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Abstract

The Plebanski formulation of gravity is a second-class constrained
system which implies the Einstein equations when the equations of
motion are satisfied. The elimination of the CDJ matrix from the
starting action turns it into a first class constrained system, which
includes the Ashtekar formulation of GR as a subset. We have found an
action dual to the Ashtekar action called the ‘instanton representation’,
which follows upon elimination of the self-dual two forms in favor of
the CDJ matrix. We show that the instanton representation implies
the Einstein equations, exposes the physical degrees of freedom of GR,
and provides a systematic prescription for constructing a solution for
nondegenerate metrics. Additionally, we provide a synopsis of various
actions which can follow from the starting Plebanski theory.
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1 Introduction: Plebanski theory of gravity

A starting action for Plebanski’s gravity can be written as the integral of a
four form over a four dimensional spacetime manifold M ([1], [2], [3])

IP leb =
∫

M
δaeΣa ∧ F e − 1

2
(δaeϕ+ ψae)Σa ∧ Σe, (1)

where ϕ is a numerical constant and

Σa =
1
2
Σa

µνdx
µ ∧ dxν (2)

are a triple of self-dual two forms taking values in the Lie algebra of the
special complex orthogonal group SO(3, C). Aa = Aa

µdx
µ is a SO(3, C)-

valued connection one form with curvature two form

F a = dAa +
1
2
fabcAb ∧ Ac =

1
2
F a

µνdx
µ ∧ dxν , (3)

and ψae is a symmetric and traceless SO(3, C) ⊗ SO(3, C) valued matrix.
There are three equations of motion resulting from (1). The first equation

δI

δψae
= Σa ∧ Σe − 1

3
δaeΣg ∧ Σg = 0 (4)

states that the two forms Σa can be derived from a set of tetrad one forms
θf = θf

µdxµ occuring in a self dual combination

Σa = iθ0 ∧ θa − 1
2
εafgθ

f ∧ θg. (5)

Equation (5) is a necessary condition for the equivalence of (1) on-shell to
general relativity.1 The volume form for the spacetime corresponding to (5)
is given by

i

2
Σa ∧ Σe = δae√−gd4x, (6)

1For ϕ = const. equation (1) is equivalent to Einstein’s general relativity by way of
the self-dual Hilbert–Palatini action. It is shown in [4], [5] and [6] how allowing ϕ to be
an arbitrary function of the invariants of ψae leads one to the so-called neighbors of GR,
which contain two propagating degrees of freedom.
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which fixes the conformal class of the spacetime metric gµν . The second
equation of motion

δI

δAg
= DΣg = dΣg + εgfhA

f ∧ Σh = 0, (7)

where D is the exterior covariant derivative with respect to Aa, states that
the connection Aa is the self-dual part of the spin connection compatible
with the tetrad implicit in Σa through (5). Moreover, Aa is uniquely fixed
by Σa. The third equation of motion is given by

δI

δΣa
= F a − Ψ−1

ae Σe = 0 (8)

where we have defined

Ψ−1
ae = δaeϕ+ ψae. (9)

Equation (8) states that the curvature of Aa is self-dual as a two form, which
implies that the metric ds2 = ηaeθ

a ⊗ θe derived from the tetrad one-forms
θa satisfies the vacuum Einstein equations.

There is a metric-free action for gravity derived by Jacobson, Capovilla
and Dell (see e.g. [1], [3]), which can be written almost completely in terms
of the connection Aa. This action follows from the elimination of Σa and
ψae, seen as auxilliary fields, from the starting action (1) by their equations
of motion (4) and (5) yielding

ICDJ [η, Aa] =
∫

M
habcd(η · F a ∧ F b)F c ∧ F d, (10)

where η is a totally antisymmetric fourth rank tensor, equivalent to a scalar
density of weight −1, and

habcd = α(δcaδbd + δcbδad) + βδabδcd (11)

for numerical constants α and β. For α = −β and for nondegenerate ψae,
(10) implies the Einstein equations in the following sense [1]. Varying η and
Aa yield the equations

habcd(ε · F a ∧ F b)F c ∧ F d = 0;
D[habcd(η · F a ∧ F b)F c] = 0. (12)

When one makes the definitions
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Σd = habcd(η · F a ∧ F b)F c;
ψa

b = ([h(η · F ∧ F )]−1)a
b , (13)

then (12) for nondegenerate ψae imply (4), (7) and (8).
The starting action (1) implies general relativity when the equations of

motion are satisfied. However, it is presently expressed in terms of three
different fields Aa, Σa and ψae, written in component form as

IP leb[Σa, Aa,Ψ] =
1
4

∫

M

d4x
(
Σa

µνF
a
ρσ − 1

2
Ψ−1

ae Σa
µνΣe

ρσ

)
εµνρσ , (14)

whereas in metric general relativity there is only one field, namely the space-
time metric gµν . This implies that to re-establish the link from Plebanski
gravity to metric GR, some variables need to be eliminated from (14). We
will show that (14) in its present form is incomplete as a canonical theory, a
situation which necessitates the elimination of variables in order to rectify.2

We will see that variables may be expediently eliminated using (8), given in
component form by

Σa
µν = ΨaeF

e
µν . (15)

There are four main ways in which to proceed from (14) when eliminating
variables, and each way admits a physical interpretation which sheds some
light on the classical theory as well as its prospects for quantization.

1.1 Organization of this paper

The organization of this paper is as follows. Having provided the background
behind Plebanski theory, we proceed to an analysis of the starting action.
Various analyses have been carried out by different authors, for example see
[7] and [8], but we have approached the analysis from a different perspec-
tive. We show in sections 2 and 3 that the secondary constraint analysis of
the starting action implies an inconsistency in the designation of canonical
variables, which calls for the elimination of variables. With all the origi-
nal variables present the theory contains second class constraints, whereas
general relativity is a first class constrained system. The usual methods of
elimination eliminate the CDJ matrix as an auxilliary field whose equations

2For example, the algebra of constraints in the Plebanski theory, as we will show, is not
first class. On the other hand the algebra of constraints of metric gravity, the hypersurface
deformation algebra, is first class.
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of motion imply the equivalence to general relativity. If one retains the CDJ
matrix and rather eliminates the two forms instead subject to metricity, then
one obtains a theory of gravity, dual to the Ashtekar theory, which to the
author’s best knowledge appears to have been overlooked or missed in the
literature. We will call this theory the instanton representation of Plebanski
gravity.3

Section 4 shows how imposition of metricity on the Plebanski start-
ing action, combined with the elimination of the CDJ matrix, leads to the
Ashtekar theory of gravity whereupon any dynamics that the CDJ matrix
portends becomes buried forever. It is here that we also show the manner in
which the instanton representation also arises, namely through elimination
of the Ashtekar densitized triad in favor of the CDJ matrix, still under the
same condition of metricity. In other words, when one imposes metricity
on Plebanski theory there are two theories which can result: the Ashtekar
theory and the instanton representation. The CDJ matrix now becomes
a dynamical variable and the spacetime metric and two-forms are derived
quantities.

The next few sections examine the consequences of eliminating various
different combinations of variables from the starting Plebanski action. In
section 5 it is shown how elimination of the connection, subject to metricity,
leads to a form of metric GR evaluated on its reduced phase space. Section
6 eliminates the CDJ matrix without imposition of metricity, which leads
to topological field theory. Section 7 eliminates the two forms subject to
metricity, obtaining the instanton representation which is also presented in
section 4. Additionally we show how, using the instanton representation
as the starting point, one recovers the same Einstein’s equations as implied
by the original Plebanski theory. Additionally, the instanton representation
provides a prescription for constructing solutions to these equations, which
entails the implementation of the initial value constraints of GR. We have
included a subsection on reality conditions for the classical theory.

Section 8 performs a reduction of the instanton representation, taken as
the fundamental starting point, to the kinematical level. The kinematical
level is defined as the level subsequent to implementation of the diffeomor-
phism and the Gauss’ law constraints, with the resulting degrees of freedom
remaining for the Hamiltonian constraint. We perform a reduction to the
physical degrees of freedom by requiring that the polar decomposition of the
action commutes with its 3+1 ADM-type decomposition. Section 9 revisits
the dynamics of the CDJ matrix in the instanton representation, showing the
manner in which a spatial 3-metric dynamically arises from the equations of
motion. Additionally, we show how the instanton representation provides a

3The instanton representation series has been written to demonstrate the consequences
of this dual theory, its relation to general relativity, and its quantization. The present and
the next two papers start with the traditional formalism of the classical theory.
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new interpretation for GR within the context of Yang–Mills theory.
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2 Analysis of the starting action

Before proceeding with the elimination of variables, let us first obtain the
3+1 decomposition of (14). The constituents of this decomposition are given,
starting with the term quadratic in the two forms, by

1
2
Ψ−1

ae Σa
µνΣe

ρσε
µνρσ = 2Ψ−1

ae Σa
0i(ε

ijkΣe
jk) (16)

where we have defined εijk ≡ ε0ijk and ε0123 = 1. The first term of (14), the
curvature term, decomposes as

Σa
µνF

a
ρσε

µνρσ = 2
(
Σa

0i(ε
ijkF a

jk) + F a
0i(ε

ijkΣa
jk)

)
. (17)

The second term of (17), which involves the temporal component of the
curvature of the four dimensional SO(3, C) connection

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , (18)

reduces to

(Ȧa
i −DiA

a
0)(ε

ijkΣa
jk) −→ εijkΣa

jkȦ
a
i + Aa

0Di(εijkΣa
jk). (19)

The arrow signifies that the expression to the right in (19) can be obtained
by an integration of parts followed by discarding of boundary terms. Sub-
stitution of (16) and (19) into the starting action (14) yields

1
2

∫
dt

∫

Σ
d3x

(
εijkΣa

jkȦ
a
i +Aa

0Di(εijkΣa
jk) + Σa

0iε
ijk

(
F a

jk − Ψ−1
ae Σe

jk

))
. (20)

Let us rename the spatial parts of the variables as

εijkΣa
jk ≡ 2σ̃i

a; εijkF a
jk ≡ 2Bi

a, (21)

where Bi
a is the magnetic field of the spatial connection Aa

i , and the inter-
pretation of σ̃i

a remains to be provided. Then (20) becomes

IP l =
∫
dt

∫

Σ
d3xσ̃a

i Ȧ
a
i + Aa

0Diσ̃
i
a + Σa

0i

(
Bi

a − Ψ−1
ae σ̃

i
e

)
, (22)

where Diσ̃
i
a = ∂iσ̃

i
a + fabcA

b
i σ̃

i
c is the SO(3, C) covariant derivative with

structure constants fabc. From (22) one sees that σ̃i
a and Aa

i are canonically
conjugate dynamical variables
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σ̃i
a =

δIP l

δȦa
i

. (23)

The time derivatives of the fields Aa
0 ≡ θa, Σa

0i ≡ λa
i and Ψ−1

ae do not appear
in the action. Specifically, note that the canonical relationship of Ψ−1

ae and
Σa

0i to (σ̃i
a, A

a
i ) is not specified by the starting action (22). We will proceed

under the premise that there is no canonical relationship, until arriving at a
contradiction. Since these fields are nondynamical, their conjugate momenta
imply the primary constraints

Πa =
δIP l

δȦa
0

∼ 0; Πi
e =

δIP l

δΣ̇e
0i

∼ 0; Πae =
δIP l

δΨ̇−1
ae

∼ 0. (24)

According to the Dirac procedure for constrained systems [9] we must require
that the primary constraints be preserved under time evolution, which leads
to the following secondary constraints

−Π̇a =
δIP l

δAa
0

= Diσ̃
i
a ≡ Ga;

−Π̇i
e =

δIP l

δΣe
0i

= Bi
e − Ψ−1

ea σ̃
i
a ≡ T i

e ;

−Π̇ae =
δIP l

δΨ−1
ae

= Σe
0iσ̃

i
a = Φae.

(25)

We will need to check whether the secondary constraints are preserved un-
der time evolution by computing their algebra. But let us first see what
transformations of the phase space variables they generate.

The constraints (25) smeared by auxilliary fields are given by

~G[~θ] =
∫

Σ
d3xθaDiσ̃

i
a; T [λ] =

∫

Σ
d3xλa

i

(
Bi

a − Ψ−1
ae σ̃

i
e

)
;

Φ[q] =
∫

Σ

d3xqaeΣe
0iσ̃

i
a. (26)

Under Ga we have

δ~θA
a
i =

[
Aa

i ,
~G[~θ]

]
= −Diθ

a; δ~θ σ̃
i
a =

[
σ̃i

a,
~G[~θ]

]
= −fabcσ̃

i
bθ

c. (27)

Equation (27) states that Aa
i transforms as a gauge connection and σ̃i

a as a
covariant vector under SO(3, C) gauge transformations. Under Φ transfor-
mations parametrized by qae we have
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δq σ̃
i
a =

[
σ̃i

a,Φ[q]
]
= 0; δqA

a
i =

[
Aa

i ,Φ[q]
]
= qaeΣe

0i. (28)

Under a Φ transformation σ̃i
a transforms trivially and Aa

i transforms inho-
mogeneously into an auxilliary field. We will denote by GTT, the trans-
formations generated by T i

a = Bi
a − Ψ−1

ae σ̃
i
e. Note that the transformation

properties of (σ̃i
a, A

a
i ) are undetermined with respect to Ψ−1

ae , since Ψ−1
ae is

not a part of the canonical structure of (22). To make progress, let us for a
first approximation assume trivial commutation relations with Ψ−1

ae . Then
the transformations of Aa

i , σ̃
i
a under T [λ] would be given by

δλA
a
i =

[
Aa

i , T [λ]
]
= −λe

iΨ
−1
ea ; δλσ̃

i
a =

[
σ̃i

a, T [λ]
]
= εijkDjλ

a
k. (29)

Equation (29) states that under a GTT, σ̃i
a transforms as a gauge field and

Aa
i transforms inhomogeneously into an auxilliary field.

2.1 Algebra generated by the secondary constraints: Φ trans-
formations

A direct way to check for preservation of the secondary constraints in time
is to compute their algebra on the phase space variables. We will denote
parameters for a gauge transformation by a vector symbol ~θ ≡ θa, and for
a GTT by a plain symbol λ ≡ λa

i and a Φ transformation by q. We will
start with the Φ transformations, beginning with the commutator of two Φ
transformations parametrized by qae and rae. This is given by

[δq, δr]σ̃i
a = 0; [δq, δr]Aa

i = 0. (30)

So the Φ-type transformations form an Abelian subalgebra on the phase
space. We will now check its commutator with a gauge transformation
parametrized by ~θ. So we have

δqσ̃
i
a = 0; δ~θσ̃

i
a = −fabcσ̃

i
bθ

c. (31)

Acting on the second equation of (31) with a Φ transformation we have

δqδ~θ σ̃
i
a = −fabc(δqσ̃i

c)θ
c = 0. (32)

So for the commutator we have

[δq, δ~θ]σ̃
i
a = 0. (33)
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We now repeat the previous steps for the connection Aa
i . Under gauge

transformations we have

δ~θA
a
i = −Diθ

a = −∂iθ
a − fabcAb

iθ
c. (34)

Acting on (34) with a Φ transformation, we have

δqδ~θA
a
i = −fabc(δqAb

i)θ
c = −fabcqbeΣe

0iθ
c. (35)

In the reverse order we have

δ~θδqA
a
i = δ~θ(q

aeΣe
0i) = 0. (36)

We have assumed that the auxilliary fields transform trivially, an condition
which as we will see needs to be modified. The commutator is given by

[δq, δ~θ]A
a
i = 0. (37)

We have obtained that the Φ transformations not only form an abelian
algebra, but they commute with the gauge transformations. One would in
this sense conclude that this part of the algebra thus far closes. Moving on
next to the commutator of a Φ transformation with a GTT, we have

δλσ̃
i
a = εijkDjλ

a
k = εijk∂jλ

a
k + εijkfabcAb

jλ
c
k. (38)

Acting on this with a Φ transformation we have

δqδλσ̃
i
a = εijkfabc(δλAb

j)λ
c
k = εijkfabcqbeΣe

0iλ
c
k; δλδqσ̃

i
a = 0, (39)

and the commutator of these transformations is given by

[δq, δλ] = εijkfabcqbeΣe
0iλ

c
k, (40)

which does not fall into the category of any of the transformations we have
encountered thus far. Performing the same operations for the connection we
have

δλA
a
i = −λe

iΨ
−1
ea ; δqδλA

a
i = 0, (41)
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which assumes that Ψ−1
ae transforms trivially. Computing the transforma-

tions in the reverse order, we have

δqA
a
i = qaeΣe

0i; δλδqA
a
i = 0, (42)

which implies that

[δq, δλ]Aa
i = 0. (43)

So with the exception of (40), the Φ transformations strongly commute
with the remaining transformations. Let us nevertheless proceed with the
computation of the rest of the algebra.

2.2 The gauge transformations

Under gauge transformations we have

δ~θA
a
i = −Diθ

a. (44)

Acting on (44) with another gauge transformation we have

δ~ζδ~θA
a
i = −fabc(δ~ζA

b
i)θ

c = fabc(Diζ
b)θc. (45)

The commutator of (44) with (139) is given by

[
δ~ζ , δ~θ

]
Aa

i =
(
δ~ζδ~θ − δ~θδ~ζ

)
Aa

i = fabc

(
θcDiζ

b − ζcDiθ
b
)

= fabc

(
θcDiζ

b + ζbDiθ
c
)

= −Di(fabcθ
bζc), (46)

which is a gauge transformation with composite parameter (~θ × ~ζ). The
result is that the SO(3, C) gauge transformations close on Aa

i . Moving on
to the gauge transformation of σ̃i

a we have

δ~θ σ̃
i
a = −fabcσ̃

i
bθ

c. (47)

Acting on (47) with another gauge transformation, we have

δ~ζδ~θ σ̃
i
a = −fabc(δ~ζ σ̃

i
b)θ

c = fabcfbfgσ̃
i
fζ

gθc. (48)

The commutator of the two gauge transformations is given by
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[
δ~ζ , δ~θ

]
σ̃i

a = fabcfbfg(ζgθc − θgζc)σ̃i
f

=
(
δagδcf − δafδcg

)
(ζgθc − θgζc)σ̃i

f = −εafdσ̃
i
f(εdhgθhζg), (49)

which is a gauge transformation with a composite parameter (~θ × ~ζ). The
result (49) in combination with (46) signifies that the SO(3, C) gauge trans-
formations form a closed algebra.4

We now consider the commutator between a SO(3, C) gauge transfor-
mation and a GTT, starting with the action on σ̃i

a. Acting with a gauge
transformation we have

δ~θ σ̃
i
a = −fabcσ̃

i
bθ

c. (50)

Acting on this with a GTT parametrized by λ ≡ λa
i , we have

δλδ~θ σ̃
i
a = −fabc(δλσ̃i

b)θ
c = −fabc(εijkDjλ

b
k)θ

c. (51)

In the reverse order we have, starting with a GTT, that

δλσ̃
i
a = εijkDjλ

a
k = εijk∂jλ

a
k + εijkfabcAb

jλ
c
k. (52)

Acting with a SO(3, C) gauge transformation on (52) we have

δ~θδλσ̃
i
a = εijkfabc(δ~θA

b
j)λ

c
k = −εijkfabc(Djθ

b)λc
k. (53)

The commutator of (51) with (53) is given by

[
δλ, δ~θ

]
σ̃i

a = −εijkfabc

(
λb

kDjθ
c + θcDjλ

b
k

)
= εijkDj(facbθ

cλb
k), (54)

which is a GTT with composite parameter (~θ × λ). The result is that
under the assumption of trivial transformation properties with Ψ−1

ae , the
GTT transforms covariantly on σ̃i

a under SO(3, C) gauge transformations.
Moving on to the action on the connection Aa

i we have, first acting with
a gauge transformation

δ~θA
a
i = −Diθ

a = −∂iθ
a − fabcAb

iθ
c. (55)

4The generator of gauge transformations Ga = Diσ̃
i
a is known as the Gauss’ law con-

straint, due to its similarity in form to the analogous constraint from Yang–Mills theory.
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Acting on (55) with a GTT, we have

δλδ~θA
a
i = −fabc(δλAb

i)θ
c = fabc(λe

iΨ
−1
eb )θc. (56)

Acting with the transformations in the reverse order we have, starting with
a GTT, that

δλA
a
i = −λe

iΨ
−1
ea . (57)

Acting now with a gauge transformation, we have

δ~θδλA
a
i = −λe

i δ~θΨ
−1
ae . (58)

Immediately comes into question the transformation properties of Ψ−1
ae under

a SO(3, C)gauge transformation. This cannot be determined based on the
canonical structure of (14) if Ψ−1

ae is regarded as an auxilliary field. On the
other hand since it is SO(3, C)⊗ SO(3, C)-valued, one should expect Ψ−1

ae

to transform nontrivally. If we require Ψ−1
ae to transform as a second-rank

covariant tensor

δ~θΨ
−1
ae = −

(
fabcΨ−1

be + febcΨ−1
ab

)
θc, (59)

then the commutator of (56) and (58) would yield

[
δλ, δ~θ

]
Aa

i = −fabc(λe
iΨ

−1
eb )θc = fabcλ

e
i (Ψ

−1)[eb]θ
c − (febcλ

e
iθ

c)Ψ−1
ab . (60)

Comparison of (60) with (54) reveals a discrepancy on account of the anti-
symmetric (Ψ−1)[eb] and the fact that the indices on Ψ−1

ab are in the incorrect
order for (60) to be a GTT. Hence under the assumption that (59) holds, it
follows that Ψae = Ψ(ae) would have to be a symmetric matrix

(Ψ−1)[be] = 0; Ψ−1
ab = Ψ−1

ba . (61)

Under these conditions then we have that

[
δλ, δ~θ

]
Aa

i = −(febcλ
e
iθ

c)Ψ−1
ba = δ~θ×λ

Aa
i , (62)

which is a GTT with composite parameter −(febcλ
e
iθ

c).
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2.3 Algebra under GTT

In order to verify the closure or non-closure of the gauge-GTT algebra, the
last combination of transformations that must be checked is the composition
of two GTTs. Starting with σ̃i

a, we have

δλσ̃
i
a = εijkDjλ

a
k = εijk∂jλ

a
k + εijkfabcAb

jλ
c
k. (63)

Acting again, with another GTT parametrized by η ≡ ηa
i , we have

δηδλσ̃
i
a = εijkfabc(δηAb

j)λ
c
k = −εijkfabc(ηe

jΨ
−1
eb )λc

k. (64)

The commutator is given by

[
δη, δλ

]
σ̃i

a = −εijkfabcΨ−1
eb (ηe

jλ
c
k − λe

jη
c
k)

= −εijk(ηe
jλ

c
k − λe

jη
c
k)fabcΨ−1

eb . (65)

which is neither a GTT nor a gauge transformation unless Ψ−1
eb ∝ δeb, in

which case the commutator vanishes. For the connection we have

δλA
a
i = −λe

iΨ
−1
ea , (66)

which upon acting again yields

δηδλA
a
i = −λe

i δηΨ−1
ea . (67)

Again we run into a problem, now on account of the fact that the trans-
formation properties of Ψ−1

ae under a GTT cannot be determined from the
starting action (14). Assuming that Ψ−1

ae = δaeϕ for some function ϕ, then
Ψ−1

ae becomes invariant under (59) on account of antisymmetry of the struc-
ture constants, and additionally under (67). This then causes (65) to vanish
since it reduces to

−εijk
(
faecη

e
jλ

c
k − faceλ

c
jη

e
k

)
δϕ =

(
−εijkfaecη

e
jλ

c
k + εikjfaceλ

c
kη

e
j

)
δϕ = 0. (68)

Note that Ψ−1 = δaeϕ is consistent with (59), which then implies its invari-
ance under gauge transformations. However, Ψ−1

ae of this form would restrict
the starting action (14) to the form

I [Σa, Aa,Ψ] =
∫

M
d4x

(
Σa

µνF
a
ρσ − 1

2
ϕΣa

µνΣa
ρσ

)
εµνρσ . (69)
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For ϕ numerically constant, equation (69) is a BF theory with cosmological
constant, which has been analysed in [13]. But in Plebanski’s theory of
gravity, Ψ−1

ae is clearly more than a numerical constant isotropic tensor, since
it is used in the variational principle of (14) to obtain general relativity. It
is for this reason that we say that (14) cannot be a canonically complete
theory in its present form.

14



3 Consistency conditions on the algebra

We have stated that the starting action (22) is incomplete since its canonical
structure does not account for the transformation properties of Ψ−1

ae and Σe
0i.

It is clear that a Ψ−1
ae more general than a numerically constant isotropic

tensor must have nontrivial commutation relations with the dynamical vari-
ables (σ̃i

a, A
a
i ) in order for (59) to hold, and we will now attempt to deduce

these relations. First, for SO(3, C) transformations we must have

[
Ψ−1

ae ,
~G[~θ]

]
=

[
Ψ−1

ae (x),
∫

Σ
d3yθf (y)Djσ̃

j
f (y)

]

=
∫

Σ
d3yθf (y)

[
Ψ−1

ae (x), ∂jσ̃
j
f (y) + ffbcA

b
j(y)σ̃

j
c(y)

]
. (70)

Note in (59) that there are no spatial gradients acting on θc. This implies
that Ψ−1

ae must have trivial commutation relations with σ̃i
a, since otherwise

we would obtain such a spatial gradient due to the first term on the right
hand side of (70). Therefore we will assume that

[
Ψ−1

ae (x), σ̃j
b(y)

]
= 0. (71)

Based on (71) and (59), the first term of equation (70) drops out and (70)
reduces to

∫

Σ

d3yffbcθ
f (y)

[
Ψ−1

ae (x), Ab
j(y)

]
σ̃j

c(y)

= −
∫

Σ
d3y

(
fabfΨ−1

be (x) + febfΨ−1
ab (x)

)
θf (y)δ(3)(x, y), (72)

which implies that

ffbc

[
Ψ−1

ae (x), Ab
j(y)

]
σ̃j

c(y) = −
(
fabfΨ−1

be + febfΨ−1
ab

)
δ(3)(x, y)

= ffbc

(
δcaΨ−1

be + δceΨ−1
ab

)
δ(3)(x, y). (73)

Assuming nondegeneracy of σ̃j
c , we can multiply (73) by its inverse to yield

the commutation relation

[
Ψ−1

ae (x), Ab
j(y)

]
=

(
(σ̃−1)a

jΨ
−1
be + (σ̃−1)e

jΨ
−1
ab

)
δ(3)(x, y). (74)

Hence the desired commutation relations would be given by
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[
Aa

i (x), σ̃
j
b(y)

]
= δa

b δ
j
i δ

(3)(x, y);
[
Ψ−1

ae (x), σ̃j
b(y)

]
= 0;

[
Ψ−1

ae (x), Ab
j(y)

]
=

(
(σ̃−1)a

jΨ
−1
be + (σ̃−1)e

jΨ
−1
ab

)
δ(3)(x, y) (75)

with all others vanishing.
Starting from (75), we can compute the transformation properties of Ψ−1

ae

under a GTT. This is given by

[
Ψ−1

ae (x), T [λ]
]

=
[
Ψ−1

ae (x),
∫

Σ

d3yλf
j (y)

(
Bj

f (y) − Ψ−1
fe (y)σ̃j

e(y)
)]
. (76)

Assuming that [Ψ−1,Ψ−1] = 0 and using (75), the second term of (76) drops
out and we are left with

∫

Σ
d3yλf

j (y)
[
Ψ−1

ae (x), Bj
f(y)

]

=
∫

Σ
d3xλf

j (y)
[
Ψ−1

ae (y), εjmn∂mA
f
n(y) +

1
2
εjmnffghAg

m(y)Ab
n(y)

]
. (77)

Integrating the first term of (77) by parts and discarding boundary terms,
this leads to

∫

Σ
d3y

(
−εjmn∂mλ

f
j (y)

[
Ψ−1

ae (x), Af
n(y)

]
+ λ

f
j (y)εjmnffghAg

m(y)
[
Ψ−1

ae (x), Ab
n(y)

])

=
∫

Σ
d3x

(
−εjmnδfd∂mλ

f
j (y) + λf

j (y)εjmnffgdAg
m(y)

)[
Ψ−1

ae (x), Ad
n(y)

]

= −
∫

Σ
d3yεjmnDmλ

d
j (y)

[
Ψ−1

ae (x), Ad
n(y)

]
.(78)

Using the commutation relations (75), equation (78) reduces to

−
∫

Σ

d4y(εjmnDmλ
d
j(y))

(
(σ̃−1)a

nΨ−1
de + (σ̃−1)e

nΨ−1
ad

)
δ(3)(x, y)

= (εnmjDmλ
d
j )

(
(σ̃−1)a

nΨ−1
de + (σ̃−1)e

nΨ−1
ad

)
. (79)

The final result is that

δλΨ−1
ae =

(
(σ̃−1)a

nΨ−1
de + (σ̃−1)e

nΨ−1
ad

)
δλσ̃

n
d . (80)

From this point there are three main tasks which remain. First, one must
check for closure of the algebra for the more general case that Ψ−1

ae is not
the isotropic matrix. For example, we have
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[δη, δλ]Aa
i = εnmj

(
ηe

iDmλ
d
j − λe

iDmη
d
j

)(
(σ̃−1)a

nΨ−1
de + (σ̃−1)e

nΨ−1
ad

)
, (81)

and the algebra is beginning to show the appearance of phase space-dependent
structure functions. Secondly, closure must be checked on Ψ−1

ae by computing
the commutators

[δ~θ, δ~ζ]Ψ
−1
ae ; [δ~θ, δλ]Ψ−1

ae ; [δλ, δη]Ψ−1
ae . (82)

From the structure of (81) it is not clear whether or not the algebra (82)
closes but it can nevertheless be checked.5 In the event that the algebra does
close, which is allowed even when there are structure functions present, then
one would need to modify the starting action (14). Third, clearly (22) is
incomplete in its present form if Ψ−1

ae is more than just an auxilliary variable.
One way to address this is to append a term

[
Ψ−1

ae (x), Ab
j(y)

]
Ȧb

j = Ψ−1
ae

(
(σ̃−1)a

j Ψ
−1
be + (σ̃−1)e

jΨ
−1
ab

)
Ȧb

j (83)

to the starting action (22), which in its present form is equivalent to general
relativity. While one might have a canonically viable system, the resulting
action may very likely not be equivalent to general relativity on account
of the additional terms. Hence there is a dilemma at hand, since (22) in
present form may at best be a second class constrained system.

5We will reserve this for future investigation, and will not carry out the check in the
present paper.
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4 First method: Elimination of the CDJ matrix

We can avoid the problems of Dirac inconsistency from the previous section
by re-defining and by eliminating fields in (22) in such a way as to imply
the equivalence to GR. Let us, using (4) and (5), restrict Σa to the set two
forms derivable from a self-dual combination of tetrad one forms6

Σa = ie0 ∧ ea − 1
2
εabceb ∧ ec. (84)

The tetrads in component form are given by

e0 = e0µdx
µ = e00dt+ e0i dx

i; ea = eaµdx
µ = ea0dt+ eai dx

i. (85)

But the same tetrads can be arranged into a metric gµν = ηIJe
I
µe

J
ν , where

ηIJ is the Minkowski metric. In component form, the components are

g00 = −(e00)
2 + ea0e

a
0; g0i = −e00e0i + ea0e

a
i = Ni, (86)

where Ni is the covariant form of the shift vector and N is the lapse function,
which in metric general relativity are auxilliary fields. For a special case
e0i = 0, known as the time gauge, equations (86) and (85) reduce to

ea0 = Ei
aNi = eaiN

i; g00 = −N2 +Ei
aE

j
aNiNj, (87)

where eaiE
j
a = δj

i , and

e0 = e00dt = Ndt; ea = eai (dx
i +N idt), (88)

Substituting (88) into (84), we obtain

Σa = Σa
0idt ∧ dxi − 1

2
Σa

ijdx
i ∧ dxj

=
(
ie00e

a
i + εabcebie

c
jN

j
)
dt ∧ dxi − 1

2
εabcebje

c
kdx

j ∧ dxk. (89)

From (89) we read off the components as

Σa
0i = ie00e

a
i + εabcebie

c
jN

j ; Σa
jk = εabcebje

c
k. (90)

6This is for spacetimes of Lorentzian signature. For the Euclidean signature case, one
may remove the factor of i.
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Recalling the definition (21) and using the relation

1
2
Σa

ij = σ̃i
a =

1
2
εijkεabce

b
je

c
k, (91)

the following relation holds by inversion for nondegenerate triads

eai =
1
2
εijkε

abcσ̃j
b σ̃

k
c (detσ̃)−1/2 =

√
detσ̃(σ̃−1)a

i . (92)

Hence, the temporal components of the two forms are given by

Σa
0i =

i

2
Nεijkε

abcσ̃j
b σ̃

k
c + εijkN

jσ̃k
a , (93)

where we have defined the densitized lapse function N = N(detσ̃)−1/2. Note
that (93) can also be written as

Σa
0i = iN

√
detσ̃(σ̃−1)a

i + εijkN
jσ̃k

a . (94)

We are now ready to perform the decomposition of the starting action,
using the information from the tetrads. The starting action is given by

IP leb =
∫
dt

∫

Σ
d3x

(
F a

0iσ̃
i
a + Σa

0i

(
Bi

a − Ψ−1
ae σ̃

i
e

))
. (95)

Substituting (93) into the second term of the integrand of (95) and using
the properties of determinants of three by three matrices, we have

Σa
0i

(
Bi

a − Ψ−1
ae σ̃

i
e

)
= iN

(1
2
εijkε

abcσ̃j
b σ̃

k
cB

i
a − (detσ̃)trΨ−1

)

+N i
(
εijk σ̃

j
aB

k
a + εijkN

iσ̃j
aσ̃

k
e Ψ−1

ae

)
. (96)

Combining all the previous results we obtain for the starting action that

I =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Ga +NµHµ[σ̃, A,Ψ], (97)

where Ga is the Gauss’ law constraint

Ga = Diσ̃
i
a = 0. (98)
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The combination Nµ = (N,N i) are the lapse and the shift functions of
metric general relativity, and Hµ = (H,Hi) are given by

Hi = εijk σ̃
j
aB

k
a + εijk σ̃

j
aσ̃

k
e Ψ−1

ae (99)

which we will deonte as the diffeomorphism constraint, and

H = (detσ̃)−1/2
(1

2
εijkε

abcσ̃i
aσ̃

j
bB

k
c − 1

6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)
(100)

which we will denote as the Hamiltonian constraint. Having redefined the
auxilliary fields, we still have the initial value constraints expressed in terms
of three variables σ̃i

a, Aa
i and Ψ−1

ae . This situation, which implies the exis-
tence of second class constraints, is unsatisfactory and calls for the elimina-
tion of some variables. There are two main ways to proceed from (97), (98),
(99) and (100). We may either eliminate Ψ−1

ae or σ̃i
a from the theory.

4.1 Ashtekar formulation versus the dual theory

The first way is to eliminate Ψ−1
ae , which will leave remaining an action in

terms of the variables (σ̃i
a, A

a
i ) while preserving the equivalence of (97) to

general relativity. This can be accomplished by imposition of the following
conditions on Ψ−1

ae

εbaeΨ−1
ae = 0; trΨ−1 = −Λ. (101)

Equation (101) eliminates the antisymmetric part of Ψae and fixes its trace.
The physical interpretation of (101) arises from the following decomposition

Ψ−1
ae = −Λ

3
δae + ψae, (102)

where ψae is the self-dual part of the Weyl curvature tensor expressed in
SO(3, C) language. The consequence of (101) is that ψae has five degrees of
freedom, prior to implementation of the Gauss’ law constraint.

When (101) holds, then Ψ−1
ae becomes eliminated and equation (97) re-

duces to the action for general relativity in the Ashtekar variables with
cosmological constant, given by

IAsh =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a

−εijkN iσ̃j
aB

k
a +

i

2
Nεijkεabcσ̃

i
aσ̃

j
b

(
Bk

c +
Λ
3
σ̃k

c

)
(103)
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where N = N(detσ̃)−1/2 is the lapse density function.7 The action (103) is
expressed in terms of two canonically conjugate dynamical variables, which
upon quantization imply the canonical commutation relations

[
Aa

i (x, t), σ̃
j
b(y, t)

]
= Gδa

b δ
j
i δ

(3)(x, y), (104)

and the offending variable Ψ−1
ae has been eliminated. The effect is to trans-

form the Plebanski starting action (14) from a second class into a first class
constrained system since, as is well-known, the constraints algebra in the
Ashtekar variables closes [11],[12]. Had we eliminated Ψ−1

ae from (14) prior
to performing the decomposition using (84), which arises from the equation
of motion for ψae from (1), we would have obtained the action

I =
1
2

∫

M

Σa ∧ F a =
1
8

∫

M

d4xΣa
µνF

a
ρσε

µνρσ , (105)

which leads to topological BF theory.8

The second way to proceed from (97), (98), (99) and (100) is to eliminate
σ̃i

a in favor of Ψae, yielding an action in terms of (Aa
i ,Ψae). From (103) the

Hamiltonian and diffeomorphism constraints, obtained by varying the action
with respect to (N,N i) imply that

εijkεabcσ̃
i
aσ̃

j
bB

k
c = −Λ

3
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c ; εijk σ̃

j
aB

k
a = 0. (106)

Substitution of the second equation of (106) into (99) yields

Hi = εijk σ̃
j
aσ̃

k
e Ψ−1

ae . (107)

Substitution of the first equation of (106) into (100) yields

H = (detσ̃)−1/2
(
−Λ

6
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

−1
6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)
= −

√
detσ̃(Λ + trΨ−1). (108)

Hence substituting (107) and (108), into (97), we obtain an action given by

I =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a

+εijkN iσ̃j
aσ̃

k
e Ψ−1

ae − iN
√

detσ̃
(
Λ + trΨ−1

)
. (109)

7The Ashtekar variables in their original form were derived by complex canonical trans-
formation from the phase space of the tetradic description of gravity [10],[11],[12].

8This case will be treated in a subsequent section of this paper.
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We will now completely eliminate σ̃i
a by substituting the spatial restriction

of the equation of motion (15), known as the CDJ Ansatz

σ̃i
a = ΨaeB

i
e, (110)

into (109). The result of this elimination is

I =
∫
dt

∫

Σ
d3xΨaeB

i
aȦ

a
i +Aa

0B
i
eDiΨae

+εijkN iBj
aB

k
e Ψae − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
, (111)

which we will name the instanton representation of Plebanski gravity. The
suggestion that (111) is equivalent to general relativity can be argued as
follows. The starting action was the Plebanski action (22), which on-shell is
equivalent to GR. Elimination of Ψ−1

ae subsequent to imposing the simplicity
constraint (5) led to the Ashtekar action (103), which is known to be related
to tetradic GR by canonical transformation [11], [12]. On the other hand,
elimination of σ̃i

a subsequent to imposing (5) has led to (111). Therefore,
equation (111) must also be GR expressed in another form. Indeed, sub-
stitution of (110) into (111) to eliminate Ψae in favor of σ̃i

a bypasses the
Plebanski starting action (14) and directly yields (103). The remaining task
being to verify closure of the constraints algebra in the variables of (111).9

9The verification of the constraints algebra is relegated to paper III of the instanton
representation series.
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5 Second method: Elimination of the connection

We have shown how elimination of Ψ−1
ae subsequent to implementation of its

equation of motion transforms the starting action (14) from a second class
into a first class constrained system. The result of this elimination has led
to the Ashtekar variables as one possibility. To eliminate variables from (1)
via the second method, we will read (15) from right to left

F a
µν = Ψ−1

ae Σe
µν , (112)

and substitute F a
µν directly into (14). Equation (112) assumes that the

inverse of Ψae exists, which restricts one to configurations on which Ψae is
nondegenerate as a three by three matrix. This provides an alternative to
using (7) to eliminate Aa, since one directly and straightforwardly obtains

I [Σ,Ψ] =
1
2

∫

M

Ψ−1
ae Σa ∧ Σe =

1
8

∫

M

d4xΨ−1
ae Σa

µνΣ
e
ρσε

µνρσ . (113)

An action whose 3+1 decomposition leads to (113), upon implementation
of the diffeomorphism constraint, is given by

I [Σ,Ψ] =
∫

M
d4x

(
Ψ−1

ae Σe
0iσ̃

i
a + εijkN

iσ̃j
aσ̃

k
e Ψ−1

ae − iN
√

detσ̃
(
Λ + trΨ−1

))
.(114)

Equation (114) can also be obtained from the Ashtekar action (103) by
using Bi

a = Ψ−1
ae σ̃

i
e, the spatial restriction of (112), in conjunction with the

replacement

σ̃i
aȦ

a
i + Aa

iDiσ̃
i
a −→ σ̃i

aF
a
0i = Ψ−1

ae σ̃
i
aΣ

e
0i. (115)

The left side of equation (115) includes an integration by parts with dis-
carding of boundary terms. Note that only the symmetric part of Ψ−1

ae con-
tributes to (113), whereas in (114) there is an antisymmetric contribution.
Variation of (114) with respect to N i yields

δI

δN i
= Hi = εijk σ̃

j
aσ̃

k
e Ψ−1

ae = 0. (116)

This is the diffeomorphism constraint Hi, which implies that the antisym-
metric part of Ψ−1

ae must vanish. Implementation of the diffeomorphism
constraint must be accompanied by a choice of gauge, which fixes the value
of N i. Perform the following decomposition of Ψ−1

ae

23



Ψ−1
ae = δaeϕ+ ψae +

1
2
εaedψd, (117)

where the antisymmetric part is encoded in the SO(3, C)-valued 3-vector ψd

and ψae is symmetric and traceless. The part of the starting action (114)
which depends on ψd is given by

εdaeψdσ̃
i
eΣ

a
0i + 2N i(σ̃−1)d

iψd(detσ̃), (118)

which is linear in ψd. Hence, the equation of motion for ψd is given by

δI

δψd
= εdaeσ̃

i
eΣ

a
0i + 2(detσ̃)(σ̃−1)d

jN
j , (119)

with solution

N j =
1
2
εjikΣa

0i(σ̃
−1)a

k. (120)

Equation (120) is also implied by the definition of the temporal components
of the two forms (93).

Having eliminated the fields N i and ψd through their equations of mo-
tion, then the action (114) reduces to the following covariant form

I [Σ,Ψ] =
∫

M

1
2
Ψ−1

ae Σa ∧ Σe − i
√
−g(Λ + trΨ−1)d4x, (121)

where we have used N
√
h =

√
−g. We can now focus on (121), which

amounts to (114) restricted to symmetric Ψ−1
ae . The equation of motion for

the lapse function N is given by

δI

δN
= H =

√
detσ̃(Λ + trΨ−1) = 0. (122)

Equation (122) is the Hamiltonian constraint H , which for detσ̃ 6= 0 has a
solution

trΨ−1 =
1
λ1

+
1
λ2

+
1
λ3

= −Λ, (123)

where λ1, λ2 and λ3 are the eigenvalues of Ψae, which we require to be
nonzero. Equation (123) yields
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λ3 = − λ1λ2

Λλ1λ2 + λ1 + λ2
, (124)

which expresses λ3 explicitly as a function of λ1 and λ2. Moving on to the
equation of motion for ψae, which is symmetric and traceless, we have

δI

δψae
= Σa ∧ Σe − 1

3
δaetrΣ ∧ Σ = 0. (125)

Equation (125) implies that

Σa ∧ Σe =
1
3
δaetrΣ ∧ Σ = −2iδae√−g, (126)

which when substituted back into (113) yields

I1[Ψ,Σ] = −i
∫

M
d4x

√
−g(trΨ−1) = iΛ

∫

M
d4x

√
−g, (127)

where we have used the Hamiltonian constraint (123). Equation (127) is
given by

I1[σ] = iΛV ol(M), (128)

which yields the volume of spacetime. Equation (128), rescaled by a factor
of −i, is the same result that one would obtain for the classical action eval-
uated on the solution to the equations of motion. This forms the dominant
contribution to the Euclidean path integral for gravity.
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6 Third method: Elimination of the CDJ matrix

using topological field theory

We have seen that the auxilliary fields Σe
0i and Ψ−1

ae have been troublesome
with respect to the constraints algebra of the original Plebanski theory.
One way to deal with this is to eliminate the troublesome variables from the
action by their equations of motion, and then see if the remaining theory is
consistent. Let us use (15) in its present form to eliminate Ψae from (14),
which yields

I2[Σa, F a] =
1
2

∫

M
Σa ∧ F a =

1
8

∫

M
d4xΣa

µνF
a
ρσε

µνρσ . (129)

The equations of motion for (129) are given by

δI2[Σa, F a]
δΣa

µν

= εµνρσF a
ρσ = 0, (130)

and

δI2[Σa, F a]
δAa

µ

= εµνρσDνΣa
ρσ = 0. (131)

Equation (130) states that the connection Aa
µ is flat, which means that we

are dealing with a topological field theory. Equation (131) states that the
connection Aa

µ is compatible with the two form Σa. Since Aa
µ is flat, then

it is pure gauge and can locally be written in coordinate-free notation using
differential forms

A = O−1dO; dΣ + A ∧ Σ = 0, (132)

where O ∈ SO(3, C) is a group element. Substitution of the first equation
of (132) into the second yields

d(OΣ) = 0 −→ Σ = O−1χ, (133)

where χ ∈
∧2(M) is an arbitrary closed SO(3, C) valued two form on M ,

such that dχ = 0. For the special case χ = dη is exact for one form η,
then the second equation of (132) implies Σ = O−1dη, which allows Σ to be
written locally as

Σ = O−1dη = d(O−1η) +O−1(dO)O−1η = D(O−1η), (134)
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where D = d+A is the SO(3, C) gauge covariant derivative.
Substitution of (132) and (133) into the starting action would yield I2 =

0, which conceals the degrees of freedom in the solution space. Nevertheless,
the solution space for A is isomorphic to the set of group elements O ∈
SO(3, C), which for different equivalence classes are labelled by the integers,
and the solution space for Σ is isomorphic to

∧2(M) ∈ H2(M), the second
cohomology group of spacetime M .

The 3+1 decomposition of (129) is given by

I2 =
∫
dt

∫

Σ
d3x

(
σ̃i

aȦ
a
i +Aa

0Diσ̃
i
a + Σa

0iB
i
e

)
, (135)

which yields the following canonical commutation relations

[Aa
i (x), σ̃

j
b(y)] = δa

b δ
j
i δ

(3)(x, y). (136)

Variation of (135) with respect to Aa
0 and Σa

0i yields

Diσ̃
i
a = 0; Bi

a = 0. (137)

The first equation of (137) is the Gauss’ law constraint Ga which generates
SO(3, C) gauge transformations

δ~θA
a
i = −DiA

a
0; δ~θσ̃

i
a = −fabcσ̃

i
bA

c
0. (138)

Defining Σa
0i = λa

i , the second equation of (137) generates the transforma-
tions

δλA
a
i = 0; δλσ̃

i
a = εijkDjλ

a
k. (139)

Equation (129) is a topological BF theory and it appears naively from (137)
that the equivalence to general relativity has been lost since the Hamilto-
nian and the diffeomorphism constraints Hµ = (H,Hi) are missing. But
comparison with (103) shows that the diffeomorphism constraint Hi = 0 is
trivially satisfied for Bi

a = 0, which is a possible solution to (130). The Lie
derivative of Aa

i along the vector N i is given by

L ~N
Aa

i = Di(N jAa
j ) − εijkN

jBk
a , (140)

which is a gauge transformation with field-dependent parameter minus a
term which vanishes for Bk

a = 0. Hence the diffeomorphisms are contained
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within the gauge transformations, which is also shown in [13]. Substitution
of Bi

e = 0 into the Hamiltonian constraint of (103) yields

Λ
√

detσ̃ = 0, (141)

where we have used the property of the determinant for three by three ma-
trices. In order for our topological BF theory to be equivalent to GR, it must
be possible for (129) to have arisen from (103) in a particular limit. Hence
a necessary condition for (141) to be satisfied is either (i) The cosmological
constant Λ 6= 0 is arbitrary and (detσ̃) = 0, which means that the met-
ric is degenerate. Since the metric form of GR presumes a nondegenerate
spacetime metric gµν , then we must discard this possibility. (ii) Λ = 0 and
detσ̃ 6= 0, which means that the correspondence to metric GR is preserved
provided that we require the cosmological constant to vanish, which should
correspond to flat GR solutions.10 To recover the Ashtekar formalism, one
may use the simplicity constraint (5) to eliminate Σa

0i from (129) subject to
the time gauge e0i = 0.

10A thorough analysis is carried out for topological SL(2, C) BF theory in [15], where
it is shown that the moduli space of flat SL(2, C) connections corresponds to a family of
Lorentzian structures on flat 3+1 spacetime.
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7 Fourth method: Elimination of the two forms

using the instanton representation

Our fourth and final method of elimination will be to use (15) in its present
form to eliminate the two forms Σa, which will bring us to the instanton
representation of Plebanski gravity.11 Starting from

Σa
µν = ΨaeF

e
µν , (142)

upon substitution into the starting covariant action (14) we obtain

I [Ψ, A] =
1
2

∫

M
Ψ−1

ae F
a ∧ F e =

1
8

∫

M
d4xΨaeF

a
µνF

e
ρσε

µνρσ . (143)

An action whose 3+1 decomposition leads to (143), upon implementation
of the Hamiltonian and the diffeomorphism constraints, is given by

IInst =
∫
dt

∫

Σ
d3xΨaeB

i
eF

a
0i + εijkN

iBj
aB

k
e Ψae

−iN(detB)
√

detΨ
(
Λ + trΨ−1

)
. (144)

Only the symmetric part of Ψae contributes to (143), but in (144) Ψae con-
tains an antisymmetric part. As shown in the previous sections, (144) can
be obtained by elimination of the densitized triad σ̃i

a from the action in
Ashtekar variables using the CDJ Ansatz

σ̃i
a = ΨaeB

i
e, (145)

which is the spatial restriction of (142). Additionally as shown, (144) follows
directly from the starting Plebanski action as a theory dual to the Ashtekar
theory. The diffeomorphism constraint is given by the equation of motion
for the shift vector

δIInst

δN i
= Hi = εijkB

j
aB

k
e Ψae = (B−1)d

iψd(detB) = 0, (146)

where we have defined the antisymmetric part of the CDJ matrix by Ψ[ae] =
εaedψd, with a SO(3, C)-valued 3-vector ψd . Since we assume that Bi

a is
nondegenerate, then the solution to (146) is that ψd = 0, or that the CDJ

11Note that this is precisely equation (111), which we have already shown arises directly
from the starting Plebanski action.
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matrix is symmetric. To fix the value of N i we must focus on the part of
(144) which depends on ψd, given by

εdaeψdB
i
eF

a
0i + 2N i(B−1)d

iψd(detB). (147)

Hence, the equation of motion for ψd is given by

δIInst

δψd
= εdaeB

i
eF

a
0i + 2N i(B−1)d

i (detB) = 0, (148)

with solution

N j =
1
2
εjikF a

0i(B
−1)a

k. (149)

We have at this stage implemented the diffeomorphism constraint, by which
we mean that we have solved the constraint ψd = 0, and as well have fixed
its corresponding Lagrange multiplierN i through the equations of motion.12

At this stage the action (144) reduces to

IInst =
∫

M

(1
2
ΨaeF

a ∧ F e − i
√
−g(Λ + trΨ−1)d4x

)
(150)

where we have used
√
−g = N

√
h = N(detB)1/2

√
detΨ. Equation (150)

can be obtained by appending the Hamiltonian constraint directly to (143)
which resembles an instanton term where the trace of the Cartan–Killing
form is the field Ψae. The Hamiltonian constraint is given by the equation
of motion for the lapse function N

δI

δN
= H = (detB)1/2

√
detΨ

(
Λ + trΨ−1

)
= 0. (151)

Since Bi
a and Ψae are nondegenerate by assumption, then the requirement

that the Hamiltonian constraint be satisfied is equivalent to the vanishing
of the term in brackets

Λ +
1
λ1

+
1
λ2

+
1
λ3

= 0. (152)

Equation (152) leads to the following relation
12Equation (149) can also be regarded as a set of three differential equations for Aa

0 , the
temporal components of the four dimensional connection Aa

µ. Given the shift vector N i

and the velocities Ȧa
i , this fixes Aa

0 which corresponds to a choice of gauge.
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λ3 = − λ1λ2

Λλ1λ2 + λ1 + λ2
, (153)

which expresses λ3 explicitly as a function of λ1 and λ2, which in the in-
stanton representation will be regarded as the physical degrees of freedom.

The CDJ matrix Ψae in the instanton representation in (143) plays the
role of a momentum space variable, which is clearly not an auxilliary field as
the case in the original Plebanski theory. The only other treatment of Ψae

as other than an auxilliary field known to the author is in [14], where the
starting action is modified to admit a formulation of Ψae as a configuration
space variable.

7.1 Recovery of the Einstein equations

We will now show that the instanton representation action (144) implies the
Einstein equations, in the same sense that the CDJ action (10) implies the
Einstein equations through the Plebanski equations of motion. First, the
equation of motion for Ψbf from (150) is given by13

δIInst

δΨbf
=

1
8
F b

µνF
f
ρσε

µνρσ + i
√
−g(Ψ−1Ψ−1)bf = 0. (154)

Left and right multiplying (130) by Ψ, we obtain

1
4
(Ψbb′F b′

µν)(Ψff ′
F f ′

ρσ)εµνρσ = −2i
√
−gδbf . (155)

Upon using (142) as a re-definition of variables, which amounts to using the
curvature and the CDJ matrix to construct a two form, (155) reduces to

1
4
Σb

µνΣ
f
ρσε

µνρσdxµ ∧ dxν ∧ dxρ ∧ dxσ = Σb ∧ Σf = −2i
√
−gδbfd4x. (156)

One then recognizes (156) as none other than (6), which arises from (4)
subject to (5). This is the condition that the two forms Σa be derivable from
tetrads, namely the simplicity constraint. The CDJ Ansatz (145), which can
be taken as given, is just the spatial restriction of (8). Therefore all that
remains to verify the Einstein equations is to show that the connection Aa

is compatible with the two forms Σa, which is the analogue of (7).
The equation of motion for the connection Aa

µ from (150) is given by

13We have used
√
−g = N

√
detσ̃ = N(detB)1/2

√
detΨ, which follows from (145).
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δIInst

δAa
µ

= εµσνρDσ(ΨaeF
e
νρ) −

δIInst

δAa
µ

∫

M
d4xεijkN

iBj
aB

k
e Ψae

− δ

δAa
µ

∫

M
d4xiN

√
detB

√
detΨ

(
Λ + trΨ−1

)
= 0. (157)

Since the only occurence of Aa
0 appears in the first term of (157), then the

equation of motion for the temporal component is given by

δIInst

δAa
0

= ε0ijkDi(ΨaeF
e
jk) = Di(ΨaeB

i
e) = 0. (158)

Using (145) as a re-definition of variables one obtains Diσ̃
i
a = 0, where σ̃i

a

is now a derived quantity constructed from Bi
a and Ψae. This is just the

Gauss’ law constraint for the densitized triad, which is one of the initial
value constraints for the Ashtekar variables. The equations of motion for
the spatial components of Aa

i are given by

δIInst

δAa
i

= εiµνρDµ(ΨaeF
e
νρ)−

δIInst

δAa
i

∫

M

d4xεmnlN
mBn

b B
l
fΨbf

+
δ

δAa
i

∫

M
d4xiN

√
detB

√
detΨ

(
Λ + trΨ−1

)
= 0. (159)

Let us consider the contributions to (159) due to the Hamiltonian and dif-
feomorphism constraints Hµ = (H,Hi). Defining

D
ji
ea(x, y) ≡

δ

δAa
i (x)

Bj
e(y) = εjki

(
−δae∂k + fedaA

d
k

)
δ(3)(x, y), (160)

the contribution due to the diffeomorphism constraint is given by

δHi[N i]
δAa

i

=
δ

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
fΨbf

= 2Dni
ba(εmnlN

mBl
fΨ[bf ]) + 2Dli

fa(εmnlN
mBn

b Ψ[bf ])

= 4Dni
ba(εmnlN

mBl
fΨ[bf ]), (161)

and the contribution due to the Hamiltonian constraint is given by

δH [N ]
δAa

i

=
δ

δAa
i

∫

M

d4xiN(detB)1/2
√

detΨ
(
Λ + trΨ−1

)

= iD
ki
da

(N
2

(detB)1/2(B−1)d
k

√
detΨ

(
Λ + trΨ−1

))

= iD
ki
ba

(N
2

(B−1)b
kH

)
. (162)
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Hence the equation of motion for Aa
µ is given by

εµνρσDν(ΨaeF
e
ρσ) +

1
2
δµ
i D

ki
ba

(
i(B−1)b

kNH + 4εmklN
mBl

fΨ[bf ]

)
= 0, (163)

where we have used that Bi
a is nondegenerate. The first term of (163) when

zero implies (7) upon use of (15) to construct Σa
µν . The obstruction to this

equality, namely the compatability of Aa
µ with Σf

µν thus constructed, arises
due to the second and third terms of (163). These latter terms contain
spatial gradients acting on the diffeomorphism and Hamiltonian constraints
Hµ. In order that Aa

µ be compatible with the two form Σa
µ = ΨaeF

e
µν , we

must require that these terms of the form ∂iHµ must vanish, which can be
seen from the following argument. Since Hµ = 0 when the equations of
motion are satisfied, then the spatial gradients from D

ji
ea acting on terms

proportional to Hµ in (163) must vanish.
According to Dirac the constraints must be evaluated only subsequent

to taking derivatives, and not prior. Our interpretation is that this refers to
functional derivatives and time derivatives but not spatial gradients, which
are nondynamical. The vanishing of the spatial gradients can be seen if one
discretizes 3-space Σ onto a lattice of spacing ε and computes the spatial
gradients of the constraints Φ as ∂Φ = 1

2ε limε→0(Φ(xn+1) − Φ(xn−1)), and
uses the vanishing of the constraints Φ(xn) = 0 ∀n at each lattice point xn.
For another argument, smear the gradient of the Hamiltonian constraint
with a test function f

S =
∫

Σ
d3xf∂iH = −

∫

Σ
d3x(∂if)Hµ ∼ 0, (164)

where we have integrated by parts. The result is that (164) vanishes on
the constraint shell ∀f which vanish on the boundary of 3-space Σ. This
is tantamount to the condition that the spatial gradients of a constraint
must vanish when the constraint is satisfied.14 Of course, the constraints
Hµ follow from the equations of motion for Nµ = (N,N i).

7.2 Construction of solutions to the Einstein equations

Hence to summarize the results, starting from the Plebanski theory we have
obtained a theory dual to the Ashtekar theory called the instanton repre-
sentation of Plebanski gravity, whose equations of motion imply the Ein-
stein equations through the same mechanism as the original Plebanski the-
ory, subject to satisfaction of the initial value constraints of GR. On-shell,

14The author is grateful to Chopin Soo for pointing out this latter argument.
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these equations imply solutions for GR for nondegenerate metrics as follows.
Given any CDJ matrix Ψbf satisfying the initial value constraints (Ga, Hµ)
and a self-dual connection Aa

µ,15 one constructs a two form Σa
µν using the

curvature of this connection

Σa
µν = Ψ−1

af F
f
µν = Σa

µν [Ψ, A]. (165)

As noted Ψ−1
ae cannot be arbitrarily chosen, but must satisfy the Hamiltonian

and diffeomorphism constraintsHµ = 0. This is so that the second and third
terms of (163) vanish, which in turn makes the first term vanish making Aa

µ

the connection compatible with the two form constructed in (165).16 Then
(154) leads to (155) and (156), which imply that the two form constructed
in (165) is derivable from tetrad one forms eI = eI (Ψ, A) in the combination

Σa
µν =

(
ie0 ∧ ea − 1

2
fabceb ∧ ec

)
. (166)

Then (165), which is the defining relation for GR, implies that the met-
ric gµν = ηIJe

I
µe

J
ν = gµν [Ψ, A] constructed from these tetrads satisfies the

vacuum Einstein equations. Since these results all follow from the equa-
tions of motion of starting action (144), which is written on the phase space
(Ψae, A

a
i ), then the implication is that the instanton representation of Ple-

banski gravity is indeed another way of writing general relativity. But the
bonus is that the physical degrees of freedom are now explicit, since the
Hamiltonian constraint leads directly to (153). So the fundamental degrees
of freedom reside within the eigenvalues of Ψae. The two forms, triads and
metric are all derived quantities.

Note that while (155) and (156) imply the existence of tetrads eIµ whose
self-dual combination defines the two forms Σa

µν , they do not provide a
prescription for finding these tetrads. However, one may bypass the tetrads
and directly construct the spacetime metric gµν as follows. First, using any
combination (Ψae, A

a
i ) solving the initial value constraints, construct the

spatial 3-metric hij via17

hij = (detΨ)(Ψ−1Ψ−1)ae(B−1)a
i (B

−1)e
j(detB)

∣∣∣∣
Ga=Hµ=0

= hij [Ψ, A]. (167)

15Whose spatial part Aa
i is the one with respect to which the Gauss’ law constraint Ga

has been solved.
16In other words, the satisfaction of the Hamiltonian constraint and diffeomorphism

constraints Hµ, is a necessary and sufficient condition for this compatibility with respect
to the spatial components Aa

i . The compatibility with respect to the time component Aa
0

implements the Gauss’ law constraint upon Ψae, evaluated with respect to Aa
i , the spatial

restriction of the starting four dimensional connection Aa
µ.

17Note that (167) upon use of (145) implies the relation hhij = σ̃i
aσ̃

j
a which is the con-

travariant 3-metric in terms of the Ashtekar variables. This holds only for nondegenerate
3-metrics hij, a restriction implied by (145).
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This implies that (167) is the spatial 3-metric satisfying the initial value
constraints of metric GR, since hij = hij [λ1, λ2;A] is now expressed in terms
of the physical degrees of freedom.18 To complete the construction of the
spacetime metric gµν , we must now incorporate the gauge degrees of freedom
in the spirit of ADM, namely the lapse-shift combinationNµ = (N,N i). The
shift vector can be constructed, for each Aa

i used in (167), from Aa
0 from the

equation of motion (149). Hence one has that

N j =
1
2
εjikF a

0i(B
−1)a

k = N j [Aa
i , A

a
0] = N j[Aa

µ]. (168)

The only metric degree of freedom not determined byAa
µ is the lapse function

N , which apparently can be freely specified. The lapse function fixes the
manner of evolution of the initial data from the initial spatial 3-manifold Σ
in the 3+1 decomposition, not to be confused with the two forms Σf . The
line element for the spacetime is then given by

ds2 = −N2dt2 + hijω
i ⊗ ωj , (169)

where we have defined the one forms

ωi = dxi +N idt. (170)

Equation (169) is the line element for Lorentzian signature spacetimes. For
Euclidean signature, one performs the Wick rotation N ↔ iN .

7.3 Reality conditions

Thus far the metric constructed in (169) presumably describes complex gen-
eral relativity. To obtain real metric GR we must implement the appropriate
reality conditions on the instanton representation phase space.19 Recall that
the Ashtekar self-dual connection is defined by

Aa
i = Γa

i [e] + β(e−1)j
aKji, (171)

where Γa
i [e] is the unique spin connection compatible with the triad eai ,

satisfying
18For the purposes of the present paper we will put this forth as a conjecture. A more

rigorous proof of this is presented in Paper V.
19For Eucliean signature this is relatively straightforward, since one may simply restrict

the phase space (Ψae, A
a
i ) to real variables. For Lorentzian signature, we must implement

the conditions necessary to obtain the real spacetime metric gµν as a solution.
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εijkDje
a
k = εijk

(
∂je

a
k + fabcΓb

je
c
k

)
= 0 (172)

andKji is the extrinsic curvature of the spatial slice Σ, which is symmetric in
i and j. β is the Immirzi parameter, which we take as β = −

√
−1. However,

as we have used Plebanski theory as the starting point for obtaining the
instanton representation, we will make use of (171), not taking into account
any relations implied by the metric theory. Therefore we cannot use that
(172), nor can we use that Ka

i is related to the extrinsic curvature Kij , until
they have been shown to follow from the instanton representation.20

Given the above consideration, we will start on the assumption that Aa
i

contains nine degrees of freedom per point, with no (as yet) a-priori relation
to the metric theory as the Ashtekar variables might imply. The magnetic
field of Aa

i splits into real and imaginary parts as

Bi
a = εijk

(
∂jA

a
k +

1
2
fabcAb

jA
c
k

)
= M i

a + iN i
a, (173)

where we have defined

M i
a = εijk

(
∂jΓa

k +
1
2
fabcΓb

jΓ
c
k

)
; N i

a = εijkDjK
a
k . (174)

Additionally, we will split the matrix Ψae into real and imaginary parts as

Ψae = pae + iqae, (175)

where pae and qae are real. The following relation holds

σ̃i
a = ΨaeB

i
e, (176)

from which the equivalence to metric GR is has been established. We im-
pose the following as the reality conditions on the instanton representation,
namely that the densitized triad σ̃i

a be real. Let us expand (176) using (173)
and (175)

σ̃i
a =

3∑

e=1

paeM
i
e − qaeN

i
e + i

(
paeN

i
e + qaeM

i
e

)
= Re{σ̃i

a} + iIm{σ̃i
a}. (177)

The condition that the densitized triad be real is that Im{σ̃i
a} = 0, e.g.

20This is performed in Papers V and VI, though we will not at this stage make use of
the results.
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3∑

e=1

paeN
i
e + qaeM

i
e = 0 ∀ a, i. (178)

Equation (178) consitutes a total of nine equations, namely nine restrictions
on the starting phase space ΩInst = (Ψae, A

a
i ). Now let us perform a count

of the degrees of freedom (D.O.F.).
Off-shell, the momentum space Ψae contains 9 complex D.O.F., which

is a total of 18 real D.O.F. in pae and qae. While the Ashtekar connection
Aa

i = Γa
i − iKa

i has 18 real components, the independent degrees of freedom
are 9 real D.O.F. in eai , and 6 real D.O.F. in K(ij). Hence Aa

i really defines
a 9 + 6 = 15 dimensional manifold embedded in an 18 dimensional space,
but we will for the time-being take it to be 18 dimensional. Hence we
assume until proven otherwise that the real dimension of the unconstrained
instanton representation phase space is thereforeDim(ΩInst) = 18+18 = 36.
There are seven complex initial value constraints, whose real and imaginary
parts total 7+7 = 14 real restrictions on ΩInst, reducing it to Dim(ΩInst) =
36 − 14 = 22. The reality conditions (171) impose another 9 restrictions
further reducing this to Dim(ΩInst) = 22−9 = 13. So upon implementation
of the initial value constraints and the reality conditions on the instanton
representation phase space we have

Dim(Ω) = 2(9) + 2(9)− 2(7)− 9 = 13 Real D.O.F. (179)

The result of imposition of the reality conditions (178) on the instanton
representation is to produce a real metric

ds2 = −N2dt2 + hij [λ1, λ2;Aa
i ](dx

i +N idt)(dxj +N jdt), (180)

where the 3-metric is constructed from solution of the initial value con-
straints

hij [λ1, λ2;Aa
i ] =

( σ̃i
aσ̃

j
a

detσ̃

)∣∣∣∣
σ̃i

a=ΨaeBi
e

. (181)

Note that reality of the metric requires that the shift vector N i be real
and that the laspe function N be real (for Lorentzian signature) or pure
imaginary (for Euclidean signature). These conditions are imposed a-priori
and not by the reality conditions. After this there remain 13 real degrees of
freedom on the instanton representation phase space ΩInst.
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8 Reduction to the kinematical level

We have shown how for nondegenerate configurations IInst can be trans-
formed into IAsh. However, the phase space in Ashtekar variables ΩAsh is
of complex dimension Dim(ΩAsh) = 18. This is 14 D.O.F. per point more
than the physical phase space of GR, where Dim(ΩPhys) = 4, when the
initial value constraints are not implemented. A formalism conducive to
implementation of initial value constraints is the Hamiltonian formalism. In
this section we will reduce the instanton representation to the kinematical
level, defined as the level subsequent to implementation of the Gauss’ law
and the diffeomorphism constraints (Ga, Hi) and prior to implementation of
the Hamiltonian constraint H . The rationale for the term ‘instanton repre-
sentation of gravity’ arises from the observation that the action resembles
a ‘generalized’ trF ∧ F term with the matrix Ψae solving the initial value
constraints replaces the Cartan–Killing metric of the gauge group. We will
proceed from the level where the diffeomorphism constraint has already been
implemented via (146), (147), (148) and (149), leaving remaining the Gauss’
law and the Hamiltonian constraints Ga and H . The implementation of the
Gauss’ law constraint at this stage would define a kinematic phase space
ΩKin, where Dim(ΩKin) = 6. There are two ways to carry out the decom-
position leading to this reduction. One may either attempt to reduce the
theory before or after the 3+1 decomposition. We will carry out both se-
quences and require as a condition of consistency that they lead to the same
reduced phase space.

8.1 Polar decomposition before the 3+1 decomposition

Starting from the part of the instanton representation subsequent to imple-
mentation of the diffeomorphism constraint

I1 =
∫

M

d4x
(1

8
ΨaeF

a
µνF

e
ρσε

µνρσ − iNH
)
, (182)

one sees that only the symmetric part of Ψae can contribute on account
of the symmetries imposed by εµνρσ . We can exploit this by performing a
change of variables into a polar decomposition

Ψae = (eθ·T )afλf(e−θ·T )fe, (183)

which is valid as long as the symmetric part of Ψae is diagonalizable. The
object (eθ·T )ae is a SO(3, C) matrix parametrized by three complex angles
~θ = (θ1, θ2, θ3). If one started out with the diagonal matrix of eigenvalues
λe = (λ1, λ2, λ3), then (183) would correspond to a SO(3, C) rotation from
the intrinsic diagonalized frame where ~θ = 0 into an arbitrary SO(3, C)
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frame, augmenting Ψ(ae) from three to six complex degrees of freedom. The
Hamiltonian constraint is given by

H = (detB)1/2
√

detΨ(Λ + trΨ−1), (184)

which on the diffeomorphism constraint shell is invariant under SO(3, C)
since it depends only on the SO(3, C) invariants. Hence (184) can equally
be written explicitly in terms of the eigenvalues

H = (detB)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)
, (185)

which is the same for each ~θ. Upon substitution of (183) into (182) we have

I1 =
∫

M
d4x

(1
8
λf((e−θ·T )faF

a
µν [A])((e−θ·T)feF

e
ρσ [A])εµνρσ − iNH

)
, (186)

where Aa
µ is a four dimensional connection with curvature F a

µν [A] given by

F a
µν [A] = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν . (187)

The internal index on each curvature in (186) is rotated by e−θ·T , which
corresponds to a SO(3, C) gauge transformation. Therefore there exists a
gauge transformed version of F a

µν , given by curvature fa
µν such that

I1 =
∫

M
d4x

(1
8
λff

f
µν [a]ff

ρσ[a]εµνρσ − iNH
)

(188)

for some four dimensional connection aa
µ. The relation between aa

µ and fa
µν ,

which contains no explicit reference to the SO(3, C) angles ~θ, is given by

fa
µν [a] = ∂µa

a
ν − ∂νa

a
µ + fabcab

µa
c
ν . (189)

It then follows that the connection aa
µ is a SO(3, C) gauge transformed

version of Aa
µ related by

aa
µ = (e−θ·T )aeA

e
µ − 1

2
εabc(∂µ(e−θ·T )bf )(e−θ·T )cf , (190)

which corresponds to the adjoint representation of the gauge group [16].
Next, perform a 3+1 decomposition of (188), which yields
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IInst =
∫
dt

∫

Σ
d3x

(
λfb

i
f ȧ

f
i − λfwf{af

0}

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)
. (191)

We have defined bia = 1
2ε

ijkfa
jk as the spatial part of (189). Additionally, the

following identifications have been made

detB = detb; bia = (e−θ·T )aeB
i
e. (192)

The first equation of (192) is a result of the special orthogonal property
that det(eθ·T ) = 1, and the second equation corresponds to an SO(3, C)
rotation of the internal index. Integration of (191) by parts with discarding
of boundary terms yields

IInst =
∫
dt

∫

Σ

d3x
(
λfb

i
f ȧ

f
i + af

0wf{λf}

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)
. (193)

Variation of (193) with respect to af
0 would yield

δIInst

δaf
0

= wf{λf} = 0 (194)

with no summation over f which is unsatisfactory, since this would consti-
tute a premature restriction on λf which we would like to use for the physical
degrees of freedom. To preserve three D.O.F. in λf at the kinematical level
we must instead set af

0 = 0, which corresponds to the choice of a gauge. For
Yang–Mills theory af

0 = 0 is known as the temporal gauge [16].
The temporal gauge in Yang–Mills theory admits the residual freedom to

perform time independent gauge transformations. For gravity the infinites-
imal SO(3, C) gauge transformation of af

0 would be given by

δξa
f
0 = ξ̇f + ffghag

0ξ
h

∣∣∣∣
ag
0=0

= ξ̇f . (195)

From (195), one sees that the gauge choice af
0 = 0 is preserved only for

ξ̇f = 0, or ξf = ξf (x), namely gauge transformations which are independent
of time. Note that the SO(3, C) angles ~θ can still be chosen arbitrarily.
Imposition of a0 = 0 yields the action
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IInst =
∫
dt

∫

Σ
d3x

(
λfb

i
f ȧ

f
i − iN(detb)1/2

√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

))
.(196)

Equation (196) seems a feasible starting point for describing the dynamics
of the physical D.O.F. for general relativity, since Dim(ΩKin) = 6,21 but in
the process of setting a0 to zero we have also eliminated the ability to impose
the Gauss’ law constraint Ga. This will bring us to the second sequence of
decomposition.

8.2 Polar decomposition after the 3+1 decomposition

We have seen how performing a polar decomposition of Ψae in advance of
the 3+1 decomposition of IInst has led to an action on ΩKin in the gauge
aa

0 = 0. One should hope that the 3+1 decomposition commutes with the
polar decomposition as a matter of consistency. We will see what this entails
by performing the decompositions in the opposite order. Starting with the
3+1 decomposition of (144) for symmetric Ψae, we have

IInst =
∫
dt

∫

Σ
d3x

(
ΨaeB

i
eȦ

a
i + Aa

0we{Ψae}

−iN(detB)1/2
√

detΨ
(
Λ + trΨ−1

))
. (197)

Next, perform the polar decomposition of (197). Starting with the integrand
of the canonical one form θ we have

λf(e−θ·T )fa(e−θ·T )feB
i
eȦ

a
i . (198)

The polar decomposition of the Gauss’ law constraint Ga is given by

Aa
0Ga = Aa

0we{λf(e−θ·T )fa(e−θ·T )fe}. (199)

The action in 3+1 form is given by

IInst =
∫
dt

∫

Σ

d3x

(
λf(e−θ·T )fa(e−θ·T )feB

i
eȦ

a
i

+Aa
0we{λf(e−θ·T )fa(e−θ·T )fe}

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

))
. (200)

21This refers to both the classical and the quantum dynamics. Additionally, by eliminat-
ing three D.O.F. from the Ashtekar connection we have also eliminated three superfluous
degrees of freedom, which should bring us a step closer toward metric general relativity.
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Comparison of (200) with (193) reveals the following point. In (193) there
is no restriction on the SO(3, C) angles θa. However, it was necessary to
impose aa

0 = 0 at the level prior to the equations of motion in order to avoid
a premature restriction on λf , which we have chosen to be the physical
degrees of freedom.22 We will see that the roles of become reversed when
the 3+1 decomposition is carried out prior to the polar decomposition. The
analogue of (194) is the equation of motion for Aa

0, given by

δIInst

δAa
0

= we{λf(e−θ·T )fa(e−θ·T )fe} = 0. (201)

Equation (201) allows for the possibility to restrict the SO(3, C) angles θa

in lieu of prematurely restricting λf . Namely, for each configuration Aa
i

and triple of eigenvalues λf , one must invert (201) to solve for ~θ = ~θ[~λ;Aa
i ].

Hence unlike for the case where aa
0 = 0 with ~θ unrestricted, in (200) it

is now Aa
0 which becomes unrestricted with ~θ being restricted. These two

observations must be reconciled with one another.
If ~θ[~λ;Aa

i ] had in the first place been chosen as the angle of rotation
at the level of (197) and (198), then the middle term of (200) would have
dropped out on account of (201) and resulting action would be given by

IInst =
∫
dt

∫

Σ
d3x

(
λf(e−θ[~λ;A]·T )fa(e−θ[~λ;A]·T )feB

i
eȦ

a
i )

−iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

))
. (202)

Comparison of (202) with (196) requires as a necessary condition for equality
the following identification of the the canonical one forms

∫

Σ
d3xλf (e−θ[~λ;A]·T )fa(e−θ[~λ;A]·T )feB

i
eȦ

a
i =

∫

Σ
d3xλfb

i
f [a]ȧf

i . (203)

The implication of (203) is that the SO(3, C) angles ~θ are ignorable in
the canonical structure of the instanton representation,23 since they can
be absorbed into the definition of the variables that define the kinematic
configuration space ΓKin. This implies that the magnetic field Bi

a and the
velocity of the connection Aa

i transform as SO(3, C) vectors under SO(3, C)

22The eigenvalues of Ψ(ae) should be constrained rather by the dynamics driven by the
physical Hamiltonian, than by unphysical transformations. From the set of initial value
constraints (H,Ga,Hi) respectively the Hamiltonian, Gauss’ law and diffeomorphism con-
straints, (Ga,Hi) generate unphysical kinematic transformations and H generates physical
time evolution.

23A more rigorous proof of this is presented in Paper IV.

42



gauge transformations. In direct analogy to the diffeomorphism constraint,
we have implemented the Gauss’ law constraint in the following sense. We
have imposed the constraint as an equation which must be solved, and have
gauge-fixed the the value of a0, which is gauge equivalent to the correspond-
ing Lagrange multiplier Aa

0.
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9 Dynamics of the CDJ matrix: Revisited

In the previous section we have reduced the starting action to the kinemat-
ical level, which entailed an implementation of the kinematic initial value
constraints. As a double check on the consistency of the previous sections
we will compute the equations of motion first at the covariant level of the
starting action. Starting from the action

IInst =
∫

M

d4x
(1

8
ΨaeF

a
µνF

e
ρσ [A]εµνρσ [A] − iNH

)
(204)

one obtains the Lagrangian equations of motion. The equation of motion
for the CDJ matrix is given by

δIInst

δΨbf
=

1
8
F b

µνF
f
ρσε

µνρσ + iN(detB)1/2
√

detΨ(Ψ−1Ψ−1)bf = 0. (205)

The first term of (205) is symmetric in bf which implies that Ψbf is also sym-
metric. This follows from implementation of the diffeomorphism constraint
in the previous sections. Let us write (205) as a polar decomposition

F b
µνF

f
ρσε

µνρσ = −8iN(detB)1/2
√

detΨ(Ψ−1Ψ−1)(bf)

= −8iN(detB)1/2
√
λ1λ2λ3

∑

g

(e−θ[~λ;Aa
i ]·T )bg

( 1
λg

)2
(eθ[~λ;Aa

i ]·T )gf , (206)

where ~θ = ~θ[~λ;Aa
i ] have been chosen specifically to satisfy the Gauss’ law

constraint. Transferring the exponentials to the left hand side, equation
(206) can further be written as

(eθ[~λ;Aa
i ]·T )b′bF

b
µν [A]F f

ρσ[A](e−θ[~λ;Aa
i ]·T )ff ′εµνρσ

= −8iN(detB)1/2
√
λ1λ2λ3

∑

g

( 1
λg

)2
(eg)b′f ′ , (207)

where (eg)fb is a basis of diagonal three by three matrices given by

(e1)ae =




1 0 0
0 0 0
0 0 0


 ; (e2)ae =




0 0 0
0 1 0
0 0 0


 ; (e3)ae =




0 0 0
0 0 0
0 0 1


 .

The left hand side of (207) can be written as the gauge transformation of a
curvature fa

µν [a], as in
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(eθ[~λ;Aa
i ]·T )b′bF

b
µν [A]F f

ρσ[A](e−θ[~λ;Aa
i ]·T )ff ′εµνρσ = f b′

µν [a]ff ′
ρσε

µνρσ . (208)

The 3+1 decomposition of (207) with (208) substituted in is given by

bif ȧ
b
i − wf{ab

0} = −2iN(detB)1/2
√
λ1λ2λ3

∑
(eg)fb

( 1
λ2

g

)
. (209)

The right hand side of (209) is diagonal in bf , while the left hand side has off-
diagonal contributions. This means that the only allowed configurations are
those where the off-diagonal contributions vanish. Hence we must require

Ẋbf ≡ bif ȧ
b
i −wf{ab

0} = 0 for b 6= f. (210)

For the choice of gauge aa
0 = 0, this implies that bif ȧ

b
i = 0, which in turn

restricts the canonical one form to terms of the form λfb
i
f ȧ

f
i . This is just as

well, since we must have three configuration space degrees of freedom con-
jugate to the eigenvalues λf on ΩKin.24 This leaves remaining the diagonal
contributions. For each f we have that

Ẋff = bif ȧ
f
i = −N ′(detb)1/2

√
λ1λ2λ3

( 1
λf

)2
, (211)

with summation over i but no summation over f , where we have used
(detB) = (detb) due to the special orthogonal property of SO(3, C).

Equation (211) is the same equation that would follow from the polar
decomposed form of (204), given by

IInst =
∫

M
d3x

(1
8
λff

f
µν [a]ff

ρσ[a]εµνρσ − iN(detb)1/2
√
λ1λ2λ3

(
Λ +

1
λ1

+
1
λ2

+
1
λ3

)
.(212)

Variation of N gives the Hamiltonian constraint

δIInst

δN
= Λ +

1
λ1

+
1
λ2

+
1
λ3

= 0, (213)

with solution

λ3 = − λ1λ2

Λλ1λ2 + λ1 + λ2
. (214)

24Also, as we will show in Paper XVIII, one can define a globally holonomic coordinate
on the configuration space ΓInst corresponding to the diagonal parts of Xbf , but not
corresponding to the off-diagonal parts.
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One may obtain a reduced action by substitution of (214) into the starting
action, yielding

I =
∫
dt

∫

Σ
d3x

(
λ1b

i
1ȧ

1
i + λ2b

i
2ȧ

2
i −

( λ1λ2

Λλ1λ2 + λ1 + λ2

)
bi3ȧ

3
i

)
. (215)

Equation (215) forms a starting point for the formulation of a Hamilton–
Jacobi functional, treated in Paper XVI and in other papers.

9.1 Covariant form

Making the definition

Ωbf =
1
8
F b

µνF
f
ρσε

µνρσ , (216)

then (205) is given by

Ωbf = −iN(detB)1/2
√

detΨ(Ψ−1Ψ−1)bf . (217)

There are two main ways to proceed from (217). One may either eliminate
Ψbf from the starting action (204) by the equations of motion on the con-
straint shell, or one may eliminate Ωbf . Let us first examine the effect of
eliminating Ψbf from (204), to obtain an action that depends only on the
connection Aa

µ. The determinant of (217) implies

√
detΨ = i

N3(detB)3/2

detΩ
. (218)

Using (218) in the inversion of (217), we have

(ΨΨ)bf =
N4(detB)2

detΩ
Ω−1

bf . (219)

Since (ΨΨ)bf and Ωbf are symmetric, then the respective matrices can be
diagonalized by the same special orthogonal transformation.25 It follows
that the eigenvalues of the left hand side must be equal to the eigenvalues
of the right hand side of (219). Define λf = (λ1, λ2, λ3) as the eigenvlaues
of Ψbf , and Ωf = (Ω1,Ω2,Ω3) as the eigenvalues of Ωbf . Then the following
relation ensues

(λg)2 =
N4(detB)2

detΩ
1
Ωg

(220)

25We have restricted ourselves to configurations where the matrices are diagonalizable.
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with no summation over g. Taking the square root of (220) we obtain

λg =
N2(detB)√

detΩ
1√
Ωg

. (221)

Substituting this result into the first term of (204) we can eliminate Ψae,
obtaining

∫

M
d4xΨbfΩbf =

∫

M
d4xλgΩg =

∫

M
d4x

N2(detB)√
detΩ

(√
Ω1 +

√
Ω2 +

√
Ω3

)
(222)

which can also be written as

I =
∫

M
d4x

N2(detB)√
detΩ

tr(
√

Ω). (223)

Equation (223) is the direct analogue for the instanton representation of
the CDJ action of [3]. But the physical degrees of freedom appear to be
obscured. Alternatively, elimination of Ωbf from (204) yields

∫

M

d4xΨbf Ωbf = −i
∫

M

d4xN(detB)1/2
√

detΨΨbf (Ψ−1Ψ−1)bf

= −i
∫

M
d4xN(detB)1/2

√
detΨtrΨ−1. (224)

On the Hamiltonian constraint shell trΨ−1 = −Λ, and (224) reduces to

−iI = Λ
∫

M
d4xN

√
detB

√
detΨ

∣∣∣∣
H=0

= Λ
∫

M
d4xN

√
h = ΛV ol(M), (225)

which is the volume of spacetime evaluated on the solutions to the equations
of motion. In terms of the physical degrees of freedom this is

I = iΛ
∫

M
d4x

√
detB

√
λ1λ2λ3 = ±Λ

∫

M
d4xN

λ1λ2

√
detB√

Λλ1λ2 + λ1 + λ2
. (226)
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10 Relation to Yang–Mills theory

The Ashtekar formulation of GR can be seen as the embedding of the phase
space of metric GR into a Yang–Mills theory. We will now show how Yang–
Mills theory can be imbedded into general relativity in the instanton rep-
resentation. The action for the instanton representation on solution to the
contraints is given by

I =
1
2

∫

M

ΨbfF
b ∧ F f

∣∣∣∣
Hµ=0

=
∫

M

d4xΨbfΩbf . (227)

But σ̃i
a = ΨaeB

i
e is the spatial restriction of

Σa
µν = ΨaeF

e
µν (228)

on 3-space Σ, and (227) can equivalently be written as

I =
1
2

∫

M
(Ψ−1)aeΣa ∧ Σe

∣∣∣∣
Hµ=0

. (229)

The following forms on-shell are also equivalent to (229)

I =
∫

M
Σa ∧ F a =

1
2

∫

M

(
(Ψ−1)aeΣa ∧ Σe + ΨaeF

a ∧ F e
)
. (230)

Returning to (217), the physical interpretation arises from the identification
of

hij = (detΨ)(Ψ−1Ψ−1)bf(B−1)b
i(B

−1)f
j (detB) (231)

with the intrinsic 3-metric of 3-space Σ. Upon use of Ψ−1
ae = Bi

e(σ̃
−1)a

i ,
equation (231) yields

hhij = σ̃i
aσ̃

j
a, (232)

which is the relation of the Ashtekar densitized triad to the 3-metric hij . In
the instanton representation the spacetime metric gµν is a derived quantity
since it does not appear in the starting action (204) except for the tempo-
ral components Nµ = (N,N i) = (g00, g0i), which are needed in order to
implement the initial value constraints. The spacetime metric is given by
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ds2 = gµνdx
µdxν = −N2dt2 + hijω

i ⊗ ωj , (233)

where ωi = dxi+N idt and hij is the induced 3-metric on Σ. The prescription
for obtaining hij from the instanton representation is though (231), which
holds for nondegenerate Bi

a and Ψae.
Comparison of (231) with (217) indicates that dynamically on the solu-

tion to the equations of motion,

Ωbf = −iNhijB
i
bB

j
f . (234)

Since the initial value constraints must be consistent with the equations of
motion, we can insert (234) into (227), which yields

1
2

∫

M

ΨaeF
a ∧ F e = −i

∫

M

NhijΨaeB
i
aB

j
ed

4x. (235)

Upon use of the CDJ Ansatz σ̃i
a = ΨaeB

i
e, the spatial part of (228) in (235),

one also has

1
2

∫

M

ΨaeF
a ∧ F e = −i

∫

M

Nhij(Ψ−1)eaσ̃i
aσ̃

j
ed

4x. (236)

Using (235) and (236), one sees that the action for GR in the instanton
representation evaluated on a classical solution is given by

I = −i
∫

M
d4xNhijT

ij , (237)

where T ij is given by

T ij =
1
2
(
(Ψ−1)aeσ̃i

aσ̃
j
e + ΨaeB

i
aB

j
e

)
= σ̃i

aB
i
a. (238)

Equation (238) admits a physical interpretation of the spatial energy mo-
mentum tensor for a SO(3, C) Yang–Mills theory, where Ψae plays the role
of the coupling constant.

The 3+1 decomposition of the Einstein–Hilbert action can be written as

IEH =
∫

M

d4x
√
−g(4)R =

∫

M

N
√
h
(
g00R00 + 2g0iR0i + hijR

ij
)
. (239)
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Using hijR
ij = −2hijG

ij , where Gij is the three dimensional spatial Einstein
tensor, we can make the identification

Gij ≡ iN

2h
T ij . (240)

The implication is that on the constraint shell, the first two terms of (239)
vanish and (240) essentially becomes 3 dimensional GR coupled to Yang–
Mills theory, which is a self-coupling. Considering the following split

σ̃i
aB

j
a = σ̃[i

aB
j]
a + σ̃(i

aB
j)
a = εijkεkmn σ̃

m
a B

n
a + σ̃(i

a B
j)
a , (241)

we see that the antisymmetric part is the diffeomorphism constraint in the
Ashtekar variables, which takes on the physical interpretation as the Poynt-
ing vector for the Yang–Mills theory. This couples to the shift vector N i.
Since the symmetric part of (241), which couples to hij as in (237) has been
identified with the spatial stress-energy tensor, then this implies that the
energy density is given by σ̃i

aB
i
a. This is precisely İCS = ~E · ~B upon the

identification of σ̃i
a with the Yang–Mills electric field.

Another intertesting relation arises from the following identification.
Write the Einstein–Hilbert action (239) on the constraint shell in terms
of the three dimensional Einstein tensor. Hence R00 = R0i = 0 and we are
left with

IEH = −2
∫
dt

∫

Σ
d3xN

√
hH ijGij = −2

∫
dt

∫

Σ
d3xN

√
hhijGmnh

mihnj .(242)

Transforming the contravariant 3-metrics into Ashtekar variables, we have

IEH = −2
∫
dt

∫

Σ
d3xhijGmn

(σ̃m
a σ̃

i
a)(σ̃

n
e σ̃

j
e)

(detσ̃)2

= −2
∫
dt

∫

Σ
d3xNhijGmnσ̃

m
a σ̃

n
e

( σ̃i
aσ̃

j
e

(detσ̃)

)
. (243)

Comparison of (243) with (236) implies the following relation

Gij = Ψ−1
ae (σ̃−1)a

i (σ̃
−1)e

j(detσ̃), (244)

whence the inverse CDJ matrix is essentially Gij projected from spatial into
internal indices. In Paper III it is shown that Gij is the Einstein tensor for
a three dimensional Riemannian manifold with torsion.
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11 Conclusion

The main results of this paper are as follows. We have shown, starting
from the Plebanski theory of gravity based on (Ψae,Σa

µν , A
a
µ), that one may

impose metricity by selecting a specific solution for the self-dual two forms
which implies equivalence to general relativity. The resulting action, which
is a second class constrained system, provides two alternatives for reduc-
tion. Elimination of the CDJ matrix Ψae leads to the Ashtekar phase space
ΩAsh(σ̃i

a, A
a
i ), which implies a first class constrained system which has been

studied in depth in the literature. Elimination of the Ashtekar densitized
triad σ̃i

a in favor of the CDJ matrix Ψae leads to an action on the phase
space ΩInst = (Ψae, A

a
i ), where Ψae is the basic momentum space variable.

There are two main remaining tasks to be performed prior to quantization
of the instanton representation. One task is the verification of closure of the
algebra of constraints on ΩInst, as a requirement of Dirac consistency, which
is performed in Paper III of the series.

We have also presented various different options for the elimination of
variables from the starting Plebanski action, each with a different perspec-
tive on the theory. We have shown how, starting from the instanton rep-
resentation, one obtains the Ashtekar formalism via the CDJ Ansatz. This
equivalence holds only where the variables are nondegenerate, which implies
a restriction to the nondegenerate sector of the corresponding metric theory.
Additionally we have shown how, using the instanton representation action
as a starting point, one obtains the same Einstein’s equations implied by the
original Plebanski theory, subject to solution of the initial value constraints
of GR. This suggests that one may construct solutions for metric general
relativity using any CDJ matrix Ψae solving the initial value constraints and
the connection Aa

i (upon which the solution to the Gauss’ law constraint is
based).26 The second task is the implementation of reality conditions on
ΩInst in order to obtain real GR, which we have shown is feasible at the
classical level. We reserve a quantum treatment of Papers XVII and XVIII,
where our proposal for implementation of these conditions is presented as
adjointness requirements in the quantum theory of the instanton represen-
tation.

We have also shown the reduction of the instanton representation from
the full unconstrained theory to the kinematical level through the equations
of motion and the initial value constraints. The requirement of commuta-
tivity between the polar and 3+1 ADM decompositions provides a natural
prescription for obtaining the reduced phase space, which brings us to the
topic of Paper III. This is where we show that the SO(3, C) angles are indeed
ignorable from the canonical and the symplectic structures of the instanton

26The proof of this is given in Paper V, where we examine the relation between the
instanton representation and the metric representation.
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representation. Finally, we have illustrated a new interpretation, wherein
the instanton representation can be regarded as being embedded in Yang–
Mills theory. The remaining task, which this series of papers will show, is
an in-depth analysis of the classical theory, the physical interpretation, its
quantization, and the construction of the corresponding Hilbert space and
generalization to include matter couplings.

The only other work known to the present author where the CDJ ma-
trix is treated as other than an auxilliary field is in [14], where the starting
Plebanski action is modified by some additional terms necessary to cast Ψae

as a configuration space variable. What we have done in the present paper
is different. We have made Ψae the basic momentum space variable, whose
physical interpretation is the antiself-dual part of the Weyl curvature tensor
in SO(3, C) language. The physical interpretation of this variable is pre-
sented in Paper XIII, along with the formalism for its quantum treatment.

11.1 How to read this series of papers

This paper will serve as the introduction for a series of papers presenting
the instanton representation of Plebanski gravity. This and the papers to
follow have been written in response to various requests to re-organize and
consolidate the works and developments of the author into a compendium,
and to make them clearer and easier to read and follow. The term ‘instan-
ton representation’ is a term used originally by the author to describe a
particular form of a state which arises when one quantizes gravity using the
semiclassical-quantum correspondence (SQC) in the finite states approach
[18]. The four dimensional version of the gravitational part of this wave-
function can be written in the form

ψ = e(~G)−1
∫
M ΨaeF a∧F e

(245)

where Ψae is a SO(3, C) ⊗ SO(3, C) matrix solving the initial value con-
straints of general relativity, and F a = 1

2F
a
µνdx

µ ∧ dxν is the curvature two
form for a SO(3, C) connection one form Aa = Aa

µdx
µ. One feature which

stands out from (245) is its resemblance to topological invariants which
might appear in Yang–Mills theory

c2 =
∫

M
tr(F ∧ F ) =

∫

M
tr(T aT e)F a ∧ F e. (246)

In (246) the trace of T aT e, the product of the group generators, is given
by the Cartan–Killing form of the algebra. It can be shown that when this
trace is of the form δaec where c is a numerical constant, (246) integrates,
upon application of the Stokes’ theorem, to the Chern–Simons boundary
term for the connection ICS [A] given by [19], [20]
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ICS [A] =
∫

∂M
tr

(
A ∧ dA+

2
3
A ∧A ∧ A

)
. (247)

The exponentiation of (247) in units of ~GΛ, where Λ is the cosmological
constant, for a self-dual SO(3, C) connection yields a functional sometimes
referred to as the Kodama state

ψKod = e−3(~GΛ)−1ICS[A] = e−3(~GΛ)−1
∫
M tr(F∧F ). (248)

It happens that the Kodama state ψKod is a particular solution to the quan-
tum initial value constraints of general relativity with cosmological constant
Λ [21]. Comparison of (246) with (245) shows that the latter amounts to
a replacement of the Cartan Killing metric by a field Ψae coupling to the
two curvatures. If the physical degrees of freedom of gravity are truly en-
coded in Ψae, then this suggests two main things. (i) First, that one may be
able to obtain a wavefunctional Ψ which bears the analogous relationship
between the left and the right hand sides of (248). (ii) Secondly, equation
(248) includes DeSitter spacetime, where Ψae = − 3

Λδae, as its semiclassical
orbits [22]. This suggests that the Ψ induced by a more general Ψae solving
the initial value constraints should imply, for its semiclassical orbits, more
general solutions to the Einstein’s equations.

We will now pose this argument in reverse. In other words, what if
the argument of the exponential in (245) were to serve as a foundation for
the starting point of the classical theory, where the associated dynamics
and solutions could be investigated? Then the purpose of step (ii) upon
quantization would be to construct a quantum state encoding this dynamics.
To show this there are various issues which need to be addressed, which is
the purpose of this series of papers.

The finite states approach to gravity [18] is, in retrospect, logically out
of sequence with the instanton representation.27 On the other hand, it was
precisely the results from [18] which have led to this series of papers. Hence
in the re-organization of works, the existing papers on the gr-qc archive will
be rearranged into their more logical sequence starting with a replacement
by the present series of papers presenting the instanton representation. We
will include a numerical sequence of the list of papers to follow, until they
have been assigned arxiv numbers in which case the references section of the
present paper will be updated. Once the instanton representation has been
fully developed, then the author will re-introduce the previous sequence of
papers based on finite states, which should hopefully be clearer within this
context.

27This is in the sense that in the introduction of finite states we have carried out a
quantization of GR coupled to matter fields prior to demonstrating that the vacuum
theory can be solved for cases more general than the Kodama state.
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11.2 List of the instanton representation series

The following is the current list of papers in the instanton representation
series. They will be used to replace the existing arxiv papers based on finite
states, with the references section to be updated upon the assignment of
arxiv numbers.
II. Introduction and duality to the Ashtekar formalism
III: Classical constraints algebra
IV. Frame invariance of the canonical and symplectic structures
V. Riemannian structure and relation to metric GR
VI. Induced geometric structures
VII: Initial value and Gauss’ law constraints in rectangular form
VIII: Initial value and Gauss’ law constraints in polar form.
IX. Hamiltonian minisuperspace dynamics in undensitized momentum space
variables
X. Hamiltonian dynamics on superspace
XI. Quantum constraints algebra and Hilbert space structure for helicity
density variables
XII. Wavefunction of the universe, observables and the issue of time (Part
I)
XIII. Canonical structure of the algebraic classification of spacetime
XIV. Minisuperspace dynamics in densitized momentum space variables
XV. Reduced phase space quantization of Plebanski gravity: the full theory
XVI. Hamiltonian and Hamilton–Jacobi dynamics on superspace
XVII. Algebraic quantization programme and Hilbert space structure
XVIII. Quantization and proposed resolution of the Kodama state
XIX. Coherent state structure and reality conditions
XX. Hypergeometric coherent states for the Klein–Gordon field in minisu-
perspace
XXI. Hypergeometric coherent states for fluctuations about the Kodama
state
XXII. Hypergeometric coherent states for spin 1/2 fermions coupled to grav-
ity
XXIII. Wavefunction of the universe (Part II)
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