second-
rank tensor, with respect to the connection I' fj Equation (44) states that
the connection I' ; i is compatible with the 3-metric h;; constructed from the
triads. Note that this is not the Levi—Civita connection since it has torsion.

We will now compute the curvature of the connection I' ;k starting from

Djey = Ten,. (45)

Acting on (45) with a second gauge covariant derivative and subtracting the
result with ¢ and j interchanged, we get



[Di, Dyl = (0T — T + Thal = Thlik ) = Riyen.  (46)

We recognize (46) as the three dimensional Riemann curvature tensor of the
connection I' ;k, which is a completely spatial tensor of fourth rank. But we
can also express the left hand side of (46), using the properties of the gauge
covariant derivative, to write it in terms of the gauge curvature

[Di, Djlef = €j1€™ Dy, Dyels = €1 f** Bl (47)

where B! = ¢ k 0; A7+ %eij k fabcAgAz is the magnetic field for the connection
A?. We can then equate (47) with (46), yielding

Eijlfachll;ez = Zijegz = RnkijEZf (48)
where E]' is the matrix inverse of the triad ef, such that Elel = 4.

Transferring E7' to the left hand side of (48), we have

cab _c¢ _a pl ~m pl
Rukij = €1 [ eien By = €iji€knm 0y By, (49)

where we have used (37).

4 Yang—Mills spatial geometry

In the developments of [4] and [5], the magnetic field B’ or a densitized
version plays the role of the triad E:. This enables one to rewrite (49)
completely in terms of a metric ¢¥ = Bng constructed from the magnetic
field B!, thus leading to the Einstein space condition. But we would like to
extend this concept to more general solutions of the Einstein equations. Let
us now introduce the CDJ Ansatz

&y = Uy B, (50)

where W,,r € SO(3,C) ® SO(3,C).7 Substituting (50) into (49), we obtain

Rijmn = Eijlemnkaéfallqub_fl' (51)

"Recall that this is the CDJ matrix, thesame matrix serving as a momentum space
variable in the instanton representation of Plebanski gravity (11). But we will arrive at
this conclusion independently through the metric representation.

10



The 3-dimensional Ricci tensor, is obtained by contraction of (51) with h/"

j in ~l ~kg,—1
R = hjnRijmn = h’ €jli€mnk0 fOp \Ijbf

= (deth)_l (hlmhik — hlkhzm)ﬁéﬁﬁllf;fl = (ebefn — himebkeg)qu_fl. (52)

(3

Another contraction of (52) with h“™ will yield the three dimensional cur-
vature scalar

R = h"Rip = =2(" e )W, ! (53)

From (53) and (52) we can form the Einstein tensor

Gim = Rim — himR = ei-’efnllf_l. (54)

1
2 f

We see from (54) that the inverse CDJ matrix \Ifb_fl has the physical interpre-
tation of the Einstein tensor for a three dimensional space Q) with torsion,

expressed in the triad frame. Let us perform the following decomposition

Uy = Gpp0 + oy + evat” (55)
where 95 is symmetric and traceless. Setting p® = 0 and choosing ¢ = —%,
where A is the cosmological constant, enables us to write

_ A
\Ijbfl = _<§>5bf +¢bfa (56)

whence vy takes on the interpretation of the self-dual part of the Weyl
curvature tensor as introduced in [6]. To obtain (56), which is the direct
link to GR, we must impose the following constraints of \Ifb_fl

Edbf\lfb_fl =0; A+ tro ! = 0. (57)

Equations (57) imply the following constraints on Gi;

G =0, A+ h™MGyp =0, (58)

Note from (53) that this also implies that R = 2A.

11



Equations (57) constitute four constraints on the nine components of
Uy, but general relativity should have two unconstrained degrees of free-
dom. This implies that there must be a constraint on three of the five re-
maining components of ¥y;. To determine this constraint, it will be instruc-
tive to examine the corresponding constraint on G;. Since Gj; is an Einstein
tensor, then it should satisfy the contracted Bianchi identity V7 Gij = 0. We
will obtain this by acting with the gauge covariant derivative Dy on

Gij = ebel v (59)

Since G;; does not have internal indices, then its gauge covariant derivative is
the same as its partial derivative. Acting with the gauge covariant derivative
on (59), we have for the left hand side that D;G;; = 0xG;j. Expanding the
right hand side and using (36), we have

DyGij = 0xGij = (Dyed)el Wt + €2 (Del )W + ebed (D7)
klebef\Ifbf—l—eF el Uy —|—ee(Dk\If H

Equation (60) can be rewritten as

ViGij = e?eg(Dk\Ifb_fl), (61)

where we recognize the definition of the covariant derivative of Gj;, seen
as a tensor of second rank, with respect to the connection I' fj The right

hand side of (61) will have a part due to ak\Ifb_fl and a part free of spatial
gradients. For the first part we will use the matrix identity

Ry = =0 N (OpWae) V- (62)

Hence, expanding (61) while using (62) yields

eﬁ-’ef(Dk‘P;fl) = e?ef( \Ijbal(akqjad)qjdf + fbchk‘I’df + freadi ¥y >
:

We have used the definition of the covariant derivative of a second rank
internal tensor in (63). Note that ¥ ' = 4k for numerically constant k
causes (63) to vanish, which corresponds to spacetimes of Petrov type O.%
To form the contracted Bianchi identity, contract (61) with 7, which yields

8This is the Einstein space derived in [4].

12



VG = =0 W S BID; g = — (U D) (U3 B D Waq. (64)

Using E! = (dets)~1/25% in conjunction with the CDJ Ansatz (50), then
(64) reduces to

VIGi; = —(GjmED)(detd) /2 BID; Uy, (65)

Defining BéDj\I!ad = wy{Wuq}, then the Bianchi identity reduces to

VjGij = —(detg)_1/2(Gij2n)Wd{\Ijad} = 0. (66)

Hence if we require that wg{¥,4} = 0, then this guarantees that the Bianchi
identity is satisfied. So augmeting the list of constraints (57) and (58) to

Edbf‘lfb_f1 =0; A4tr0 ! =0; w{T.}=0;

completes the list of constraints on our system in order that it exhibit two
unconstrained degrees of freedom. Note that the top line of (67) are the
same constraints which appear in the instanton representation (11). The
second line of (67) expresses the same constraints on the Einstein tensor for
a 3-dimensional space having torsion.

5 Einstein—Hilbert action

We have expressed the Riemann curvature of the connection I' ;k in terms
of gauge-related quantities, which motivates a generalization of spatial 3-
geometries vis-a-vis the CDJ matrix ¥,. via the instanton representation.
We will now relate this intrinsic 3-geometry of Q®) to the 4-geometry of
Finstein’s GR in the metric representation. First expand the full Riemann
curvature using the result of (46)

kij = Ol — O30, + T3 Tk — T Ui (68)

Then split the affine connection I' ; ;. into a part compatible with the 3-metric
hi; and a part due to torsion

L% = Ty + T (69)

13



where the curvature of the metric compatible part I" Z('j k) namely the Levi-
Civita connection due to symmetry in lower indices, is given by

kijlh] = 0Ly — 05T (iny + Ty Ly — Ty Ly - (70)
Substituting (69) into (68) and using (70), we have

n o __ n m n m
kij sz [h] im*jk = LTimtik
J J J

0T + TGy Ti + L0 Tim = 05Tk = V() Tk = Ly Tjim- - (71)

Next, contract (71) by summing over n = ¢ to obtain the three dimensional
Ricci tensor, in conjunction with using 77 = 0 from (40).° Then the first
line of (40) reduces to

Rkj = Rkﬂ[h] + iim ;Z - ;m ik Rkj[h] - ;m ZI?? (72)
and the second line of (71) reduces to

where V,;T Jlk is the covariant divergence of the torsion T’ ;Z with respect to
the Levi-Civita connection I’ %jk)' We will next combine (73) with (72) and

contract with h7% to form the three dimensional curvature scalar. Note that
this contraction annihilates (73) due to antisymmetry of the torsion, and we
are left with

R = R[h] — WM T}, T (74)

as implied by (71). Recall the following decomposition due to the Gauss’
law constraint on (41)

Tj = €mS™ (75)

Subsituting (75) into (74), we obtain the following expression for the term
quadratic in torsion

kj sm Qnr
h jm nk = R* Eksnejmrs S

= (deth) ™ (hprhsm — hamhs ) S™"S™™ = (deth) ™' ((t15)? — S5m S*™). (76)

9Recall that this is a direct consequence of the Gauss’ law constraint in the Ashtekar
variables, and equivalently so in the instanton representation.

14



Let us make the definition

S = BVRKY (77)

where (3 is a numerical constant.'® Then substitution of (77) into (76) and
(74) yields

R = R[h] - B*((trK)* — trK?). (78)

Multiplication of (78) by /—g = N v/h and integration over spacetime yields

= / dt /E PN V(B RD) - (1K) — 0K?) ). (79)

If we identify Kj;; with the extrinsic curvature of 3-space X, then the right
hand side of (79) for 5 = i would correspond to the 3+1 decomposition of
the Einstein—Hilbert action. To make this association, which solidifes the
link between the intrinsic spatial 3-geometry of Yang—Mills theory and a
4-geometry, it suffices to perform a Legendre transformation of (79) into the
Hamiltonian description using a canonical structure 7% hij, where

7 = BVh(KY — h (1K) (80)

is the momentum canonically conjugate to the 3-metric h;;.

We have expressed the Einstein—Hilbert action in terms of an intrinsic
spatial geometry with torsion, and we have shown that the instanton repre-
sentation is equivalent to a Yang-Mills theory where Wy, plays the role of a
coupling constant. The instanton representation was derived directly from
the Ashtekar formulation of GR, but we would like to derive this directly
from the metric representation. First note on account of the CDJ Ansatz
that (51) can be written in the equivalent form

Rijmn = Eijlemnkgjcaqub_fl = eijlemnkE}B}B{f\Ifbf. (81)

By taking in the average of both forms in (81) we can write the Riemann
curvature tensor as

Rijmn = €iji€mne T, (82)

1"We will ultimately identify 8 with the Immirzi parameter from the Ashteka variables.

15



where T' is given by (29). The double contraction of (82) yields the curva-
ture scalar

R = h"™h7" Rijmp = (deth) " by T, (83)

where we have used the property of determinants of three by three matrices.
To obtain the Einstein—Hilbert action (79), we multiply (83) by /—¢g =
N+V/h and integrate over spacetime. This yields

Ieg :/ d4$\/—9(4)R: /dt/ d*xNhy T, (84)
m 5

which is the same as (28) derived from the instanton representation. Since
the 3-metric h;; appearing in (80) is the same metric which from (22) leads to
the identification of the instanton representation with Yang—Mills theory, it
follows that this same theory is also another representation of the Einstein—
Hilbert action.

6 Discussion and conclusion

In this paper we have shown the following things. (i) The self-dual Ashtekar
formulation of general relativity leads to the instanton representation of Ple-
banski gravity when the Ashtekar magnetic field B! and and the CDJ matrix
U,. are nondegenerate. On solutions to the diffeomorphism constraint the
instanton representation implies the emergence of a hodge duality operator
when the equation of motion for ¥, is satisfied. This operator arose due to
the equality between the WF A F' term and the corresponding Yang—Mills
action implied by the emergence of a spatial 3-metric h;; = h;;[V, A]. This
implies that the curvature Fjj, of the four dimensional gauge connection
A, = (A§, Af) is hodge self-dual.'! Additionally, it implies that the CDJ
matrix field ¥, is the coupling constant for this gravitational Yang—Mills
theory.

(ii) Having solidified the gravity/Yang—Mills association via the chain
Tasn — Imnst — Iy, the latter link arising on-shell, we moved on to
the metric representation. By expressing the Yang—Mills variables in the
metric representation, we showed that the Gauss’ law constraint implies a
3-dimensional Riemannian space with torsion, defined as Q®). We estab-
lished the link from this space to the instanton representation via the CDJ
Ansatz, showing that the CDJ matrix is essentially the Einstein tensor for
Q®). The link carried over the same identification of GR with YangMills
theory, except now with respect to Q).

HNote that Yang-Mills instantons also have this property.
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(iii) To finalize the link from Yang-Mills theory to Einstein’s GR, we
showed that Q) is the same as 4-dimensional spacetime solving the Einstein
equations. From the Gauss’ law constraint, the torsion of Q®) possesses
six rather than nine degrees of freedom. By associating these degrees of
freedom with the extrinsic curvature tensor K;;, we showed that the (3-
dimensional) Riemann curvature tensor of Q) is the same as the (four
dimensional) Riemann curvature tensor via the 3+1 ADM decomposition of
GR. It is instructive to perform these steps in reverse, hence the link Ipy —
Iapy — Iyy. The rightmost part of this chain arises from identifying
entrinsic curvature with torsion, which leads to the CDJ Ansatz.

The result is that on-shell, the instanton representation implies a solu-
tion to the Einstein equations for spacetimes where W, is nondegenerate as
a three by three matrix.'> Moreover, Einstein’s GR dynamically takes on
the form of a Yang—Mills theory where the Yang—Mills curvature is Hodge
self-dual. This notion of Hodge self-duality arose presicely due to the in-
stanton representation of Plebanski gravity and would not be obvious either
from the Ashtekar formalism or from the metric formalism for such general
spacetimes. For this reason we provide as a result of this paper the precise
association of the instanton representation of Plebanski gravity to gravita-
tional instantons, by which we mean instantons in the Yang—Mills sense.
The following link can be written by association

- 1
Igg — —z’/dt/ AP Nh;; T — 5/ Uy FPANFS — I (85)
b m

The notation in (85) signifies that the action has been evaluated on the
solution to the equations of motion, though we still should have Ipg = I,
irrespective of this. We can take (85) off shell to the spatially diffeomorphism
invariant level, and write it in the form

= / E\Ifbeb NFD — =g(A+tr0d s (86)
M

If we associate a Lie algebra element 7% to F' = T*F®, then equation (85)
amounts to embedding the Hamiltonian constraint of GR into an F A F
term, where the Cartan—Killing form is given by

1
tr(TaTb) = §\Ifab. (87)

For the case W, = kd,p for numerically constant k, the Hamiltonian con-

straint implies k£ = —% and we obtain a term reembling the Pontryagin

12This is spacetimes of Petrov types I, D and O where the CDJ matrix possesses three
linearly independent eigenvectors.
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form. This corresponds to spacetimes of Petrov Type O, the Einstein ge-
ometries derived in [4] and [5]. In the more general case, Wy, is now a field
which encodes the gravitational degrees of freedom through the algebraic
classification of the corresponding spacetime that it describes [8].

7 Appendix: Hamiltonian formulation of Yang-
Mills theory

The Lagrangian density for Yang—Mills theory coupled is given by

1
Lym = 3vV=99"9" Fji FpoWae, (88)

where ¥,. will e regarded as an internal group metric. The 3+1 decompo-
sition of (88) is given by

Loas = Y2 (gD EG S, + 20" E FG, + 99 g M FRES Ve (89)

We will make use of the 34+1 decomposition of the contraviant spacetime

metric
1 N
[ g— T N2 NZ
g = NI hij _ N'NJ )

N2 N2

as well as the relations

F = eijka; hijhkleikmej'ln = (deth) L hun. (90)

The momentum conjugate to the connection AY is given by

I = 05y m
5 Aa

— /=7 ( g g, + g FS, — g"g% ngj) v,.. (91)
The individual terms in brackets on the right hand side of (91) are given by

NiNJ
N2

L L . NEiNJ
V—=99"g" F5; = \/—9900<h” — >F06j = /—g9g"h Fg; + \/—9<W>F5j(92)

for the first term,

gy = (e

992 W>€jk13é = —v/=99"€;u N h"* BL,(93)
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for the second term, where we have used antisymmetry to eliminate its
second contribution. The third term in brackets in (91) is given by

) E (94)

which cancels the second term on the right hand side of (92). Combining
(94), (93) and (92), we have that the momentum canonically conjugate to
the connection Af is given by

IT, = /=gg" (W9 F§; — ¢aNTh™* BL) W, (95)
Inverting the relation in equation (95), we obtain
e 1 i il g-1
S, = <Wnahim + NI BL) UL (96)

Substitution of (96) into (89) and performing a Legendre transformation,
we obtain the Yang—Mills Hamiltonian

Hyy = / P (NHyy + N H; — ASG,), (97)
by

where

H = hj (U, IGIY, + Wy BiBY); Hy = el B Go = DIl (98)
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