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Abstract

In this paper we show that the instanton representation of Pleban-
ski gravity exhibits a Hilbert space of harmonic oscillator-like coherent
states. We put in place the formalism and carry out the construction
of the states, and we elucidate on their physical interpretation. Addi-
tionally, we provide an invertible map between the Ashtekar variables
and this Hilbert space of states, via the instanton representation.
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1 Introduction

There are presently at least two unresolved issues in the full theory of gen-
eral relativity. One issue regards the projection from the full phase space Ω
to the physical degrees of freedom defined by the constraint surface. Sec-
ondly, the quantization of the theory in congruity with this projection to
the present author’s knowledge remains to be consistently implemented.
We have approached the first issue using the instanton representation of
Plebanski gravity by projection from the unconstrained to the kinematic
phase space, defined as the reduced phase space for gravity under gauge
transformations and diffeomorphisms, and implementation of the Hamilto-
nian dynamics thereon. In this paper we will approach the second issue for
certain sectors of GR from the standpoint of the algebra of observables. We
will show that the representation of this algebra exhibits a natural coherent
state structure for gravity.

In the instanton representation the basic momentum space variables are
the densitized eigenvalues of the antiself-dual Weyl curvature (CDJ matrix),
which constitute the physical degrees of freedom. The Hilbert space which
we refer to is defined on the kinematic phase space, where these degrees of
freedom are explicit. It is on this space where the quantization procedure
and the implementation of the reality conditions have been defined. One
feature of the Hilbert space as constructed in [1] is that the states resemble
an infinite-dimensional analogue of harmonic oscillator-like coherent states,
which are applicable for vanishing cosmological constant Λ. In [2] we have
generalized the construction to include nonvanishing Λ, which entails the
use of holomorphic hypergeometric functions.1 In the present paper we will
carry out the construction of the states within the context of the coherent
state formalism.

The organization of this paper follows a bottom-up rather than the con-
ventional top-down approach, as we will first establish a system of coherent
states and then provide a map from this system to the Ashtekar variables,
via the instanton representation. The organization of this paper is as fol-
lows. In section 2 we provide a brief review of the oscillator formalism and
coherent states, building on the relevant concepts from [4] and [5]. The pur-
pose of this section is to put in place the formalism, and to introduce the
constituents of some of the operators which which have direct analogues for
gravity. Sections 3, 4 and 5 carry out the transformation from the coherent
state basis and operators into the holomorphic Schrödinger representation,
from which we derive the Ashtekar variables via the instanton represen-

1In [3] we have treated the implementation of reality conditions at the kinematic level
both for Λ = 0 and for Λ 6= 0, including via adjointness relations on the Hilbert space.
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tation. We have also outlined the solution to the Hamiltonian constraint
in the holomorphic Schrödinger representation in terms of hypergeometric
functions. The association of the gravitational Hilbert space with oscillator
coherent states uniquely picks out the Barmann representation [6] and the
accompanying adjointness relations. In section 6 we provide a brief physical
interpretation of the states and what features of spacetime they describe. In
section 7 we outline the construction of the hypergeometric solutions to the
Hamiltonian constraint using a Lippman–Schwinger type expansion with re-
spect to the coherent state basis. In this section we formalize the link from
the coherent states to the gravitational degrees of freedom using the holo-
morphic Schrödinger representation. Section 8 contains a summary of the
results and a brief conclusion.

2 Quantum harmonic oscillator formalism

We will first start with a simple system, where all of the the steps of the
algebraic extension to Dirac’s quantization procedure, outlined in [7] can be
carried out to completion. Our system consists of three uncoupled simple
harmonic oscillators with annihilation operators a1, a2 and a3. From af

construct the following set S, given by

S =
{
a1, a2, a3, a

∗
1, a

∗
2, a

∗
3, 1

}
. (1)

It is clear from (1) that S is closed under complex conjugation. Additionally,
S is closed under the Poisson bracket since as one can easily verify from the
harmonic oscillator algebra,

{af , a
∗
g} = δfg; {af , ag} = {a∗f , a∗g} = {af , 1} = {a∗f , 1} = 0. (2)

From (2) the objects af and a∗f may be regarded as the fundamental dy-
namical variables of a phase space ΩKin. Define F as the set of all suitably
regular functions on ΩKin which can be obtained as a sum of products of
elements F (i) ∈ S. Some examples of elements of F are given by2

Q = a3a3 +
2
3
(a1 + a2)a3 +

1
3
a1a2;

O = a3(a3 + a1)(a3 + a2); τ = a3 +
1
3
(a1 + a2). (3)

2These particular functions will for gravity take on the interpretation as SO(3, C)
invariants which appear in the Hamiltonian constraint.
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Next, we will associate with each element F (i) in S an abstract operator F̂ (i),
and construct the free algebra A generated by these elementary quantum
operators. This amounts to the promotion of (1) to

A =
{
â1, â2, â3, â

†
1, â

†
2, â

†
3, 1̂

}
, (4)

whence the Poisson brackets (2) become promoted to commutators

[
âf , â

†
g] = δfg;

[
âf , âg] =

[
â†f , â

†
g] =

[
âf , 1̂] =

[
â†f , 1̂] = 0. (5)

Note that (5) can also be derived by application of an involution operation
to (1). Additionally, the promotion S → A extends to the set {F}, hence
(3) become promoted to

Q̂ = â3â3 +
2
3
(â1 + â2)â3 +

1
3
â1â2;

Ô = â3(â3 + â1)(â3 + â2); τ̂ = â3 +
1
3
(â1 + â2) (6)

with adjoints

Q̂† = â†3â
†
3 +

2
3
(â†1 + â†2)â

†
3 +

1
3
â†1â

†
2;

Ô† = â†3(â
†
3 + â†1)(â

†
3 + â†2); τ̂ † = â†3 +

1
3
(â†1 + â†2) (7)

under the involution operation. As an aside, these operators satisfy the
algebra

[
â3, Ô

†] = 3Q̂†;
[
â3, Q̂

†] = 2τ̂ †;
[
â3, τ̂

†] = 1;
[
Ô, Q̂

]
=

[
Q̂, τ̂

]
=

[
τ̂ , Ô

]
= 0. (8)

We will now construct a linear representation of the abstract algebra A
given by (4). Along with the algebra (5) comes a unique normalized ground
state

∣∣0, 0, 0
〉

=
∣∣0

〉
⊗

∣∣0
〉
⊗

∣∣0
〉

with
〈
0, 0, 0

∣∣0, 0, 0
〉

= 1, such that

âf

∣∣0, 0, 0
〉

=
〈
0, 0, 0

∣∣â†f = 0, (9)

where the creation operator in (9) acts to the left on the bra state. Also, we
have that

â
†
1

∣∣0, 0, 0
〉

=
∣∣1, 0, 0

〉
; â

†
2

∣∣0, 0, 0
〉

=
∣∣0, 1, 0

〉
; â

†
3

∣∣0, 0, 0
〉

=
∣∣0, 0, 1

〉
, (10)
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such that for an arbitrary state
∣∣p, q, s

〉
with p ≥ 0, q ≥ 0 and r ≥ 0,3

Cl′m′n′
l,m,n (â1)l(â2)m(â3)n(â†1)

l′(â†2)
m′

(â†3)
n′∣∣p, q, s

〉

=
∣∣p− l + l′, q −m+m′, s− n + n′

〉
(11)

where we have defined

Cl′m′n′
l,m,n =

√
(l′)!(m′)!(n′)!
(l!)(m!)(n!)

. (12)

These states form a mode number basis satisfying orthogonality relations

〈
l,m, n

∣∣p, q, s
〉

= δlpδmqδns, (13)

and âf and â†f are adjoints with respect to the inner product (13).

2.1 Coherent states

In this paper we will rather be utilizing a basis of coherent states, applying
the formalism of [4] to our model for gravity. One way to define coherent
states is states which are eigenstates of the annihilation operators a1, a2 and
a3 where

â1

∣∣α, β, λ
〉

= α
∣∣α, β, λ

〉
; â2

∣∣α, β, λ
〉

= β
∣∣α, β, λ

〉
; â3

∣∣α, β, λ
〉

= λ
∣∣α, β, λ

〉
.(14)

We will single out a3 as special from a1 and a2, since the operators of interest
(for example (7)) will be invariant under interchange of a1 and a2 but not
with respect to a3. Hence in terms of the individual states in the direct
product, we have the definitions

∣∣α
〉

= e−|α|2eαa†
1
∣∣0

〉
;

∣∣β
〉

= e−|β|2eβa†
2
∣∣0

〉
;

∣∣λ
〉

= eαa†
1
∣∣0

〉
. (15)

where α, β and λ are dimensionless quantities. It will be convenient to define
the coherent states, in the sense of Perelemov [5], as the states obtained by
application of a displacement operator to the vacuum state

∣∣0, 0, 0
〉
, or any

appropriate fiducial state. This is given by
3We require for all states that

∣∣p, r, s
〉

= 0 for any of p, r, s less than zero.
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∣∣α, β, λ
〉

= D(α, β, λ)
∣∣0, 0, 0

〉
, (16)

where we have defined the displacement operator

D(α, β, λ) = eαa
†
1−α∗a1eβa

†
2−β∗a2eλa

†
3 . (17)

The coherent states are obtained by displacing the vacuum state into C3, a
3-dimensional complex space representing three copies of the complex plane.
C3 at the present level plays the role of the coset space for the group man-
ifold of three copies of the complexified Heisenberg algebra (H4)3.4 Hence
(17) is a typical representative in this coset space and there is a one-to-one
correspondence between states

∣∣α, β, λ
〉

and points in C3.
There exists a natural flat metric on C3 which can be used to define the

distance between two states labelled by z and z′, given by

d(z, z′) =
1
2

[
|α− α′|2 + |β − β′|2 + |λ− λ′|2

]
. (18)

This metric induces the following overlap between coherent states

∣∣〈z
∣∣z′

〉∣∣2 = e−d(z,z′). (19)

However, for the purpose of the gravitational coherent states we will elimi-
nate the last term of (18), since we will impose a constraint which reduces
λ→ λα,β to a function of just α and β. Hence (α, β) ∈ C2 will coordinatize
the physical degrees of freedom which makes normalization in λ redundant.5

Therefore the overlap between two states for our purposes will involve only
α and β, given by

∣∣〈α, β
∣∣α′, β′

〉∣∣2 = e−|α−α′|2e−|β−β′|2 , (20)

and we will from now on omit λ from the labels in the anticipation of im-
plementing the aformentioned constraint.

We will be using the following resolution of the identity for the states

∫
d2αd2β

π2

∣∣α, β
〉〈
α, β

∣∣ = I. (21)

4We have taken for granted the quotienting of the Heisenberg group H4 ⊗H4 ⊗H4 by
the identity group element 1 and the mode number operator N̂f = â†f âf in our notation,

which yields the coset space (H4)
3/(U(1))6.

5In particular, we will associate a3 and a†3 with time variables on the kinematic phase
space ΩKin, and one does not normalize a wavefunction in time.
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Note, since the states are labelled by continuous indices in a Hilbert space
that has a countable basis, they are overcomplete. Note that any arbitrary
state

∣∣ψ
〉

can be expanded in terms of these coherent states [4]

∣∣ψ
〉

=
∫ ∣∣α, β

〉
f(α∗, β∗)e−|α|2/2e−|β|2/2d

2αd2β

π2
, (22)

where the analytical function f(α∗, β∗), the coherent state representation of∣∣ψ
〉

is given by

f(α∗, β∗) =
〈
α, β

∣∣ψ
〉
e|α|

2/2e|β|
2/2 =

∑

m,n

cm,n
(α∗)m(β∗)n

(m!)1/2(n!)1/2
(23)

with cm,n the mode basis expansion coefficients in the expansion

∣∣ψ
〉

=
∑

m,n

cm,n

∣∣m,n
〉

=
∑

m,n

cm,n
(a†1)

m(a†2)
n

(m!)1/2(n!)1/2

∣∣0, 0
〉
. (24)

2.2 Action of the constituent operators

We will now put in place the constitutents of the operator which will we will
use to impose constraints on our system to reduce the coset state manifold
from

∣∣α, β, λ
〉
∼ C3 to

∣∣α, β
〉
∼ C2. The operators Ô, Q̂ and τ̂ from (7) have

the following action on the coherent states

Q̂
∣∣α, β, λ

〉
= (λ+ γ−)(λ+ γ+)

∣∣α, β, λ
〉
, (25)

where we have defined

γ± =
1
3

(
α+ β ±

√
α2 − αβ + β2

)
≡ λα,β (26)

as the roots of Q, seen as a polynomial in a3. Also we have the following
actions

Ô
∣∣α, β, λ

〉
= λ(λ+ α)(λ+ β)

∣∣α, β, λ
〉
;

τ̂
∣∣α, β, λ

〉
=

(
α + β +

1
3
λ
)∣∣α, β, λ

〉
. (27)

From these operators construct the following Hamiltonian constraint oper-
ators for our theory, given by
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Ĥ1 = Q̂+ lÔe−a
†
3 ; Ĥ2 = Ô + rQ̂ea

†
3 ; l =

1
r

(28)

where r 6= 0 is a numerical constant. The aim of this paper will be to
construct states annihilated by Ĥ1 and Ĥ2 using the coherent state basis.
Part of this process will utilize the coherent states annihilated by Q̂ and Ô.
These are

∣∣α, β, λα,β

〉
∈ Ker{Q̂} (29)

with λ = λα,β given by (26), and

∣∣α, β, 0
〉
,
∣∣α, β,−α

〉
,
∣∣α, β,−β

〉
∈ Ker{Ô}. (30)

For those states annihilated by Ĥ1 and Ĥ2 it will be convenient to define
the following states

∣∣χ
〉
α,β

by

∣∣χ
〉
α,β

≡
∣∣χ

〉
⊗

∣∣α
〉
⊗

∣∣β
〉
. (31)

We will replace the action of â1 and â2 on (31) by their eigenvalues, and
leave the operator â3 in its present form since we have singled out â3 as
special. Then the following relations ensue

Ĥ1

∣∣χ
〉
α,β

=
(
(â3 + γ−)(â3 + γ+) + lâ3(â3 + α)(â3 + β)e−â†

3

)∣∣χ
〉
α,β

(32)

and

Ĥ2

∣∣χ
〉
α,β

=
(
â3(â3 + α)(â3 + β) + r(â3 + γ−)(â3 + γ+)eâ3

)∣∣χ
〉
α,β
. (33)

Having defined the operators and algebra of our system, we will next asso-
ciate the system to gravity. First let us associate to each point x in 3-space
Σ a harmonic oscillator of the type (1), as in

S =
{
a1(x), a2(x), a3(x), a∗1(x), a

∗
2(x), a

∗
3(x), 1

}
. (34)

Then all of the aforementioned formalism can be repeated for each x ∈
Σ. If 3-space were continuous, then we would have an infinite number of
representations of the oscillator algebra, one representation per point. But
let us start with the assumption that space is discrete, and then we can
always attempt to take the continuum limit of the resulting theory.
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3 Holomorphic Schrödinger representation

Perform a 3+1 decomposition of 4-dimensional spacetime M = Σ×R where
Σ is a 3-dimensional spatial manifold, and define by ∆N(Σ) a discretization
of Σ into a lattice of spacing ε = l3

N , where l is the characteristic length scale
of Σ and N is the total number of lattice sites. For each x ∈ ∆N (Σt) on the
final spatial hypersurface Σt labelled by t define quantities (X, Y, T ), which
are elements of the space of holomorphic functions, by

(
X(x, t), Y (x, t), T (x, t)

)
∈ ΓKin (35)

where ΓKin is defined as the kinematic configuration space at point x on
the hypersurface Σt. Also define ∀x ∈ ∆N (Σ) a two dimensional complex
space coordinatized by (α̃x, β̃x) ∈ C2 and associate with each C2(x) a state
χ(Tx(t))

∣∣α̃, β̃
〉
x
, where

χ(Tx(t)) = eν(~G)−1
∫
Γ

λ(T )δT (36)

for λ(T ) ∈ C∞(ΓKin). Hence we assume that the antiderivative in the
exponential of (36) exists. The following mass dimensions are defined for
the various quantities of interest

[X ] = [Y ] = [T ] = 0; [ν] = −3; [λ̃] = [α̃] = [β̃] = 1. (37)

Let the state
∣∣α̃, β̃

〉
x

have the following Schrödinger representation

e(~G)−1ν(αxXx+βyYy). (38)

Let us form the continuum limit of the part of the state dependent on (X, Y )
by the direct product of (38)

ψα,β[X, Y ] =
〈
X, Y

∣∣α̃, β̃
〉

= limε→0

∏

x

〈
Xx(t), Yx(t)

∣∣α̃x, β̃x

〉

= N(α̃, β̃)e(~G)−1(α̃·X+β̃·Y ). (39)

In this limit we have ∆N(Σ) → ∆∞(Σ), and the dot product signifies a
Riemannian integral over 3-space, as in6

U · V =
∫

Σ
d3xU(x)V (x) ∀ U, V ∈ C0(Σ). (40)

6This can be seen as the result of assigning a volume of ν to each point in ∆N (Σ), as in
(38). In the continuum limit the sum over each volume ν becomes a Riemannian integral.
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The quantity N(α̃, β̃) in (39) is a normalization factor given by

N(α̃, β̃) = e−ν(~G)−2(α̃∗·α̃+β̃∗·β̃). (41)

Note that the states ψα,β ∈ L2(ΓKin, Dµ) are square-integrable with respect
to the measure

Dµ =
∏

x

D(X, Y )xe
−ν−1(X·X+Y ·Y ), (42)

where D(X, Y )x = δXδXδY δY and ν is a numerical constant of mass di-
mension [ν] = −3. The overlap between two states in the measure (42) is
given by

∣∣〈α̃, β̃
∣∣α̃′, β̃′

〉∣∣2 = exp
[
−ν(~G)−2

∫

Σ
d3x

(∣∣α̃(x) − α̃′(x)
∣∣2 +

∣∣β̃(x) − β̃′(x)
∣∣2

)]
,(43)

which is inversely proportional to the Euclidean distance between the state
labels in the two dimensional complex manifold C2. Let us first consider a
special case where λ(T ) is independent of T , given by

λ̃(T ) = λ̃±α,β = −1
3
(
α̃+ β̃ ±

√
α̃2 − α̃β̃ + β̃2

)
. (44)

In this case (36) yields χ(T ) = e(~G)−1λ±
α,β ·T which produces a state

ψ0
α,β[X, Y, T ] = e(~G)−1(α·X+β·Y +λ±

α,β ·T ). (45)

Define dynamical momentum space variables Π(x, t), Π1(x, t) and Π2(x, t)
on the kinematic momentum space PKin, which upon quantization become
promoted to operators satisying equal-time commutation relations

[
T̂ (x, t), Π̂(y, t)

]
=

[
X̂(x, t), Π̂1(y, t)

]
=

[
Ŷ (x, t), Π̂2(y, t)

]
= (~G)δ(3)(x, y).(46)

Also define the following function on the kinematic momentum space PKin,
given by

Q = Π2 +
2
3
(Π1 + Π2)Π +

1
3
Π1Π2. (47)

Equation (47) can be written in the equivalent form by dividing it by Π(Π+
Π1)(Π + Π2) 6= 0, which yields
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1
Π

+
1

Π + Π1
+

1
Π + Π2

= 0. (48)

Note that
∣∣α̃, β̃

〉
are eigenstates of Π̂1 and Π̂2, given in the functional

Schrödinger representation by

Π̂(x)ψ = (~G)
δ

δT (x)
ψ;

Π̂1(x)
∣∣α̃

〉
−→ (~G)

δ

δX(x)
e(~G)−1α̃·X −→ α̃(x)

∣∣α̃
〉
;

Π̂2(x)
∣∣β̃

〉
−→ (~G)

δ

δY (x)
e(~G)−1β̃·Y −→ β̃(x)

∣∣β̃
〉
. (49)

Also note that ψ0
α,β ∈ Ker{Q̂}, which can also be written as

(
(~G)2

δ2

δT (x)δT (x)
+

2
3
(α+ β)(~G)

δ

δT (x)
+

1
3
αβ

)
ψ0

α,β = 0, (50)

where we have replaced the actions of Π1 and Π2 by their eigenvalues on
the state. We have left the action of Π intact as a functional derivative,
because we have singled T (x) as a time variable on ΓKin and we will be
interested in the evolution of the state with respect to T . Equations (49)
are the continuum limit of the following discretized versions for x ∈ ∆N(Σ)

Π̂xψ = (~G)ν−1 ∂

∂Tx
ψ;

(Π̂1)x

∣∣α̃
〉
−→ (~G)ν−1 ∂

∂Xx
eν(~G)−1αX −→ α̃x

∣∣α̃
〉
;

(Π̂2)x =
∣∣β̃

〉
−→ (~G)ν−1 ∂

∂Yx
eν(~G)−1βY −→ β̃x

∣∣β̃
〉
, (51)

whence the integration has been restricted to a single cell of volume ν con-
taining the point x. The effect of the the factor ν−1 in the partial derivative
is the analogue of a delta function in the functional derivative of the contin-
uum limit. Similarly, the discretized version of (50) is given by

(
(~Gν−1)2

∂2

∂Tx
+

2
3
(α̃x + β̃x)(~Gν−1)

∂

∂Tx
+

1
3
α̃xβ̃x

)
ψ0

α,β = 0. (52)

We will now make an association from the holomorphic states ψ0
α,β con-

structed in this section to gravity in two stages. First we will show how the
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Hilbert space follows from the kinematic level of the instanton representa-
tion of Plebanski gravity. Secondly, we will provide an embedding map from
the kinematic phase space to the unconstrained phase space which we will
in turn map into the Ashtekar variables.

4 Transformation into the instanton representa-
tion action of Plebanski gravity

We will now construct the simplest action which upon quantization yields
the commutation relations (46) and the constraint (48). This is given by

IKin =
i

G

∫
dt

∫

Σ
d3x

(
ΠṪ + Π1Ẋ + Π2Ẏ

−iNK
√

Π(Π + Π1)(Π + Π2)
( 1

Π
+

1
Π + Π1

+
1

Π + Π2

))
, (53)

where K = K(X, Y, T ) 6= 0 is some function of the kinematic configuration
space variables X, Y, T ∈ ΓKin, which will be choosen appropriately. Note
that (53) implies the symplectic two form

ωKin =
i

G

∫

Σ
d3x

(
δΠ ∧ δT + δΠ1 ∧ δX + δΠ2 ∧ δY

)

=
i

G
δ
(∫

Σ
d3x

(
ΠδT + Π1δX + Π2δY

))
≡ δθKin, (54)

where θKin is the canonical one form on the kinematic phase space ΩKin.
We will now perform a change of variables. Define a mass scale a0 = const.
and define new momentum space variables (λ1, λ2, λ3) such that

Π1 = a3
0e

T (λ1 − λ3); Π2 = a3
0e

T (λ2 − λ3); Π = a3
0e

Tλ3, (55)

and define new configuration space variables (a1, a2, a3) such that7

a1 = a0e
X ; a2 = a0e

Y ; a1a2a3 = a3
0e

T . (56)

The ranges of the coordinates are −∞ < |X |, |Y |, |T |<∞ where

|a| =
√

(Re{a})2 + (Im{a})2, (57)
7Note that a1, a2 and a3 are not to be confused with the harmonic oscillator annihila-

tion operators of the previous sections.
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which corresponds to 0 < |af | < ∞. Under the transformation (55) and
(56), then the action (53) is given by

IKin =
i

G

∫
dt

∫

Σ
d4x

(
λ1a2a3ȧ1 + λ2a3a1ȧ2 + λ3a1a2ȧ3

−iNK
√
λ1λ2λ3

( 1
λ1

+
1
λ2

+
1
λ3

))
. (58)

where now K = K(a1, a2, a3), which will be chosen appropriately. We will
now adopt the following convention for indices, where symbols from the
beginning of the Latin alphabet a, b, c . . . signify internal indices and symbols
from the middle i, j, k, . . . signify spatial indices in Σ. We will associate the
internal indices with SO(3, C), the special complex orthogonal group in
three dimensions. Let us now make the following identifications

αa
i =




a1 0 0
0 a2 0
0 0 a3


 ; βi

a = εijk∂jα
a
k +

1
2
εijkfabcαb

jα
c
k,

where βi
a will play the role of a magnetic field for αa

i , seen as a nonabelian
gauge field. Note for the diagonal αa

i = δa
i aa that there are no spatial

gradients in the canonical one form θKin.8 Let us define a new variable Ψae,
given by

Ψae = (e~θ·T )af




λ1 0 0
0 λ2 0
0 0 λ3




fg

(e−~θ·T )ge + εaedψ
d,

where ~θ = (θ1, θ2, θ3) ∈ C3 are a triplet of complex angles and ψd is a
SO(3, C)- valued 3-vector. Note for ψd = 0 that Ψae is symmetric in a, e,
since it takes on the interpretation of an SO(3, C) transformation of the
diagonal matrix of eigenvalues. Define the following quantities

bia = (e~θ·T )aeβ
i
e; aa

i = (e~θ·T )aeα
e
i +

1
2
εabc(e~θ·T )bf∂i(e

~θ·T )cf . (59)

Note that bia = bia(~a, ~θ) is the result of rotating the internal index of βi
a, which

corresponds a SO(3, C) transformation. It then follows that aa
i = aa

i (~a, ~θ),
which now has six degrees of freedom, is the corresponding gauge trans-
formed version of ~a = (a1, a2, a3) which has just three degrees of freedom.

8This is because, due to the antisymmetry of εijk and the symmetry of a diagonal
connection δa

i ai, that the spatial gradient terms drop out. Since the spatial gradients are
still nonzero, we are dealing with the full theory and not minisuperspace. There are three
degrees of freedom per point in the diagonal connection.
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The transformation (59) induces an embedding ΩKin → Ωdiff , where Ωdiff

is defined as a diffeomorphism invariant phase space with action

Idiff =
i

G

∫
dt

∫

Σ
d3x

(
Ψ(ae)b

i
eȧ

a
i − iN(detb)1/2

√
detΨtrΨ−1

)∣∣∣∣
Sym(Ψ)

. (60)

By the notation Sym(Ψ) is meant that Ψae = Ψea is symmetric. We can
remove this restriction by allowing Ψ to have an antisymmetric part while
imposing the constraint that this antisymmetric part vanishes. We can also
constrain the SO(3, C) frame by imposing a constraint on ~θ. In conjunction
with the aformentioned constraints and the constraint on the eigenvalues
λf we will impose the following constraints on the unreduced phase space
ΩInst, given by

H = (detb)1/2
√

detΨtrΨ−1 = 0;
Hi = εijkb

j
ab

k
eΨae = 0;

Ga = bie∂iΨae +
(
fabfδge + febgδaf

)
Ψfg = bieDiΨae = 0. (61)

The constraints (61) can be obtained by the variation of Lagrange multipliers
(af

0 , N,N
i) in the following action

IInst =
i

G

∫
dt

∫

Σ
d3x

(
Ψaeb

i
eȧ

a
i − aa

0Ga −N iHi − iNH
)
. (62)

Note that there is no configuration space variable canonically conjugate to
Ψae, since the canonical one form θ =

∫
Σ d

3xΨaeb
i
eδa

a
i does not vary into a

canonical symplectic two form.
The momentum space Ψae of (62) has nine degrees of freedom per point,

but the connection aa
i has only six. We may lift this restriction, in conjunc-

tion with lifting the restriction to symmetric Ψae, and make the identification
aa

i → Aa
i and bia → Bi

a[A] where now Aa
i and therefore Bi

a now have nine
degrees of freedom per point. We can then write the extended action as

IInst =
i

G

∫
dt

∫

Σ
d3x

(
ΨaeB

i
eȦ

a
i +Aa

0B
i
eDiΨae

−εijkN iBj
aB

k
e Ψae − iN(detB)1/2

√
detΨtrΨ−1

)
, (63)

combined with a prescription for obtaining the diffeomorphism invariant
phase space Ωdiff . This prescription is to set to zero all components of Aa

i

not obtainiable from a diagonal connection δa
i aa by SO(3, C) gauge trans-

formation, in conjunction with setting Ψ[ae] = 0, when implementing the
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diffeomorphism constraint Hi = 0. Note, in direct analogy to (62), that
θInst =

∫
Σ d

3xΨaeB
i
eδA

a
i also does not yield a canonical symplectic two

form. The phase space variables satisfy

[
Aa

i (x, t),Ψbf(y, t)
]
= (~G)δa

b (B−1)f
i δ

(3)(x, y), (64)

which are not canonical commutation relations owing to the field dependence
on the right hand side. Note, however, that on the kinematic phase space
ΩKin in (54) ωKin = δθKin which implies canonical commutation relations
(46). Equation (63) is the action IInst for Plebanski gravity in the instanton
representation for vanishing cosmological constant, derived in [1]. Equation
(53) is the action on the reduced phase space for gauge transformations and
diffeomorphisms, defined as the kinematic phase space ΩKin.

5 Transformation into the Ashtekar variables

We have performed an embedding map from the kinematic phase space ΩKin,
which has a closed symplectic two form ωKin, to the unreduced phase space
of the instanton representation of Plebanski gravity ΩInst, whose symplectic
two form ωInst is in general not closed. But we would like a theory which on
its full unconstrained phase space admits a closed symplectic two form, and
we would like this theory to admit a well-defined sequence of transformations
to ΩKin and its resulting Hilbert space. To deal with this let us make the
change of variables

Ψ−1
ae = Bi

e(σ̃
−1)a

i

∣∣∣∣
detσ̃ 6=0

, (65)

which holds for nondegenerate variables. Substitution of (65) into (63) and
defining N = N(detσ̃)−1/2 yields an action

IInst →
i

G

∫
dt

∫

Σ
d3x

(
σ̃i

aȦ
a
i −Aa

0Diσ̃
i
a − εijkN

iσ̃j
aB

k
a − i

2
Nεijkε

abcσ̃i
aσ̃

j
bB

k
c

)
(66)

with phase space variables (σ̃i
a, A

a
i ) which upon quantization would satisfy

the canonical commutation relations

[
Aa

i (x, t), σ̃
j
b(y, t)

]
= (~G)δa

b δ
j
i δ

(3)(x, y). (67)

Note that (65) is a noncanonical transformation from ΩInst into ΩAsh, the
phase space of the Ashtekar variables, where Aa

i is the self-dual Ashtekar
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connection. Indeed, (66) is the action for general relativity in the Ashtekar
variables for vanishing comoslogical constant (See e.g. [8], [9] and [10]). The
symplectic two form corresponding to (66) is given by

ωAsh =
i

G

∫

Σ
d3xδσ̃i

a ∧ δAa
i =

i

G
δ
(
δ

∫

Σ
d3xσ̃i

aδA
a
i

)
= δθAsh, (68)

which is the exact functional variation of the canonical one form θAsh .
Let us now generalize to the case of a nonvanishing cosmological constant

Λ. The only change to the action (66) occurs in the Hamiltonian constraint,
which is now given by

H = εijkε
abcσ̃i

aσ̃
j
bB

k
c +

Λ
3
εijkε

abcσ̃i
aσ̃

j
b σ̃

k
c . (69)

Performing all of the previous steps from (35) to (62) in reverse to accomplish
the projection ΩAsh → ΩInst → Ωdiff → ΩKin from the full unconstrained
Ashtekar variables to the quantizable kinematic phase space of the instanton
representation, we find that (48) for Λ 6= 0 is given by

Λ
a3

0

+
( 1

Π
+

1
Π + Π1

+
1

Π + Π2

)
eT = 0 ∀ x ∈ ∆N(Σ). (70)

The effect of the cosmological constant is to bring a mass scale
√

Λ into the
theory. Equation (70) can be written in polynomial form as

( Λ
3a3

0

)
Π(Π + Π1)(Π + Π2) +

(
Π2 +

2
3
(Π1 + Π2)Π +

1
3
Π1Π2

)
eT = 0, (71)

obtained by multiplication by Π(Π + Π1)(Π + Π2) 6= 0. Upon quantization
of (71) we have the following functional differential equation

Ĥψ =
[
(~G)3

( Λ
3a3

0

) δ

δT

( δ

δT
+

δ

δX

)( δ

δT
+

δ

δY

)

+r(~G)2
( δ2

δT 2
+

2
3

( δ

δX
+

δ

δY

) δ

δT
+

1
3

δ2

δXδY

)
eT

]
ψΛ

α,β[T ] = 0 ∀x ∈ Σ,(72)

where ψΛ
α,β =

∣∣α̃, β̃
〉
⊗ χ(T ). We can replace the action of the functional

derivatives with respect to X and Y on the state with their eigenvalues α̃
and β̃, yielding

Ĥψ =
[( Λ

3a3
0

)
(~G)

δ

δT

(
(~G)

δ

δT
+ α̃

)(
(~G)

δ

δT
+ β̃

)

+r
(
(~G)2

δ2

δT 2
+

2
3
(α̃+ β̃)

δ

δT
+

1
3
α̃β̃

)
eT

]
ψΛ

α,β[T ] = 0. (73)

15



Whereas in the Λ = 0 case there was not a problem, one can see that for Λ 6=
0 one must deal with the multiple functional derivatives acting at the same
point, which can now act on the factor of eT .9 At this point we will perform
a discretization ∆N (Σ) of 3-space Σ. Then the functional derivatives turn
into partial derivatives at a particlar point, which are finite. In this process
we must append the inverse volume of a cell in order to preserve the mass
dimensions as in δ/δT (x) → ν−1∂/∂Tx, and the Hamiltonian constraint
reduces to the following equation

[
µ
∂

∂T

(
µ
∂

∂T
+ α̃

)(
µ
∂

∂T
+ β̃

)
+

(3a3
0

Λ

)(
µ
∂

∂T
+ λ̃−α,β

)(
µ
∂

∂T
+ λ̃+

α,β

)
eT

]
χ(T ) = 0,(74)

where the following quantities are defined

µ =
~G
ν

; λ̃±α,β =
1
2

(
α̃+ β̃ ±

√
α̃2 − α̃β̃ + β̃2

)
; z ≡ 3

( a3
0

µΛ

)
eT (75)

with mass dimensions [µ] = 1 and [z] = 0. Additionally we will define the
following dimensionless state labels from (15)

α =
α̃

µ
; β =

β̃

µ
; λα,β =

λ̃α,β

µ
, (76)

so that [α] = [β] = [λα,β] = 0. Dividing (74) by µ3 and eliminating T in
favor of z, we obtain upon commuting the factor of z to the left the following
differential equation

[
z
d

dz

(
z
d

dz
+ α

)(
z
d

dz
+ β

)
+ z

(
z
d

dz
+ λ−α,β + 1

)(
z
d

dz
+ λ+

α,β + 1
)]
χ(z) = 0.(77)

Equation (77) is a hypergeometric differential equation with solution

χ(z) = 2F2

(
λ−α,β + 1, λ+

α,β + 1;α+ 1, β + 1; z
)
. (78)

The state is then given by the direct product of these functions over a given
discretization

Ψα,β =
∏

x

χ(Tx)
∣∣αx, βx

〉
. (79)

9Note that this is not an issue for the (X,Y ) dependence, since the action on the state
is finite without regularization, which as well highlights the reason why T is special.
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For Λ 6= 0 there is a three to one correspondence between states and points
in C2, whereas for Λ = 0 there is a two to one correspondence.10 Later in
this paper we will make the direct association from α and β as defined in
(76) to the labels of the harmonic oscillator coherent states derived in section
2. The associated formalism and results from the holomorphic Schrödinger
representation carry over directly into the coherent state formalism.

6 Physical interpretation

We shall now elucidate upon the relation of the physical Hilbert spaceHPhys

to general relativity. Perform the following decomposition of Ψ−1
ae

Ψ−1
ae = −Λ

3
δae + ψae, (80)

where ψae is symmetric and traceless. In the language of SL(2, C) Weyl,
shorthand for the self-dual part of the Weyl curvature tensor, can be written
in unprimed SL(2, C) indices as

ψABCD = ψ(ABCD) = ηa
ABη

e
CDψae, (81)

which is totally symmetric in uppercase indices. We have A = 0, 1 and
a = 1, 2, 3, where ηa

AB is an isomorphism from SL(2, C) unprimed index
pairs AB = (00, 01, 11) to single SO(3, C) indices a = (1, 2, 3).

The eigenvalues of ψae encode the algebraic classification of spacetime
[12], which are independent of coordinates and of tetrad frames [11]. These
properties play a role in the determination of the principal null directions
and the radiation properties of spacetime [13],[14]. These properties can be
computed from the characteristic equation for ψae and the invariants (I, J),
given by

I = ψABCDψ
ABCD; J = ψABCDψ

CD
EF ψ

EFAB. (82)

To make the link from these properties of spacetime to the degrees of
freedom that have been quantized, equation (80) can be inverted. Since
ψae = ψae(I, J) encodes the classification of the spacetime, it follows that
Ψae = Ψae(I, J) also encodes this classification.

10It is shown in [2] that for Λ = 0 the continuum limit in ∆∞(Σ) exists as part of the
same Hilbert space as each discretization ∆N (Σ), but for Λ = 0 the Kodama state ψKod is
the only state with this property. In the latter case the discretized Hilbert space converges
to elements Ψ 6⊂ Ker{Ĥ} in the continuum limit, which requires the inclusion of these
elements Ψ to complete the Hilbert space.
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In the intrinsic frame SO(3, C) frame, defined as the frame in which Ψae

is diagonalized, the eigenvalues are given in terms of the state labels by

Ψ̃ae = Ψaea
3
0e

T =




α̃+ λ̃α,β 0 0
0 β̃ + λ̃α,β 0
0 0 λ̃α,β


 .

The states then imply the following classification scheme11

α = β = 0 : Petrov Type O (Kodama state ψKod);
α = β 6= 0 : Petrov Type D (Algebraically special);
α 6= β 6= 0 : Petrov Type I (Algebraically general). (83)

To obtain a physical interpretation into the meaning of the densitized eigen-
values, let us examine them in the original variables

λ =
λ̃

µ
=

( λν
~G

)
=

(a3
0ν

~G

)
λ3e

T . (84)

The state labels depend on the mass space a0 for the connection as well
as the volume scale ν of the elementary cells of the discretization. Since
these have so far remained unspecified, let us fix them by making the choice
a3

0ν = 1, which sets the mass scale a0 to the inverse length scale ν1/3 of Σ.
Then we have λ̃α,β = (~G)−1λ3e

T , or that the state labels occur in multiplies
of the (undensitized) eigenvalues of the CDJ matrix Ψae. Since Ψ−1

ae is the
antiself-dual part of the Weyl curvature tensor with a trace added in, then
it has the same dimensions as curvature which are inverse length squared.
In our case the length scale referred to is the Planck length lP l. Hence λ̃α,β

can be seen as of the same order of magnitude of variations of the metric on
the scale of the Planck length lP l. With this choice of a0 the Hamiltonian
constraint takes on the form

H = νΛe−T +
1
Π

+
1

Π + Π1
+

1
Π + Π2

= 0, (85)

which as we have shown yields a solution for the states in terms of hyper-
geometric functions. In the undensitized variables this is given by

H = Λ +
1
λ1

+
1
λ2

+
1
λ3

= 0, (86)

which is transparent to the parameters introduced as a result of the quan-
tization process.

11We have adapted the results of [11], which refer just to ψae, in terms of Ψae.
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7 Recapitulation: Lippman–Schwinger expansion

on coherent state basis

Let us now expand upon the manifestation of the hypergeometric solutions
to the Hamiltonian constraint in terms of the coherent state formalism of
section 2, continuing from (32) and (33). The solution to the Hamiltonian
constraint consists of states in the kernel of Ĥ1 and Ĥ2. We will build these
states by expansion about Ker{Q̂} and Ker{Ô}. For the first case we have

Ĥ1

∣∣ψ
〉

=
(
Q̂+ lÔe−a†

3
)∣∣ψ

〉
= 0. (87)

Now act on both sides of (87) with Q̂−1, yielding

(
1 + lQ̂−1Ôe−a

†
3
)∣∣ψ

〉
=

∣∣α, β, λα,β

〉
. (88)

where
∣∣α, β, λα,β

〉
∈ Ker{Q̂}. Acting on (88) with the inverse of the operator

in brackets, we have

∣∣ψ
〉
1

=
(
1 + lQ̂−1Ôe−a†

3
)−1∣∣α, β, λ

〉
=

∞∑

n=0

(−l)n(Q̂−1Ôe−a†
3)n

∣∣α, β, λα,β

〉
.(89)

Likewise, for
∣∣ψ

〉
2
∈ Ker{Ĥ2} we have

∣∣ψ
〉
2

=
(
1 + rÔ−1Q̂ea

†
3
)−1∣∣α, β, λ

〉
=

∞∑

n=0

(−r)n(Ô−1Q̂ea
†
3)n

∣∣α, β, λ
〉
. (90)

In (89) and (90), the states are eigenstates of all operators except for the
action due to â3, which is given by

eâ
−†
3

∣∣λ
〉

=
∣∣λ− 1

〉
; eâ

†
3
∣∣λ

〉
=

∣∣λ+ 1
〉
. (91)

This induces a raising and lowering action with respect to the λ dependence
of the state. Using the representation theory of the harmonic oscillator thus
described, (89) can be written as

∣∣ψ
〉
1

=
∞∑

n=0

(−l)n
((α+ 1)n(β + 1)n(λα,β + 1)n

(γ− + 1)n(γ− + 1)n

)∣∣α, β, λα,β − nµ
〉
. (92)

Equation (92) is an infinite series with a zero radius of convergence unless we
require the series to terminate at finite order. This leads to the restrictions
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α = N , β = N or λα,β = N for some integer N , which produces an infinite
tower of states labelled by α and N , as shown in [2]. For the other states
we have that

∣∣ψ
〉
2

=
∞∑

n=0

(−r)n
( (γ− + 1)n(γ− + 1)n

(α+ 1)n(β + 1)n(λ+ 1)n

)∣∣α, β, λ+ nµ
〉
, (93)

which is convergent without any restrictions on α and β.

7.1 Association to quantum gravity

We will now provide the link from the coherent state formalism to the grav-
ity, which follows from the holomorphic Schrödinger representation. Note
that we have constructed states in the kernel of the Hamiltonian constraints,
we will now transform the constraints and the corresponding states into the
Schrödinger representation. First make the following associations

â1 ≡ δ

δX
; â2 ≡ δ

δY
; â3 ≡ δ

δT
, (94)

where X , Y and T are holomorphic variables. Hence any arbitrary function
f = f(X, Y, Z) is a holomorphic function. Note that the adjoints of (94)
have a representation

a†1 ≡ X ; a†2 ≡ Y ; a†3 ≡ T, (95)

which fixes the measure for normalization essentially as (42). The harmonic
oscillator coherent states then have a representation

ψ(X, Y, T ) =
〈
α, β, λ

∣∣X, Y, Z
〉

= eαX+βY +λT , (96)

which are normalizable with respect to the Gaussian measure.
Making the identifications (94) and (95) in Ĥ1 and Ĥ2 of (28), we can

transform the Hamiltonian constraints from the oscillator representation
into the holomorphic Schrödinger representation as

Ĥ1 =
δ2

δT 2
+

2
3

( δ

δX
+

δ

δY

) δ

δT
+

1
3

δ2

δXδY
+ l

δ

δT

( δ

δT
+

δ

δX

)( δ

δT
+

δ

δY

)
e−T (97)

and
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Ĥ2 =
δ

δT

( δ

δT
+

δ

δX

)( δ

δT
+

δ

δY

)
+ r

( δ2

δT 2
+

2
3

( δ

δX
+

δ

δY

) δ

δT
.+

1
3

δ2

δXδY

)
eT .(98)

The reason that a3 is special in relation to a1 and a2 in (28) is the same
reason that T is special in relation to X and Y in (97) and (98). The
Hamiltonian constraint operators contain e±a†

3 , whose action causes a shift
in λ by discrete steps. However, since there is no occurence of a†1 or of a†2,
then the state labels (α, β) remain intact under the Hamiltonian action.12

Therefore we may replace the action of â1 and â2 on the coherent states
whith their eigenvalues α and β, and focus solely on the dynamics with
respect to T .

We will use the following notation for the states

ψj
α,β[T ] ≡

∣∣α, β
〉
⊗ χ(T ). (99)

The label j will be used to denote multiple states for the same α, β.13

Note in (32) and (33) that the state
∣∣α

〉
⊗

∣∣β
〉

can be omitted, leaving
the following differential equation for

∣∣χ
〉

Ĥ1χ1 =
[( δ

δT
+ γ−

)( δ

δT
+ γ+

)
+ l

δ

δT

( δ

δT
+ α

)( δ

δT
+ β

)
e−T

]
χ[T ] = 0(100)

and

Ĥ2χ2 =
[
δ

δT

( δ

δT
+ α

)( δ

δT
+ β

)
+ r

( δ

δT
+ γ−

)( δ

δT
+ γ+

)
eT

]
χ[T ] = 0.(101)

Equations (100) and (101) are hypergeometric differential equations, with
solution

χ1 = 3F2

(
α− 1, β − 1, λ− 1; γ− + 1, γ+ + 1; (−le−T )

)
;

χ2 = 2F2

(
γ− + 1, γ+ + 1;α, β, λ; (−reT)

)
. (102)

Let us now make the following identification

r =
3a3

0ν

~GΛ
, (103)

12They are in this sense time-independent, if one adopts the physical interpretation of
a†3 ∼ T as a time variable.

13For vanishing cosmological constant Λ = 0 j will take on the values 1 and 2, and for
Λ 6= 0 it will have three possible values.
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where Λ is the cosmological constant, and ν and a0 are numerical constants
of mass dimensions [ν] = −3 and [a0] = 1. Then for α = β = 0 χ2 yields

ψj
0,0 = exp

[
−3(~GΛ)−1νa3

0e
T
]
≡ ψKod. (104)

If we make the identifications

X ≡ ln
(A1

1

a0

)
; Y ≡ ln

(A2
2

a0

)
; T ≡ ln

(A1
1A

2
2A

3
3

a3
0

)
, (105)

then one realizes that (104) is the Chern–Simons functional of a diagonal
connection, and is nothing more than the Kodama state. The general state
is given by

ψj
α,β = eαX+βY

3F2

(
α − 1, β − 1, λ− 1; γ− + 1, γ+ + 1; (−le−T)

)
;

ψj
α,β = eαX+βY

2F2

(
γ− + 1, γ+ + 1;α, β, λ; (−reT)

)
, (106)

which are labelled by two arbitrary parameters. If we repeat the same con-
struction at each point in 3-space Σ as in [2], then we obtain the functionals

Ψj
α,β =

∏

x

eα·X+β·Y
3F2

(
α− 1, β − 1, λ− 1; γ− + 1, γ+ + 1; (−le−T (x))

)
;

Ψj
α,β =

∏

x

eα·X+β·Y
2F2

(
γ− + 1, γ+ + 1;α, β, λ; (−reT(x))

)
.(107)

The wavefunctionals (107) correspond to the quantization of the algebraic
classification of spacetime as encoded in the Weyl, the self-dual part of the
Weyl curvature.14 These states are literally gravitational coherent states,
since their coherent nature is preserved under evolution in T . The states
have a well-defined semiclassical limit corresponding to the algebraic classi-
fication of the spacetimes that they describe.

8 Summary and discussion

The results of this paper are as follows. First we put in place the formalism
necessary to describe coherent states for three uncoupled harmonic oscilla-
tors. The formalism was duplicated at each point in a discretization ∆N(Σ)

14The physical interpretation of the state labels and the canonical structure is treated
in detail in [15].
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of 3-space Σ onto a lattice, which led to N copies of the oscillator algebra
for the entire lattice. Then we put in place the formalism necessary to de-
scribe holomorphic plane wave states, which are normalizable with respect
to a Gaussian measure. The oscillator and the Schrödinger representation
became equivalent upon the identification of the annihilation and creation
operators with coordinates and momenta respectively. The direct associ-
ation to gravity was made vis-a-vis the Schrödinger representation, where
the corresponding operators and states have been concretely defined. This
enabled us to establish a (indirect) map from the three oscillators to the
gravitational degrees of freedom on the kinematic phase space ΩKin of the
instanton representation of Plebanski gravity. The implementation of the
Hamiltonian constraint directly carried over from the oscillator representa-
tion to the gravitational variables. Specifically, the Λ = 0 case admits the
construction of states in the continuum limit in direct analogy to the dis-
cretized versions. For Λ 6= 0 the discretization was re-implemented in order
to avoid field theoretical singularities upon quantization. In this case the T
dependence of the states was in conformity with a hypergeometric differen-
tial equation. The solutions were hypergeometric functions, which inherited
the gravitational state labels (α, β).

Next, we provided a map from the kinematic phase space ΩKin to the
larger gravitational phase space of the instanton representation in conjunc-
tion with appending the constraints necessary to restore ΩKin in congruity
with the theory. Note that the quantization procedure of this paper has been
defined only on ΩKin, and therefore is not presently set up to incorporate
the unphysical degrees of freedom of gravity.15 Then we provided a map
from the instanton representation to the Ashtekar variables. The implica-
tion of reversal of this and the preceding maps is that starting from the full
Ashtekar theory, one has a prescription for reducing the theory to quantiz-
able configurations, and then constructing the corresponding Hilbert space
with a well-defined semiclassical limit using coherent states. We have also
provided a brief physical interpretation for the manifestation of the semiclas-
sical limit of these states in terms of the algebraic properties of spacetime
which are independent of coordinates and tetrad frames. This appears to
be congrous with the implementation of the kinematic constraints. Finally,
to solidify the link from Ashtekar’s gravity to the coherent states, we put
in place the adjointness relations linking the oscillator and the Schrödinger
formalisms. This brought in the Bargmann representation of the theory.

The results of this paper are limited to the kinematic level of gravity,
which comprises three configuration and three momentum space degrees of
freedom. So we have applied a reduced phase space quantization with re-
spect to the Gauss’ law and diffeomorphism constraints, but a Dirac quan-
tization [16] with respect to the Hamiltonian constraint. A future direction

15This will be a direction of future research.
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of research is to apply the quantization procedure on the full phase space
containing eighteen degrees of freedom, which also implements the quanti-
zation procedure on the kinematic constraints. Since as we have shown that
there is not a cotangent bundle structure on the full phase space of the in-
stanton representation, then it should be interesting to attempt to interpret
what is being quantized. In concert with this direction, it is also of interest
to examine the implementation of the reality conditions on the full phase
space.
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