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Abstract

In this paper we focus on the Hamiltonian dynamics on the kine-
matic phase space of the instanton representation, in the full theory.
The general solutions for pure gravity are reduced to quadratures and
fixed point iteration both for vanishing and nonvanishing cosmological
constant, with convenient physical interpretations. A Hamilton–Jacobi
analysis is performed of the semiclassical orbits and their relation to
the quantum theory motivated. We have constructed Hamilton–Jacobi
functionals mimicking the classical dynamics. A main result is emer-
gence of a natural time variable on the configuration space with respect
to which the remaining variables evolve.
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1 Introduction

The purpose of this paper is to provide an analysis of the classical and the
semiclassical dynamics implied by the instanton representation of Plebanski
gravity. The basic phase space variables for this representation are the
CDJ matrix Ψae and the Ashtekar self-dual SU(2) connection Aa

i . Some of
the background for the instanton representation can be found in Paper II
and references therein. To unobscure the dynamics of the theory, we will
treat the case where Ψae is diagonal, which is regarded as the kinematic
momentum space PKin.

1

A canonical structure where the CDJ matrix Ψae is diagonal presents at
least three main advantages for treatment of the classical and the quantum
theory of gravity. First, the canonical structure can be chosen such that all
terms containing spatial gradients automatically cancel out without requir-
ing these terms to be zero.2 This affords one the benefits of the simplicity
of minisuperspace while still treating the full theory. Secondly, this accom-
plishes a natural projection from the full unconstrained phase space ΩInst to
the physical degrees of freedom, wherein the kinematic constraints (Gauss’
law constraint Ga and diffeomorphism constraint Hi) can be eliminated from
the starting action. The third point is that the remaining variables, which
are regarded as the physical degrees of freedom, reside entirely within the
Hamiltonian constraint which in the instanton representation affords one the
luxury of focusing on the true dynamics of gravity both from the classical
and from the quantum standpoint, free of kinematic effects.

We will be treating the full theory in densitized momentum space vari-
ables Ψ̃ae = Ψae(detA), where (detA) 6= 0 is the determinant of Aa

i , since as
it is shown in Paper XIII that these variables admit a well-defined canonical
structure with globally holonomic configuration space variables. Hence in
this paper we will analyse the Hamiltonian dynamics on this phase space,
and the ensuing Hamilton–Jacobi formailsm.

The full theory of the instanton representation admits configurations
based on specific combinations of Aa

i , such that all terms containing spatial
gradients cancel out from the canonical one form θ. Unlike for the kine-
matic constraints, the Hamiltonian constraint remains intact at the level of
the Lagrangian since it contains explicitly the essential degrees of freedom
encoding the dynamics. The constraint becomes implemented only subse-

1It is shown in Paper IV that the SO(3, C) rotation angles which make Ψae nondiagonal
are ignorable coordinates in the canonical structure. Hence there is no loss of generality
in using a diagonal CDJ matrix, since this corresponds to the intrinsic SO(3, C) frame.

2This comprises the quantizable configurations of the instanton representation, as
shown in Paper XIII.
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quent to computing the Hamilton’s equations of motion, and as part of this
paper we verify consistency of the the constraint with the ensuing dynamics.

The organization of this paper is as follows. In section 2 we set up the
canonical structure and put in place the notation, definitions and variables
which will be used. Having expressed the Hamiltonian explicitly in terms
of the densitized momentum space variables, we proceed in section 3 to
derive the Hamiltonian equations of motion. There are two case to consider
which divide the dynamics into two regimes, namely for Λ = 0 and for
Λ 6= 0. The Λ = 0 case is analyzed in section 4, where it is found that the
dynamics mimic the classical dynamics of a free particle on a two dimensional
configuration space. The gravitational degrees of freedom evolve linearly
with respect to T , seen as a time variable on configuration space. Section 5
treats the Λ 6= 0 case where the evolution dynamical evolution is nonlinear
and more complicated. Nevertheless we are able to make certain inferences
about the form of the solution. In this section we provide a fixed point
procedure whereby solutions may in principle be constructed. In section
6 we provide a precursory analysisof the Hamilton–Jacobi aspects of the
theory. We have constructed a Hamiltonian Jacobi functional which mimics
the classical dynamics of the previous sections, and provides a glance into
the quantum theory which is treated in a separate paper. One main feature
is the stationary of the gravitational degrees of freedom with respect to
evolution in T , which defines the functional on the initial and the final
spatial hypersurfaces. It appears for Λ = 0 that the functional is truly
stationay in T and for Λ 6= 0 that the functional evolves in T . This seems to
be congrous with the classical dynamics thus computed, and forms a good
basis for comparison with the quantum theory.

2



2 Setting the stage

We will start without loss of generality from the following canonical structure
for the instanton representation, where the momentum space variables Ψae ∈
SO(3, C)⊗ SO(3, C) are diagonal3

θKin =
1

G

∫

Σ
d3xΨaeB

i
eδA

a
i

=
1

G

∫

Σ
d3x

(
Ψ11A

2
2A

3
3δA

1
1 +Ψ22A

3
3A

1
1δA

2
2 +Ψ33A

1
1A

2
2δA

3
3

)
. (1)

In (1) Aa
i is the left handed SO(3, C) Ashtekar connection and Bi

e = Bi
e[A] is

the Ashtekar magnetic field. The subscriptKin in (1) refers to the kinemati-
cal level, namely to the level subsequent to implementation of the Gauss’ law
and diffeomorphism constraints and prior to implementation of the Hamil-
tonian constraint. To obtain coordinates which are globally holonomic on
configuration space Γ we define the densitized momentum space variables

Ψ̃11 = Ψ11(A
1
1A

2
2A

3
3); Ψ̃22 = Ψ22(A

1
1A

2
2A

3
3); Ψ̃33 = Ψ33(A

1
1A

2
2A

3
3), (2)

where (A1
1A

2
2A

3
3) 6= 0. Hence the ranges of the coordinates as 0 < |Af

f | <∞.
Using (2) for the fundamental momentum space variables, the canonical one
form (1) reduces to

θKin =
1

G

∫

Σ
d3x

(
Ψ̃11

δA1
1

A1
1

+ Ψ̃22
δA2

2

A2
2

+ Ψ̃33
δA3

3

A3
3

)
. (3)

Having identified the variables of interest, next rewrite (1) in the form

θKin =
1

G

∫

Σ
d3x

(
(Ψ̃11 − Ψ̃33)

δA1
1

A1
1

+ (Ψ̃22 − Ψ̃33)
δA2

2

A2
2

+Ψ̃33

(δA1
1

A1
1

+
δA2

2

A2
2

+
δA3

3

A3
3

))
(4)

and make the following definitions for the momentum space variables

Ψ̃11 − Ψ̃33 = α; Ψ̃22 − Ψ̃33 = β; Ψ̃33 = λ (5)

and correspondingly for variations in the tangent space TX(Γ) to configura-
tion space Γ

3It is shown in Paper XIII that this this combined with any of six configurations for
the connection Aa

i are quantizable configurations upon densitization of Ψae.
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δA1
1

A1
1

= δX;
δA2

2

A2
2

= δY ;
δA1

1

A1
1

+
δA2

2

A2
2

+
δA3

3

A3
3

= δT. (6)

Equation (6) implies the existence of globally holonomic coordinates (X,Y, T )
on the kinematic configuration space ΓKin, such that

A1
1 = a0e

X ; A2
2 = a0e

Y ; (detA) = A1
1A

2
2A

3
3 = a30e

T (7)

for some numerical constant a0 of mass dimension [a0] = 1. At the kinemat-
ical level the variables (5) and (6) define a symplectic two form

ΩKin =
1

G

∫

Σ
d3x

(
δα ∧ δX + δβ ∧ δY + δλ ∧ δT

)
. (8)

The mass dimensions of the dynamical variables are

[α] = [β] = [λ] = 1; [X] = [Y ] = [T ] = 0, (9)

which makes (8) dimensionless. The ranges of the new coodinates are
−∞ < |X|, |Y |, |T | < ∞. To construct a starting action we must define
the Hamiltonian HKin on the kinematic phase space ΩKin. This is given by

HKin =
1

G

∫

Σ
d3xN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
, (10)

where Λ is the cosmological constant andN the lapse function.4 Substitution
of the CDJ Ansatz

(Ψ−1)ae = Bi
e(σ̃

−1)ai (11)

into (10) yields the smeared Hamiltonian constraint from the Ashtekar for-
malism for general relativity, given by (see e.g. [1], [2], [3])

HAsh =
1

2

∫

Σ
d3xN(detσ̃)−1/2ǫijkǫ

abcσ̃iaσ̃
j
b

(Λ
3
σ̃kc +Bk

c

)
, (12)

where Bi
a is the Ashtekar magnetic field derived from the Ashtekar self-dual

SU(2) connection Aa
i (i, j, k, . . . refer to spatial indices and a, b, c, . . . refer

to internal left-handed SU(2) indices), and σ̃ia is the densitized triad.

4We will from now on omit the prefactor of G multiplying the Hamiltonian, since it is
not essential to the analysis
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Equation (11) substituted into (12) eliminates σ̃ia in favor of Ψae as a
fundamental variable, while preserving the remaining variables along with
their physical interpretations. The instanton representation regards (10)
as the fundamental starting point. The Hamiltonians (10) and (12) are
equivalent only when (σ̃−1)ei exists, which requires that σ̃ia be nondegenerate.
The antiself dual part of the Weyl curvature tensor in unprimed SL(2, C)
indices, ψABCD, can be written as a three by three matrix

ψae = ψABCDη
AB
a ηCD

e , (13)

where ηAB
a is an isomorphism from unprimed symmetric SL(2, C) index

pairs AB = (00, 01, 10) to single SO(3, C) indices a = (1, 2, 3). The CDJ
matrix Ψae is directly related to ψae through the relation

Ψ−1
ae =

1

3
δaetrΨ

−1 + ψae, (14)

where ψae ∈ SO(3, C) ⊗ SO(3, C) is symmetric and traceless in its indices.
As a consequence of the relation (14), it then follows that the dynamics
implied by (10) are those of the eigenvalues of the antiself-dual part of the
Weyl curvature expressed in SO(3, C) language.5

We will now write (10) in terms of the densitized momentum variables
of the instanton representation using the identities

Ψ̃ae = Ψae(detA); trΨ−1 = (detA)trΨ̃−1;
√
detΨ =

√
detΨ̃(detA)−3/2.(15)

Substitution of (15) into (10) yields a Hamiltonian density

H[N ] =

∫

Σ
d3xN(detB)1/2(detA)−3/2

√
detΨ̃

(
Λ + (detA)trΨ̃−1

)
. (16)

Defining the densitized eigenvalues of Ψae by λ, λ + α and λ + β, we can
write the constituents of (16) as

(detA) = a30e
T ; detΨ̃ = λ(λ+ α)(λ + β);

trΨ̃−1 =
1

λ
+

1

λ+ α
+

1

λ+ β
. (17)

5The Weyl curvature encodes the algebraic classification of spacetime [4]. The rationale
behind the instanton representation is that these properties, which are invariant under
change of coordinates and tetrad frames, are ideal for describing general relativity from
both the classical and from the quantum standpoint.
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While all terms of the theory containing spatial gradients cancel out of the
canonical one form (4) for the given choice of Aa

i (see e.g. Paper XIII), they
do not cancel out of the magnetic field Bi

a whose determinant appears in the
Hamiltonian. For a diagonal connection Aa

i = δai A
a
a the Ashtekar magnetic

field is given in matrix form by

Bi
a =




A2
2A

3
3 −∂3A2

2 ∂2A
3
3

∂3A
1
1 A3

3A
1
1 −∂1A3

3

−∂2A1
1 ∂1A

2
2 A1

1A
2
2


 .

The determinant of Bi
a is given by

detB = (A1
1A

2
2A

3
3)

2 + r, (18)

where r is a remainder which contains the spatial gradients, given by

r = (∂2A
3
3)(∂3A

1
1)(∂1A

2
2)− (∂3A

2
2)(∂1A

3
3)(∂2A

1
1)

+
1

4

[
∂1(A

2
2)

2∂1(A
3
3)

2 + ∂2(A
3
3)

2∂2(A
1
1)

2 + ∂3(A
1
1)

2∂3(A
2
2)

2
]
. (19)

It is convenient to define a dimensionless quantity U such that

detB = (UdetA)2 −→ U = 1 + r(detA)−2, (20)

which factors out the leading order behavior of (detA) = A1
1A

2
2A

3
3 from

detB. Putting (17) and (20) into (16), we have

H[N ] =

∫

Σ
d3xNU(detA)−1/2

√
detΨ̃

(
Λ+ (detA)trΨ̃−1

)

=

∫

Σ
d3xNUa

−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β)

[
Λ + a30e

T
( 1
λ
+

1

λ+ α
+

1

λ+ β

)]
.(21)

Having expressed the Hamiltonian explicitly in terms of the physical vari-
ables we can now construct the action, given by

∫
dt

∫

Σ
d3x

(
αẊ + βẎ + λṪ

)
−H[N ], (22)

where the Hamiltonian is given by (21).
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3 Hamilton’s equations of motion

Having set up the canonical structure and the Hamiltonian in terms of the
physical variables, we are ready to compute the classical dynamics. We will
compute the Hamilton’s equations of motion using the Hamiltonian

H[N ] =

∫

Σ
d3xNUa

−3/2
0 e−T/2

√
λ(λ+ α)(λ + β)

[
Λ+ a30e

T
( 1
λ
+

1

λ+ α
+

1

λ+ β

)]
.(23)

As a note prior to proceeding, the Hamiltonian constraint can be reduced
to the vanishing of the rightmost term in square brackets, given by

h = Λ+ a30e
T
( 1
λ
+

1

λ+ α
+

1

λ+ β

)
∼ 0 (24)

on the constraint shell, for configurations where the quantities to the left of
the square brackets in (23) are nonvanishing. In this paper we will restrict
attention to these nondegenerate configurations, which are based on the
nondegeneracy of Bi

a and Ψae in the CDJ Ansatz (11).
The Hamilton’s equations of motion for the configuration space variables

(X,Y, T ) ∈ ΓKin are given by

Ẋ =
δH

δα
∼ −NUa3/20 eT/2

√
λ(λ+ α)(λ+ β)

( 1

λ+ α

)2
;

Ẏ =
δH

δβ
∼ −NUa3/20 eT/2

√
λ(λ+ α)(λ + β)

( 1

λ+ β

)2
;

Ṫ =
δH

δλ
∼ −NUa3/20 eT/2

√
λ(λ+ α)(λ+ β)

[( 1
λ

)2
+

( 1

λ+ α

)2
+

( 1

λ+ β

)2
]
.(25)

We have used a tilde to remind the reader that we have used (24) in deriving
(25), hence the equations of motion hold only as long as the Hamiltonian
constraint is satisfied. For here onward we will treat these as strong equali-
ties since the equations of motion must always be consistent with the initial
value constraints as a matter of Dirac consistency [5].

Equations (25) can be written in the form

Ẋ = pα,β(λ)Ṫ ; Ẏ = qα,β(λ)Ṫ , (26)

where we have defined

pα,β(λ) =
( 1

λ+ α

)2
[( 1
λ

)2
+

( 1

λ+ α

)2
+

( 1

λ+ β

)2
]−1

;

qα,β(λ) =
( 1

λ+ β

)2
[( 1
λ

)2
+

( 1

λ+ α

)2
+
( 1

λ+ β

)2
]−1

. (27)
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Moving on to the momentum space variables we have

α̇ = −δH
δX

= −
∫

Σ
d3xN

( δU
δX

)
a
−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β)h;

β̇ = −δH
δY

= −
∫

Σ
d3xN

(δU
δY

)
a
−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β)h;

λ̇ = −δH
δT

= −NUa−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β)

[
a30e

T
( 1
λ
+

1

λ+ α
+

1

λ+ β

)]
(28)

where h is given by (24). Note that the first two lines of (28) are directly pro-
portional to the Hamiltonian constraint since according to (24), h vanishes.
There will be spatial gradients upon integration by parts of the δU/δT ,
δU/δX and δU/δY terms in (28), which act on h. We will assume that
such terms ∂ih vanish on the constraint surface since h vanishes. We are
still in compliance with the requirement of Dirac that the constraints cannot
be used prior to evaluating derivatives [5]. Our interpretation is that the
derivatives referred to by Dirac are functional derivatives with respect to
the phase space variables or time derivatives, but not spatial gradients since
the latter are not dynamical. Another way to see this is that the functional
form of the constraints

h(α(x), β(x), λ(x);T (x)) = 0 ∀x ∈ Σ (29)

must be preserved on each spatial slice Σ for each time t, due to Dirac
consistency. To evaluate the spatial gradient discretize 3-space into a lattice
of spacing ǫ. Then the spatial gradient is approximated by

∂h ∼ 1

2ǫ

[
h(α(xn+1), β(xn+1), λ(xn+1);T (xn+1)

−h(α(xn−1), β(xn−1), λ(xn−1);T (xn−1)
]
= 0− 0. (30)

We have used (29) to argue that for any ǫ > 0, each term of (30) vanishes
on the constraint shell, regardless of the lattice spacing. Hence we conclude
in the limit ǫ → 0 the spatial gradients must still be zero since they are
proportional to the constraint.

For the third line of (28), the term in square brackets can be replaced
with −Λ on account of (24). The result is that the Hamilton’s equations of
motion (26) and (28) reduce to

Ẋ = pα,β(λ)Ṫ ; Ẏ = qα,β(λ)Ṫ (31)

and
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α̇ = 0; β̇ = 0; λ̇ = ΛNUa
−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β). (32)

Immediately from (32) one reads off that

α(x, t) = α(x); β(x, t) = β(x) (33)

are arbitrary functions only of spatial position, independent of time. For
vanishing cosmological constant Λ = 0, one would also have that λ(x, t) =
λ(x) is a time independent function of position. However, for Λ 6= 0 the
variable λ will undergo a nontrivial time evolution while α and β remain
constant in time. Therefore we will consider each possibility separately.
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4 Hamiltonian dynamics for Λ = 0

When the cosmological constant is vanishing, the Hamiltonian constraint
(24) reduces to

h =
1

λ
+

1

λ+ α
+

1

λ+ β
= 0. (34)

From (34) one can solve a quadratic equation directly for λ explicitly as a
function of α and β, given by

3λ2 + 2(α+ β)λ+ αβ = 0 −→ λ = λα,β = −1

3

(
α+ β ±

√
α2 − αβ + β2

)
.(35)

The result is that the three momentum space degrees of freedom on the
kinematic phase space ΩKin reduce to two degrees of freedom on the physical
phase space ΩPhys on the Hamiltonian constraint shell. We will now verify
that this is consistent with the Hamilton’s equations of motion as previously
indicated.6 Starting from the Hamilton’s equations of motion (26) and (32)

Ẋ = pα,β(λ)Ṫ ; Ẏ = qα,β(λ)Ṫ ;

α̇ = 0; β̇ = 0; λ̇ = ΛNUa
−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β) = 0, (36)

the third equation on the bottom line of (36) vanishes since Λ = 0 and we
have that λ(x, t) = λ(x) is an arbitrary function of position, independent of
time. Hence it follows for Λ = 0 that

α(x, t) = α(x); β(x, t) = β(x); λ(x, t) = λα,β(x). (37)

with λα,β given by (35). Since λ is no longer an independent degree of
freedom, then (27) reduces to

pα,β(λ) → pα,β(λα,β) ≡ pα,β;

qα,β(λ) → qα,β(λα,β) ≡ qα,β, (38)

whence both quantities now carry two independent labels α and β instead of
three, and become time independent functions of position in Σ. The result
is that the two equations in the top line of (36) can be directly integrated
to

6We have excluded λα,β = 0, which implies that either α or β must vanish. This is an
example of the degenerate case, which forms a set of measure zero.
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X(x, t) = X(x, 0) + pα,β(x)
(
T (x, t)− T (x, 0)

)
;

Y (x, t) = X(x, 0) + qα,β(x)
(
T (x, t)− T (x, 0)

)
. (39)

The classical dynamics for Λ = 0 are those of a free point particle under-
going straight line motion in a two dimensional configuration space (X,Y )
per spatial point, where the motion evolves linearly with respect to T (x, t)
regarded as a time variable on this space.

The specific time dependence of T (x, t) can be found from its equation
of motion, given by the third line of (25),

Ṫ = −NUa3/20 eT/2
√
λ(λ+ α)(λ + β)

[( 1
λ

)2
+

( 1

λ+ α

)2
+

( 1

λ+ β

)2
]
. (40)

Making the definitions

Qα,β(λ) = λ(λ+ α)(λ+ β);

Mα,β(λ) =
( 1
λ

)2
+

( 1

λ+ α

)2
+
( 1

λ+ β

)2
;

Oα,β(λ) = 3λ2 + 2(α + β)λ+ αβ, (41)

the following notation is useful in view of the fact that λ on the solution
space (35) is no longer an independent degree of freedom

Qα,β(λα,β) ≡ Qα,β; Mα,β(λα,β) ≡Mα,β, (42)

Then (40) is given by

e−T/2Ṫ = −2
d

dt
e−T/2 = −NUa3/20

√
Qα,βMα,β, (43)

which integrates directly to

T (x, t) = Tα,β(x, t;N) = ln

(
e−T0/2 +

1

2
a
3/2
0

√
Qα,βMα,β

∫ t

0
N(x, t′)U(x, t′)dt′

)−2

(44)

where T0 = Tα,β(x, 0). Equation (44) can be written in the shorthand
notation

eT =
(
e−T0/2 +

√
Qα,βMα,βρ(x, t)

)−2
, (45)

where the time dependence has been absorbed into the term

ρ(x, t) =

∫ t

0
N(x, t′)U(x, t′)dt′ = ρ[x;T (x, t)]. (46)
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5 Hamiltonian dynamics for Λ 6= 0

For nonvanishing cosmological constant the Hamiltonian constraint is given
by (24), now with Λ 6= 0,

h = Λ+ a30e
T
( 1
λ
+

1

λ+ α
+

1

λ+ β

)
= 0 (47)

which can be written as

3λ2 + 2(α + β)λ+ αβ + Λa−3
0 e−Tλ(λ+ α)(λ + β)

= Oα,β(λ) + a−3
0 e−TQα,β(λ) = 0. (48)

Equation (48) can be solved as a cubic polynomial equation in λ, which is
displayed later in this paper. The solution yields three roots labelled by α
and β but containing explicit dependence on time through the factor eT .

Let us proceed with the equations of motion

Ẋ = pα,β(λ)Ṫ ; Ẏ = qα,β(λ)Ṫ ;

Ṫ = −NUa3/20 eT/2
√
Qα,β(λ)Mα,β(λ);

α̇ = 0; β̇ = 0; λ̇ = ΛNUa
−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β) = 0. (49)

These equations still imply that on the Hamiltonian constraint shell,

α(x, t) = α(x); β(x, t) = β(x) (50)

are arbitrary time-independent functions of position exactly as in the Λ =
0 case. However, we now also have the equations for evolving degrees of
freedom λ and T , given by

λ̇ = ΛNUa
−3/2
0 e−T/2

√
Qα,β(λ);

Ṫ = −NUa3/20 eT/2
√
Qα,β(λ)Mα,β(λ). (51)

To make progress we must optimize the use of the equation for λ. Let us
write this out explicitly

λ̇ = ΛNUa
−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β). (52)

To obtain an equation involving only λ we must elimiate e−T/2 from (52),
which can be accomplished using the Hamiltonian constraint (47)

12



a−3
0 e−T = − 1

Λ

( 1
λ
+

1

λ+ α
+

1

λ+ β

)

−→ a
−3/2
0 e−T/2 =

±i√
Λ

√
1

λ
+

1

λ+ α
+

1

λ+ β
. (53)

Substituting (53) into (52) we obtain

λ̇ = ΛNU

( ±i√
Λ

√
1

λ
+

1

λ+ α
+

1

λ+ β

)√
λ(λ+ α)(λ + β)

= ±i
√
ΛNU

√
Oα,β(λ) (54)

where Oα,β(λ) is as defined in (41). Rearranging, we have

δλ√
3λ2 + 2(α + β)λ+ αβ

= ±i
√
ΛNUδt. (55)

We have used the delta notation to signify that these variations occur in the
functional space of fields ΓKin at each point and not with respect to spatial
position.7 Equation (55) integrates to

1√
3
ln
(
2
(√

3
√

3λ2 + 2(α + β)λ+ αβ + α+ β + 3λ
))

= k0 + i
√
Λ

∫ t

0
N(x, t′)U(x, t′)dt′ = k0(x)± iρ(x, t) (56)

for some time independent function k0 = k0(x) to be determined. This can
further be written as

2
√
3
√

3λ2 + 2(α+ β)λ+ αβ + 2(α+ β) + 6λ = A(ρ), (57)

where

A(ρ) = A0e
±i

√
3Λρ (58)

with A0 = A(x, ρ)ρ=0 being the initial data. Equation (57) squares to the
following quadratic equation

7In this sense functional variation and time variation are indistinguishable from each
other, but distinguishable from spatial variation.
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9λ2 + 6(α + β)λ+ 3αβ = 9λ2 + 6
(
α+ β − A

2

)
λ+

(
α+ β − A

2

)2
. (59)

Equation (59) has been written to show that a remarkable cancellation takes
place which enables us to straightforwardly solve explicitly for λ

λ =
A

12
+

1

2

(
−α− β +

1

A

(
α2 − αβ + β2

))
. (60)

As a matter of consistency we must require that (57) reduce to (35) in the
limit that Λ approaches zero. This fixes the value of A0 at

A0 = ±2
√
α2 − αβ + β2 = A(x, 0). (61)

Putting (61) back into (60) and using (58), we obtain the solution

λα,β(ρ) =
1

3

(
−α− β ±

√
α2 − αβ + β2cos(

√
3Λρ)

)
. (62)

To find the specific time evolution of the clock variable T one may perform
the steps analogous to (43), (44), (45), (46) and (67), except now taking
into account the time dependence induced by Λ. This is given by

T (x, t) = ln
(
e−T0/2 +

1

2
a
3/2
0

∫ ρ

ρ0

√
Qα,β(ρ′)Mα,β(ρ

′)δρ′
)−2

, (63)

where we have defined

Qα,β(ρ) = λα,β(ρ)
(
λα,β(ρ) + α

)(
λα,β(ρ) + β

)
;

Mα,β(ρ) =
( 1

λα,β(ρ)

)2
+

( 1

λα,β(ρ) + α

)2
+

( 1

λα,β(ρ) + β

)2
;

(64)

with λα,β(ρ) given by (62). Equation (63) is the direct analogue of (44),
where now the quantities in (64) can no longer be factored out of the integral
on account of the time dependence induced by Λ 6= 0.

It is not as straightforward to write down the explicit evolution of X
and Y in the time variable T as in (39) in the Λ = 0 case, but one can still
write the relation

δX = pα,β(λ)δT =

[ (
1

λα,β(ρ)+α

)2

(
1

λα,β(ρ)

)2
+

(
1

λα,β(ρ)+α

)2
+

(
1

λα,β(ρ)+β

)2

]
δT (65)
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for variations of X, and similarly

δY = qα,β(λ)δT =

[ (
1

λα,β(ρ)+β

)2

(
1

λα,β(ρ)

)2
+

(
1

λα,β(ρ)+α

)2
+

(
1

λα,β(ρ)+β

)2

]
δT (66)

for variations of Y . The difference in relation to the Λ = 0 case is that
now ρ depends implicitly on T through (63), and λα,β(ρ) in (62) inherits
this T dependence. To take this into account one must invert (63) to obtain
ρ = ρ(T ) and then substitute into (65) and (66). The result should be a
more complicated T dependence, which might possibly best be handled by
perturbation theory methods.

5.1 Fixed point iteration

Equations (63) and (45) are really recursion relations due to the explicit
T dependence on the right hand side contained in ρ through U . To pro-
ceed further from this point one approach is to use a Pickard-type fixed
point iteration procedure. We will illustrate the general case, which may
in principle be applied for both vanishing and nonvanishing Λ. For each
triple (α(x), β(x), N(x, t)) and initial data (X(x, 0), Y (x, 0), T (x, 0)), define
a sequence Tn(x, t;α, β) such that the following recursion relation holds

Tn+1(x, t) = ln
(
exp

[
−1

2
T (x, 0)

]
+

1

2
a
3/2
0

∫ ρ

ρ0

√
Qα,β(ρ

′
n)Mα,β(ρ

′
n)δρ

′
n

)−2
,(67)

where ρn is defined by

ρn = ρn(x, t) =

∫ t

0
N(x, t′)U(x, t′;Tn(x, t

′))dt′ (68)

with Tn(x, t) given by (63). With each iteration one acquires spatial gradi-
ents from U (recall equation (19)), which act on the position dependence of
the variables, which should generate a kind of nonlinear Taylor expansion.
The full solution, if convergent, would be given by T = limn→∞Tn(x, t).

This might be suitable for constructing GR solutions for the full theory
according to the following procedure. First solve (45) for U = 1, which
amounts to setting the spatial gradients of the full theory to zero as a first
approximation.8 However we are in the full theory, solving an infinite num-
ber of independent equations, one equation per spatial point whose solution

8This is tantamount to constructing at each spatial point a different minisuperspace
theory by the way we define it, namely with all terms containing spatial gradients absent.
Equation (45) constitutes an exact solution and not a recusion relation for U = 1, and
similarly for the analogous equation in the Λ 6= 0 case.
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evolves in time from the initial spatial hypersurface Σ0. Using this solution
as the zeroth order solution, with its position dependence intact based upon
the initial data selected, perform the fixed point iteration procedure of (67).
The choices of initial data for which this iteration procedure converges to a
solution for T (x, t) is a subject for further study. Irrespective of this, one
can still nevertheless explicitly write the following relation for GR in the
instanton representation for Λ = 0

X(x, t) = X(x, 0) + pα,β(x) + pα,β(x)Tα,β(x, t;N(x, t));

Y (x, t) = Y (x, 0) + qα,β(x) + qα,β(x)Tα,β(x, t;N(x, t)). (69)

Equation (69) shows that the configuration space degrees of freedom (X,Y )
evolve linearly with respect to T , regarded as a time variable on a two di-
mensional configuration space per point ΓKin. One has complete freedom in
the choice of lapse function N , the initial data (X0, Y0, T0), and the two free
functions of position (α, β) which comprise the physical degrees of freedom,
which is also true for Λ 6= 0. The choice of Lapse function determines the
manner of evolution of the initial data, and α and β remain stationary with
respect to this time evolution.

The main point is that on the kinematic phase space ΩKin the dynamics
can be completely be reduced to evolution in T , with each solution labelled
by α and β. Since we are in the full theory, we can calculate U from (19)
explicitly. The term on the first line vanishes for arbitrary A1

1 = A1
1(T ),

A2
2 = A2

2(T ) and A
3
3 = A3

3(T ), using the chain rule. This leaves behind the
second line, which can be written as

A1
1A

2
2

(∂A1
1

∂T

∂A2
2

∂T

)
(∂3T )

2 +A2
2A

3
3

(∂A2
2

∂T

∂A3
3

∂T

)
(∂1T )

2 +A3
3A

1
1

(∂A3
3

∂T

∂A1
1

∂T

)
(∂2T )

2.(70)

We will display the expression for the Λ = 0 case for simplicity. In this case
we have

A1
1 = a0e

X = a0e
pT ; A2

2 = a0e
Y = eqT ; A3

3 = a0e
T−X−Y = a0e

(1−p−q)T ,(71)

where p = pα,β and q = qα,β. Substitution of (71) into (70) and in turn into
ref (19) yields

U =

[
1 +

(
pqe2(p+q−1)T (∂3T )

2 + q(1− p− q)e−2pT (∂1T )
2 + p(1− p− q)e−2qT (∂2T )

2
)]1/2

.(72)
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6 Hamilton–Jacobi analysis

We have shown that the equations of motion for general relativity on ΩKin in
the instanton representation are classically integrable to a recursion relation
on the variable T . The remaining degrees of freedom X and Y evolve with
respect to T , seen as a time variable on the kinematic configuration space
ΓKin. We have seen, irrespective of the value of Λ, that the functions α and
β are independent of time. Hence for each equivalence class of initial data,
for the configuration space variables (X,Y, T ), α and β serve as labels for
the classical solution. Since time independent, these can be used as labels
for the state in the quantum theory.9

A possible route toward the quantum theory of the instanton represen-
tation is through the Hamilton–Jacobi formalism. Since we are dealing with
the full theory, we will be generalizing the usual procedures to the infinite
dimensional space of fields Γ. We assume that functional integration in
this space commutes with spatial integration on spatial hypersurfaces, and
that functional variation and time variation are in a sense indistinguishable.
The following relation can be written for the functional variation of the
Hamilton–Jacobi functional on the kinematic phase space SHJ

δSHJ =

∫

Σ
d3x

(
α(x)δX(x, t) + β(x)δY (x, t) + λ(x;T )δT (x, t)

)
, (73)

where in (73) the functional variations are restricted to the spatial hyper-
surface Σ, which can be chosen arbitrarily. Also, we have allowed for the
possibility that there may be explicit T dependence in λ. Next, we integrate
both sides of (73) in the functional space of fields Γ

∫
δSHJ =

∫

Γ

∫

Σ
d3x

(
αδX + βδY + λα,βδT

)
. (74)

The left hand side of (74) is a total functional differential, so it integrates
according to the usual rules for antidifferentiation. From here on we suppress
the position dependence to avoid cluttering the notation, with the time
label associated to each particluar Σ. For the right hand side of (74) since∫
Γ

∫
Σ =

∫
Σ

∫
Γ, we have interchanged the order of the integrations to obtain

SHJ =

∫
d3x

(
α

∫

Γ
δX + β

∫

Γ
δY +

∫

Γ
λα,β[T ]δT

)

=

∫

Σt

d3x
(
αX + βY

)
+

∫

Σ
d3x

∫

Γ
λα,β[T ]δT. (75)

9This interpretation is borne out in Paper XVIII.
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We have used the fact that α and β are independent of time, and therefore
constants with respect to the functional integration. Note from the previous
results that λ is constant in time only for Λ = 0.

There are two cases to consider, namely Λ = 0 and Λ 6= 0. First for
vanishing cosmological constant recall that

λ̇ = 0 −→ λ(x, t) = λ(x) = λα,β(x). (76)

For this case λα,β can be factored out of the functional integral in (75) just
as can α and β, and we obtain

S±
α,β(X,Y, T ) =

∫

Σ
d3x

(
αX + βY + λ±α,βT

)
, (77)

with two solutions, one for each root of (35). One has that

α(x) =
δS

δX(x, t)
; β(x) =

δS

δY (x, t)
; λα,β(x) =

δS

δT (x, t)
, (78)

which define the conjugate momenta for the dynamical variables, where α
and β are constants of the motion. The variables conjugate to the constants
of the motion are the initial data, which may be obtained from

X(x, 0) =
δS

δα(x)
= X(x, t) +

(∂(λα,β(x)Tα,β(x, t))
∂α

)
;

Y (x, 0) =
δS

δβ(x)
= Y (x, t) +

(∂(λα,β(x)Tα,β(x, t))
∂β

)
. (79)

We will not display these expressions, which should presumably imply the
solution to the equations of motion which we have constructed. By expo-
nentiation of the (77) on the physical space of solutions to the equations of
motion one can obtain a wavefunctional10

ψ±
α,β[X,Y, T ] = e(~G)−1(α·X+β·Y )e(~G)−1λ±

α,β
·T . (80)

Equation (80) is labelled by two free functions of position (α, β) and are
eigenstates of the operators

Π̂1(x, t) = (~G)
δ

δX(x, t)
; Π̂2(x, t) = (~G)

δ

δY (x, t)
; Π̂(x, t) = (~G)

δ

δT (x, t)
,(81)

10We have used an abbreviated notation α · T =
∫
Σ
α(x)T (x), where the dot signifies

an integration over 3-space Σ.
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such that if one associated operators X̂f ≡ (X̂, Ŷ , T̂ ) to the configuration
space variables and Π̂g ≡ (Π̂1, Π̂2, Π̂) to the momentum space variables, then
the following commutation relations would hold

[
X̂f (x, t); Π̂g(y, t)

]
= δfg δ

(3)(x, y);
[
X̂f (x, t); X̂g(y, t)

]
=

[
Π̂f (x, t); Π̂g(y, t)

]
= 0.(82)

Equation (80) satisfies the Hamilton–Jacobi equation and also is annihilated
by the quantum version of the Hamiltonian constraint obtained by making
the replacements

α→ Π1; β → Π2; λ→ Π. (83)

For Λ 6= 0 the analogous manipulations may be performed, while a bit
more involved albeit straightforward. In this case the λ now contains time
dependence and cannot be factored out of the functional integral (75) as can
α and β. The corresponding Hamiltonian constraint is given by

r
(
λ2 +

2

3
(α+ β)λ+

1

3
αβ

)
+ λ(λ+ α)(λ+ β) = 0, (84)

where we have defined

r =
(3a30

Λ

)
eT . (85)

equation (84) leads to the cubic equation

λ3 +Aλ2 +Bλ+ C = 0, (86)

where we have defined

A = α+ β + 3r; B = αβ + 2r(α+ β); C = rαβ. (87)

Defining the quantities

p = B − 1

9
A2; q = C − 1

3
AB +

2

27
A3, (88)

then the solution to the cubic (84) is given by

λαβ(T ) = w − p

3w
− A

3
; w3 =

1

2

(
−q ±

√
q2 +

4

27
p3
)
. (89)
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This yields three solutions, each of which determines a Hamilton–Jacobi
functional11

SHJ(Σ) = SHJ(Σ0) +

∫
d3x

(
αX + βY +

∫

Γ
λα,β[T ]δT

)
. (90)

For the special case α = β = 0, (84) reduces to

λ2(λ+ r) = 0 (91)

with solution λ = −r. Writing this as a functional differential equation we
have

(~G)
δS

δT (x, t)
= −

(6a30
Λ

)
eT . (92)

Contracting and performing an integration over 3-space Σ, we have

δS =

∫

Σ
d3x

δS

δT (x, t)
δT (x, t) = −

( 6a30
~GΛ

)∫

Σ
d3xeT δT

= −
( 6a30
~GΛ

)∫

Σ
d3x(δeT ) = δ

(
−6(~GΛ)−1

∫

Σ
d3xa30e

T
)
, (93)

where we have used the commutativity of functional and spatial variation in
the second line of (93). Taking the anti-functional derivative of both sides
and exponentiating the result, we obtain

ψ = e−6(~GΛ)−1ICS [T ], (94)

which is the Kodama state ψKod evaluated on a diagonal connection with
detA = a30e

T as in (7). Note that (94) is complementary to (80) in the
sense that the former depends completely on time T with Λ = 0, and the
latter has ‘spatial’ dependence X and Y , spatial in the functional sense on
configuration space. Equation (80), while containing T dependence, should
be regarded as a nonevolving state in the sense that the Hamilton–Jacobi
functional is preserved on each spatial hypersurface.12 If one associates a
nontrivial time evolution (e.g. beyond what one would have for free particle
motion) to a nonvanishing Λ, then one sees that the Kodama state is really
a time variable more so than a quantum state.

11One would have to substitute (89), which depends on T through eT , into (90) and then
carry out the functional integration to find the antiderivative. In general this procedure
should produce three states, though we will not display the final expressions here.

12This is our interpretation of the problem of time in quantum gravity.
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6.1 Continuation

The Hamilton–Jacobi functional can be found more directly for Λ 6= 0 using
the equations of motion. Let us rewrite the equations of motion, replacing
all non-spatial differentials with functional variations as in

δX = −κeT/2
( 1

λ+ α

)2
δt;

δY = −κeT/2
( 1

λ+ β

)2
δt;

δT = −κeT/2
[( 1
λ

)2
+

( 1

λ+ α

)2
+

( 1

λ+ β

)2
]
δt, (95)

where we have defined

κ = NUa
3/2
0

√
λ(λ+ α)(λ + β). (96)

Substituting (95) into (73), we obtain

δSHJ = −
∫

Σ
d3xκeT/2

[
α

(λ+ α)2
+

β

(λ+ β)2
+ λ

(( 1
λ

)2
+

( 1

λ+ α

)2
+

( 1

λ+ β

)2)]
δt

= −
∫

Σ
d3xκeT/2

( 1
λ
+

1

λ+ α
+

1

λ+ β

)
δt.(97)

But according the Hamiltonian constraint, which must also be satisfied, we
have that

1

λ
+

1

λ+ α
+

1

λ+ β
= −

( Λ

a30

)
e−T . (98)

Substituting (98) into (97) we have

δSHJ =
( Λ

a30

)∫

Σ
κe−T/2δt, (99)

which governs the variation of the Hamilton–Jacobi functional on time. But
recall that

1

a30
κe−T/2 = NUa

−3/2
0 e−T/2

√
λ(λ+ α)(λ+ β)

= N(Ua
3/2
0 eT )e−3T/2

√
λ(λ+ α)(λ + β) = N

√
detB

√
detΨ. (100)
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We will now reverse the steps which brought us from the Ashtekar variables
into the instanton representation. The following relation can be derived
from the Ashtekar variables

σ̃iaσ̃
j
a = hhij (101)

where hij is the 3-metric on the spatial slice Σ and h = det(hij). The
determinant of (101), under the CDJ Ansatz (11), yields

√
(detB)(detΨ) =

√
detσ̃ =

√
h. (102)

Equation (102) can equally be read from right to left where the instanton
representation holds. Substituting (102) into (99), we have

δSHJ = Λ

∫

Σ
d3xδtN

√
hα,β. (103)

Note that the 3-metric has acquired the labels (α, β). Proceeding along from
(103) and using the identity

√−g = N
√
h,13 we have that14

δSHJ = Λ

∫

Σ
d3xδt

√−g

−→ SHJ(t)− SHJ(t0) = Λ

∫

M
d4x

√−g = ΛV olα,β(M) (104)

which is the volume of spacetime. So we see that any time evolution of the
Hamilton–Jacobi functional can be induced only by a nonvanishing cosmo-
logical constant Λ. The exponentiation of (104) gives

ψα,β = e(~G)−1SHJ(t) = Φexp
[( Λ

~G

)
V olα,β(M)

]
, (105)

where the pre-factor Φ is the value of the functional on the initial spatial
hypersurface t0. Note for Λ = 0 that this should reduce to (80), which
provides the physical interpretation of Φ as the state correspondingto Λ = 0.
Equation (105) corresponds to the dominant contribution to gravitational
path integrals due to gravitational instantons. It appears that (75) could
be used to model the wavefunctional of the universe corresponding to the
state labelled by (α, β) (See e.g. Paper XII). Note that while the classical
time evolution is in general complicated for Λ = 0, the state has a simple
mathematical form.

13This expresses the determinant of the spacetime metric gµν in terms of its 3+1 de-
composition.

14We will now rescale the lapse function by a factor of two to return to the usual
convention.
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7 Conclusion

The final results of this paper are as follows. Starting from the kinematic
phase space ΩKin we have provided a preview into the dynamics of the
instanton representation of Plebanski gravity in the full theory. ΩKin is
a suitable starting point since at this level the kinematic constraints have
already been implemented, leaving remaining the Hamiltonian constraint
evaluated on the physical degrees of freedom. We have treated the case of
vanishing and nonvanishing Λ for the evolution of the physical configura-
tion space degrees of freedom relative to a clock variable T . For Λ = 0 the
evolution is that of a free particle in a two dimensional configuration space,
and for Λ 6= 0 the evolution albeit more complicated has been reduced to
a quadrature. To qualify this statement in more precise terms, the time
variation of explicit time evolution of the clock variable T has been reduced
to a fixed point iteration procedure which composes a functional integration
with the evaluation of a logarithm. While the relational evolution of the
dynamical variables with respect to T has been determined, a remaining
course of study is to test the proposed iterative procedure for various situa-
tions. For different choices of functions for the gravitational labels α and β,
and for the lapse function N , one may examine the evolution from different
choices of initial data for convergence.

At each stage of the process we have taken into account the Hamiltonian
constraint, which implies that we are indeed considering dynamics on the
reduced phase space. This was one of the aims in [6], [7] and [8], where
the Hamiltonian constraint remained unresolved. Hence the implication is
that the eigenvalues of the CDJ matrix are a suitable set of gauge invariant,
diffeomorphism invariant degrees of freedom for gravity. Also in conformity
with the aims of [6], [7] and [8], we have constructed a Hamilton–Jacobi
functional for the theory. For Λ = 0 the functional has been explicitly com-
puted, and for Λ 6= 0 it has been reduced to a quadrature in the functional
space of T . We have also derived the Kodama state, which is directly related
to the clock variable T . We have additionally shown that the starting action
evaluated on the solution to the equations of motion exhibits the expected
behavior. These latter analyses form a basis for treatment and consideration
of the quantum theory in the instanton representation, a future direction of
research carried out in Paper XVIII.
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