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Abstract

We compute the classical algebra of constraints for the instanton
representation of Plebanski gravity. The constraints are first class
in this representation, with a slightly different structure than in the
Ashtekar variables and the metric representation. One main result is
that the Hamiltonian constraint forms its own subalgebra in the in-
stanton representation, which has implications for its implementation
at the quantum level of the theory.
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1 Introduction: Constraints algebra of GR

Denote by ADiff , the algebra of constraints corresponding to diffeomor-
phism invariance of general relativity. In the metric description of gravity
ADiff is given by

{ ~H[ ~N ], ~H[ ~M ]} = Hk

[
N i∂kMi − M i∂kNi

]
;

{H(N), ~H[ ~N ]} = H [N i∂iN
]
;

[
H(N), H(M)

]
= Hi[

(
N∂jM − M∂jN

)
H ij ]. (1)

H [N ] and Hi[N i] are the Hamiltonian and diffeomorphism constraints, smeared
by the lapse function and the shift vector Nµ = (N, N i) which are auxil-
liary fields. Seen as an algebra of spacetime diffeomorphisms Hµ = (H, Hi),
equation (1) is first class in the Dirac sense [1] due to closure of the alge-
bra. Within (1) one sees that the spatial diffeomorphisms Hi form a first
class subalgebra of their own Adiff ⊂ ADiff , but do not form an ideal
within ADiff . If one started with a theory purely of spatial diffeomor-
phisms, then the algebra Adiff would be first class. However, a theory
based entirely on the Hamiltonian constraint would be second class, since
the Poisson bracket of two Hamiltonian constraints does not close into a
Hamiltonian constraint.1

In the Ashtekar complex formalism of general relativity [2], [3], gravity
is treated as a SU(2)− gauge theory with additional constraints Hµ. The
initial value constraints are given by (H, Hi, Ga) which appends a triple of
additional constraints to (1), the Gauss’ law constraint Ga, due to SU(2)−
gauge invariance.2 Independently of general relativity, Ga by itself forms a
first class Lie algebra

{Ga[θa], Gb[λb]} = Ga

[
fa
bcθ

bλc
]
, (2)

where fabc are the SU(2)− structure constants in the adjoint representa-
tion. The effect of the Ashtekar formalism is to embed the phase space of
general relativity into this SU(2)− gauge theory, thus enlarging its alge-
braic structure. For consistency, one must verify closure the new system
by computing the Poisson brackets of Ga with Hi and H . This yields as

1This is a new interpretation, the rationale for which will become clear when we com-
pare ADiff with the algebra of constraints in the instanton representation of GR.

2In this paper, symbols from the beginning of the Latin alphabet a, b, c, . . . are used to
denote internal SU(2)− indices and those from the middle 1, j, k, . . . are used for spatial
indices.
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an enlarged algebra the semidirect product of gauge transformations and
spacetime diffeomorphisms Agauge × ADiff , given by [2],[3]

{ ~H[ ~N ], ~H[ ~M ]} = Hk

[
N i∂kMi − M i∂kNi

]
;

{ ~H [N ], Ga[θa]} = Ga[N i∂iθ
a];

{Ga[θa], Gb[λb]} = Ga

[
fa
bcθ

bλc
]
;

{H(N), ~H[ ~N ]} = H [N i∂iN
]

{H(N), Ga(θa)} = 0;[
H(N), H(M)

]
= Hi[

(
N∂jM − M∂jN

)
H ij ]. (3)

Equation (3) is a first class system due to closure of the algebra, and is
therefore consistent in the Dirac sense. The kinematic constraints Hi and
Ga, which generate spatial diffeomorphisms and SU(2)− gauge transfor-
mations, form a closed six dimensional subalgebra of their own AKin =
Agauge × Adiff . For a theory invariant under SU(2)− gauge transforma-
tions and spatial diffeomorphisms, this would constitute a first class sys-
tem.3 However, as noted for (1), the Hamiltonian constraint H by itself in
the Ashtekar variables is a second class constraint, which still necessitates
its enlargement to include the kinematic constraints for closure.

Clearly it is not possible in the full theory either in metric or in Ashtekar
variables to consistently implement the kinematic constraints, leaving be-
hind a reduced phase space of dynamics generated solely by the Hamilto-
nian constraint.4 Since the Hamiltonian constraint appears to be intractable
in the full theory, it is problematic to eliminate it via Dirac brackets.5 It
would be fortuitous if the roles of H and (Hi, Ga) in (3) could be reversed,
such that H forms its own first class system independently of AKin. Since
the kinematic constraints are certainly tractable, then they could then be
eliminated via Dirac brackets and one would be left with the Hamiltonian
constraint subalgebra, which governs the physical evolution of the theory.
The obstruction to the implementation of this idea, as is clear from (1) and
(3), is that the commutator of two Hamiltonian constraints does not produce
a Hamiltonian constraint. We see that this obstruction becomes eliminated

3This could arise for example from the Viquar Hussain model, which essentially is
general relativity in Ashtekar variables with the Hamiltonian constraint missing while the
kinematic constraints remain intact [4], [5].

4This is possible in certain minisuperspace models where the variables are spatially
homogeneous, whence the derivatives acting on the lapse functions vanish, allowing two
Hamiltonian constraints to strongly commute. But this situation is in a sense a trivializa-
tion of the diffeomorphism group, which is incongruous with the full theory.

5In the loop representation of quantum gravity, it is possible to construct a represen-
tation of AKin using gauge invariant spin network states and group averaging techniques.
Such states satisfy the kinematic constraints by construction, however due not lie in the
kernel the Hamiltonian constraint in the full theory. We believe that this failure can be
traced to the observation that H does not form its own subalgebra as noted above.
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when one expresses general relativity using the instanton representation (see
e.g. Paper II with references therein).

The organization of this paper is as follows. In sections 2 and 3 we
derive the instanton representation using the Ashtekar variables as a starting
point, and create a library of preliminary results needed for computing the
Poisson brackets in this representation. It is necessary to introduce some
new terminology, to allow for the fact that the symplectic two form in the
instanton representation contains functional dependence on the dynamical
variables. In section 4 we compute the Possion algebra of constraints and
we analyse the results and their physical interpretation in section 5.
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2 From Ashtekar variables into the instanton rep-

resentation

There is some brief terminology which we must introduce prior to proceeding
with the present paper. The phase space Ω for a physical system is said to ad-
mit a (p, q)HH structure if there exist coordinates where the phase space vari-
ables (p, q) constitute a globally canonical pair of (momentum, configuration)
variables and a globally homogenenous symplectic two form Ω. A globally
homogeneous symplectic two form Ω is a two form which in the phase space
coordinates (p, q) globally takes on the canonical form Ω = δp∧ δq ∀(p, q) ∈
Ω. We will examine the constraints algebra of general relativity induced by
two main structures, (p, q)HH and (p, q)NH, the substript N meaning that
while the symplectic two form is globally homogeneous, the coordinates on
the phase space are not holonomic.6

The Ashtekar formulation of general relativity is an example of a (p, q)HH

structure. The 3+1 decomposition of the action for general relativity in this
formulation is [2], [3] yields a totally constrained system

IAsh =
∫

dt

∫

Σ
d3x

(
σ̃i

aȦ
a
i − εijkN iσ̃j

aB
k
a + Aa

0Diσ̃
i
a

−N
(Λ
3

εijkεabcσ̃i
aσ̃

j
b σ̃

k
c + εijkεabcσ̃i

aσ̃
j
bB

k
c

))
. (4)

The initial value constraints are respectively the diffeomorphism Hi, Gauss’
law Ga and the Hamiltonian constraints H , which are smeared by their
respective Lagrange multipliers the shift function N i, gauge angle Aa

0, and
lapse density function N = N(detσ̃)−1/2. For Lorentz signature we can
take N to be imaginary. The basic phase space variables are a self-dual
SU(2)− connection and the densitized triad ΩAsh = (Aa

i , σ̃
i
a), which form a

canonical pair with respect to a (p, q)HH structure as defined above since
they are globally holonomic. The (Aa

i , σ̃
i
a)HH structure of the Ashtekar

variables implies the following Poisson brackets induced by the canonical
pair (σ̃i

a, A
a
i ) on phase space functions f and g

{f, g} =
∫

Σ

d3z
( δf

δσ̃i
a(z)

δg

δAa
i (z)

− δg

δσ̃i
a(z)

δf

δAa
i (z)

)
. (5)

When f and g are taken to be the initial value constraints of general rela-
tivity, then (5) produces the algebra (3) which is first class.

There remain at least two main open issues for the full theory implied
by (4). First, it remains to be determined the projection from the full

6There seems to be no difference mathematically between a (p, q)NH and a (p, q)HN

structure as far as the dynamics are concerned. The above notation is introduced in Paper
8 of this series.
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unconstrained phase space ΩAsh to the reduced phase space ΩPhys , where
the algebra (3) is Dirac consistent. Secondly, the quantum Hamiltonian
dynamics need to be consistently implemented, for the full theory, with
respect to this projection.7

To obtain the instanton representation of Plebanski gravity, define a
complex matrix Ψae ∈ SU(2)− ⊗ SU(2)− such that the following relation
holds

σ̃i
a = ΨaeB

i
e, (6)

where Bi
e is the magnetic field derived from the spatial part of the curvature

of the Ashtekar connection Bi
e = 1

2εijkF e
jk [A]. Equation (6) is known as

the CDJ Ansatz, which holds when Ψae and Bi
e are nondegenerate three by

three matrices. Next, substitute (6) into the action (4), at the level of its
3+1 decomposition. This is given by

IInst =
1
G

∫ T

0

∫

Σ

d3x
[
ΨaeB

i
eȦ

a
i + Aa

0we{Ψae} − εijkN iBj
aB

k
e Ψae

+N(detB)1/2(detΨ)1/2
(
Λ + trΨ−1

)]
, (7)

where we have defined we = Bi
eDi, with Di the SU(2)− covariant derivative,

given by

Di{Ψae} = ∂iΨae + Ab
i

(
fabgΨge + febgΨag

)
(8)

in the tensor representation.8 If (6) were a canonical transformation, then
the phase space structure of (7) would imply that the variable canonically
conjugate to Ψae is an object Xae whose time derivative is Bi

eȦ
a
i . However,

(6) is not a canonical transformation, which can be seen as follows. The
symplectic two form on ΩAsh is given by

ΩAsh =
∫

Σ
d3xδσ̃i

a(x)∧ δAa
i (x) = δ

(∫

Σ
d3xσ̃i

a(x)δAa
i (x)

)
= δθAsh, (9)

which is the exterior derivative of the canonical one form θAsh. Using the
functional Liebniz rule in conjuction with the variation of (6) we have δσ̃i

a =
Bi

eδΨae + ΨaeδB
i
e, which transforms the left hand side of (9) into

7It is the aim of this series of papers to address these issues using the instanton repre-
sentation of Plebanski gravity, the present paper treating the classical constraints algebra.

8It will be convenient for the purposes of the Gauss’ law constraint to define a new
term, ‘magnetic helicity density matrix’ Cbe = Ab

iB
i
e, which is the matrix product of the

Ashtekar connection with the magnetic field with spatial indices contracted to produce a
SU(2)− ⊗ SU(2)−-valued matrix.
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ΩInst =
∫

Σ
d3xδΨae ∧ Bi

eδA
a
i +

∫

Σ
ΨaeδB

i
e ∧ δAa

i . (10)

It happens that the Soo one-forms are given by δXae = Bi
eδA

a
i . The vari-

ables Xae were first identified by Chopin Soo in [6] and [7] for their natural
adaptability to the gauge invariances of general relativity in the Ashtekar
variables.9 In terms of the Soo potentials, (10) reduces to

ω =
∫

Σ
d3xδΨae ∧ δXae +

∫

Σ
εijkΨaeδ(DjA

e
k) ∧ δAa

i . (11)

The first term of (11) is the symplectic two-form corresponding to (Xae, Ψae)
seen as a canonical pair. However, the second term in general does not vanish
and it is not clear how to write it explicitly in terms of Xae. Therefore, the
transformation (Aa

i , σ̃
i
a) → (Xae, Ψae) is in general noncanonical. It is at

this point where we must introduce a new postulate or principle.
Let us postulate the action (7) as the starting point for a new descrip-

tion of gravity, where (Xae, Ψae) define a (p, q)HN structure. By this we
mean that while the coordinates Xae do not exist, they may still be used to
compute Poisson brackets since only the variations δXae, which are globally
well-defined, are required. Then the Ashtekar formulation becomes derived
from (7) via the substitution (6), for nondegenerate configurations. It may
be helpful for the reader to think of the instanton representation as corre-
sponding to a phase space ΩInst = (Ψae, A

a
i )HN where the Poisson brackets

are given by

{f, g} =
∫

Σ
d3z

( δf

δΨbf (z)
(B−1(z))f

j

δg

δAb
j(z)

− δg

δΨbf (z)
(B−1(z))f

j

δf

δXbf(z)

)
.(12)

The symplectic two form contains the Ashtekar magnetic field Bi
a as part

of its structure, which must be globally nondegenerate on ΩInst in order to
exist.10

9While Xae do not in general exist as holonomic coordinates on configuration space
Γ, their variations δXae ∈ T ∗

X(Γ) live in the cotangent space to Γ, which is globally
well-defined. Therefore, we will make use of δXae, and never actually Xae itself, in the
computation of Poisson brackets.

10The nondegeneracy of Bi
a is a necessary condition for (6) to be valid, hence we will

restrict ourself to these configurations in this paper.
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3 Ingredients for the Poisson algebra in the in-

stanton representation

We have changed the description of general relativity into a new set of co-
ordinates ΩInst = (Ψae, A

a
i )HN (or alternatively, nonholonomic coordinates

(Ψae, X
ae)NH) where (6) must be read from right to left in order to obtain

the original Ashtekar variables. There are some consistency checks must
be made to verify that (6) is an allowed transformation. One consistency
check, which will be the main focus of the present paper, is for closure of
the constraints algebra on ΩInst, given that the algebra closes on ΩAsh. The
fundamental Poisson brackets on ΩAsh are given by

{Aa
i (x), σ̃j

b(y)}HH = δa
b δj

i δ
(3)(x,y), (13)

which signifies the (σ̃i
a, A

a
i )HH structure, as evidenced by the fact that the

right hand side is independent of the phase space variables. Additionally,
one has the vanishing Poisson brackets

{Aa
i (x), Aj

b(y)} = {σ̃i
a(x), σ̃j

b(y)} = 0. (14)

Equation (13) implies the following Schrödinger representation

σ̃i
a(x) −→ δ

δAa
i (x)

∈ TA(ΓAsh), (15)

which defines vector fields δ/δAa
i ∈ TA(ΓAsh) in the tangent space to the

Ashtekar configuration space. Dual to TA(ΩAsh) is the cotangent space
T ∗

A(ΩAsh), which is spanned by functional one forms δAa
i such that

〈 δ

δAa
i (x)

∣∣∣δAb
j(y)

〉
= δb

aδ
i
jδ

(3)(x,y). (16)

Let us now examine the situation for the instanton representation. Substi-
tuting (6) into (13), we obtain

{Aa
i (x), Ψbe(y)Bj

e(y)} = δa
b δ

j
i δ

(3)(x,y). (17)

Applying the Liebniz rule to (17), we obtain

{Aa
i (x), Ψbe(y)}Bj

e(y) + Ψbe(y){Aa
i (x), Bj

e(y)} = δa
b δj

i δ
(3)(x,y). (18)
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Using the first equation of (14), one sees that the second term on the left
hand side of (18) vanishes. Transferring the magnetic field to the right hand
side we then obtain

{Aa
i (x), Ψbe(y)}HN = δa

b (B−1)e
jδ

(3)(x,y). (19)

The notation should hopefully be clear, in that in order to retain globally
holonomic coordinates in the new variables (6), it was necessary to deform
the canonical structure such that the right hand side of the commutation
relations contains field dependence. Observe that one may from (19) read
off the following Schrödinger representation in analogy to (15)

Ψbe(x) −→ (B−1(x))e
j

δ

δAb
j(x)

≡ δ

δXbe(x)
∈ TX(ΓInst), (20)

which defines functional one forms

Bi
e(x)δAa

i (x) ≡ δXae ∈ T ∗
X(ΓInst) (21)

such that

〈 δ

δXae(x)

∣∣∣δXbf(y)
〉

= δb
aδ

f
e δ(3)(x,y). (22)

Note, while Xae cannot be defined on account of the fact that δXae = Bi
eδA

a
i

is not in general an exact one form, (19), (20), (21) and (22) are still well-
defined. We will now prove the converse of the previous steps. Namely, we
will show even if Xae is not globally defined on ΩInst, that this does not
preclude the formulation of the following elementary Poisson brackets

{Xbf(x, t), Ψae(y, t)}NH = βGδa
b δe

fδ(3)(x,y), (23)

with trivial brackets

{Xae(x, t), Xbf(y, t)} = {Ψae(x, t), Ψbf(y, t)} = 0, (24)

where we choose β = i for Lorentzian signature spacetimes.11

To show this, we first write (6) in reverse
11The quantization of GR using (Xae,Ψae) is the topic of a different paper within the

instanton representation series.
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Ψae = σ̃i
a(B

−1)i
e (25)

and subsitute into (23). This implies that

{Xbf(y), (B−1(x))e
i σ̃

i
a(x)} = {Xbf(y), (B−1(x))e

i}σ̃i
a(x)

+(B−1(x))e
i{Xbf(y), σ̃i

a(x)} = δb
aδ

f
e δ(3)(x,y). (26)

Assuming that Xae, even if it may not exist globally on configuration space
ΓInst, is not part of the momentum space PInst, then the first term on the
right hand side of (26) must vanish yielding the relation

(B−1(x))e
i{Xbf(y), σ̃i

a(x)} = δb
aδ

f
e δ(3)(x,y). (27)

Transferring the magnetic field to the right hand side yields the relation

{Xbf(y), σ̃i
a(x)} = δb

aB
f
i (x)δ(3)(x,y), (28)

which implies in the functional Schrödinger representation that

σ̃i
a(x) → δ

δAa
i

= Bi
e(x)

δ

δXae(x)
. (29)

Left-multiplying (29) by the inverse of the magentic field, which is nonde-
generate due to (25), we obtain

δ

δXaf(x)
= (B−1(x))f

i

δ

δAa
i (x)

∈ TX(ΓInst), (30)

which is the same as (20). So we see that although the transformation (6) is
noncanonical, the ingredients necessary for computing functional variations
in the new set of variables are still perfectly well-defined.

3.1 A few preliminary results

We will compute the Poisson algebra of constraints, using the initial value
constraints from (7). The initial value constraints can be written explicitly in
terms of the holonomic coordinates (Ψae, A

b
j). These are the diffeomorphim

and Gauss’ law constraints

~H [ ~N ] =
∫

Σ
d3xεijkN iBj

aBk
e Ψae; ~G[~θ] =

∫

Σ
d3xθawe{Ψae}, (31)
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and the Hamiltonian constraint

H [N ] =
∫

Σ
d3xN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
. (32)

In the computation of the constraints algebra on ΩInst we will need to make
repeated use of the following result, which evaluates

I =
δ

δAe
l (x)

∫

Σ
d3yBi

a(y)F (y) (33)

for an arbitrary function F smeared with the Ashtekar magnetic field Bi
a.

This is given in terms of the constituent fields by

δ

δAe
l (x)

∫

Σ
d3yF (y)

(
εijk∂jA

a
k(y) +

1
2
εijkfabcAb

j(y)Ac
k(y)

)
. (34)

We now integrate (34) by parts, discarding boundary terms,12 obtaining

I = −εijk

∫

Σ
d3y(∂jF (y))

δAa
k(y)

δAe
l (x)

+ εijkfabc

∫

Σ
d3yAb

j(y)
δAc

k(y)
δAe

l (x)

= −εijk

∫

Σ
d3yδa

e δl
kδ

(3)(x,y) + εijkfabc

∫

Σ
d3yAb

j(y)δc
eδ

l
kδ(3)(x,y)

= −δaeε
ijl∂jF + εijlfabeAb

jF = εijl
(
−δae∂j + fabeA

b
j

)
F. (35)

We now define the following notation

D
il
aeF = εijl

(
−δae∂j + fabeA

b
j

)
F ; Dil

aeF = εijl
(
δae∂j + fabeA

b
j

)
F (36)

so that for two functions F and G with sufficiently rapid fall-off conditions,

∫

Σ
d3xF (Dij

abG) =
∫

Σ
d3xG(Dij

abF ). (37)

Hence under integrals involving SU(2)− vectors, D
ij
ab can be converted into

a covariant derivative operator Dij
ab

∫

Σ

d3xD
ij
abFb =

∫

Σ

εijk(Dk)abFb. (38)

12We have assumed either a spatial 3-manifold Σ without boundary, or sufficiently rapid
falloff of the fields on the boundary ∂Σ. This enables us to exploit to the maximum extent
the smooth structure of the instanton representation variables at the canonical level.
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We will now develop a library of the ingredients necessary to the Poisson
algebra with respect to the (Ψae, A

b
j)HN structure, using the initial value

constraints from (31) and (32). Starting with the smeared diffeomorphism
constraint Hi, the variation with respect to Ψbf is given by

δ ~H[ ~N ]
δΨbf

= εijkN iBj
bB

k
f = ( ~N × ~B)kbB

k
f (39)

which is antisymmetric in indices b, f . For (42) we have defined the following
notation regarding cross products with a magnetic field

( ~N × ~B)ia = εijkN jBk
a ; (~θ × ~B)j

a ≡ facdθ
cBj

d. (40)

The first equation of (40) is the cross product of a spatial 3-vector ~N ≡ N i

with ~Ba ≡ Bi
a, seen as a triple of spatial 3-vectors labelled by the internal

index a. The second equation of (40) is the cross product of an internal
3-vector ~θ ≡ θa with ~Bi ≡ Bi

a, seen as a triple of internal vectors labelled
by the spatial component i.13

To compute variations with respect to Xbf we will use the result that
δ/δXbf = (B−1)f

j δ/δAb
j from (30), since the coordinate Xbf is not defined

on ΓInst. Integrating by parts, we obtain

δ ~H [ ~N ]
δXbf(x)

= 2(B−1)f
l

∫

Σ
d3x′N iεijk

δ

δAb
l

(Bj
aB

k
e )Ψ[ae]

= 2(B−1)f
l εijk

[
D

jl
ab(N

iBk
e Ψ[ae]) + D

kl
eb(N

iBj
aΨ[ae])

]

= 4εijk(B−1)f
l D

jl
ab(N

iBk
e Ψ[ae]) ≡ −4(B−1)f

l D
jl
ab(( ~N × ~B)jeΨ[ae]) (41)

where we have relabelled indices on the second term and used the anti-
symmetry of εijk . Note that we have left (B−1)f

l = (B−1(x))f
j outside the

integral, since it is independent of the dummy variable of integration x′. The
spatial gradients ∂

∂x′i originating from Bi
e = Bi

e(x′) then act on all quantities
remaining within the integrand which depends only on x′.

Moving on to the variational derivatives of the smeared Gauss’ law con-
straint with respect to Ψae,

δGa[θa]
δΨch(x)

=
δ

δΨch(x)

∫

Σ
d3yθa(y)

(
δafBi

g(y)
∂

∂yi
+ Bi

e(y)Ab
i(y)fabfge

)
Ψfg(y)

=
∫

Σ
d3y

(
−δaf ∂

∂yi
(θa(y)Bi

g(y)) + θa(y)Bi
e(y)Ab

i(y)fabfge

)
δc
fδh

g δ(3)(x,y)

(42)
13The notation should hopefully be unambiguous in that in the latter case the spatial

index occurs in a raised position, while in a lowered position in the former case.
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where fabfge = fabfδge + febgδaf . Further simplification of (42) yields

−δac∂i(θaBi
h) + θaCbe

(
fabcδhe + febhδac

)

= −δacBi
h∂iθ

a − δac∂iB
i
h + θaCbe

(
fabcδhe + febhδac

)
= −Bi

hDiθ
c, (43)

where the second and fourth terms have cancelled due to the gauge Bianchi
identity DiB

i
a = ∂iB

i
a + fabcA

b
iB

i
c = 0. The result is the covariant derivative

acting on the angles θc. Moving on to the configuration variables, we have

δGa[θa]
δXbf(x)

= (B−1)f
l

δ

δAb
l

∫

Σ
d3yθaBi

e

(
∂iΨae +

(
fadhδge + fedgδah

)
Ad

i Ψhg

)

= (B−1)f
l D

il
eb(θ

aDiΨae) + θa
(
fabhδgf + ffbgδah

)
Ψhg ≡ W

hg
bf (~θ)Ψhg.(44)

In (44) the functional derivative acted on the pre-factor Bi
e, which induced

an integration by parts, and also on the factor Ad
i in brackets.14 For the

smeared Hamiltonian constraint we have

δH [N ]
δXbf(x)

= (B−1)f
l

∫

Σ
d3yN ′(detΨ)1/2(Λ + trΨ−1)

δ

δAb
l

(detB)1/2

=
1
2
(B−1)f

l D
kl
ab

(
N(B−1)a

k(detB)1/2(detΨ)1/2(Λ + trΨ−1)
)

=
1
2
(B−1)f

l D
kl
ab

(
(B−1)a

kNH
)
. (45)

Equation (45) contains a part proportional to H itself, which should weakly
vanish on the constraint surface. Note that there is also a contribution
proportional to the spatial gradient given by

N(B−1)f
l (B−1)a

kε
klmδab∂mH = N(detB)−1εbfgBm

g ∂mH = N(detB)−1εbfgvg{H}(46)

where vg = Bi
g∂i is a triple of vector fields constructed from the magnetic

field Bi
g , labelled by the internal index g. Note that the symmetric part of

this contribution vanishes.
Moving on to the variational derivative with respect to Ψbf , we have

δH [N ]
δΨbf (x)

=
δ

δΨbf (x)

∫

Σ
d3yN(detB)1/2(detΨ)1/2

(
Λ + trΨ−1

)

= N(detB)1/2(detΨ)1/2
[1
2
(Ψ−1)bf

(
Λ + trΨ−1

)
− (Ψ−1Ψ−1)bf

]

= N
(1
2
(Ψ−1)bfH − (detB)1/2ηbf

)
= N(detB)1/2M bf . (47)

14Note in (44) that there are two derivatives which act on Ψae, which defines W
ae
bf . The

unbarred version Whg
bf will denote the counterpart to W

hg
bf after integration by parts has

been carried out to transfer the action of the outside spatial gradient away, leaving behing
a single spatial derivative acting on Ψae.
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Equation (47) has a contribution proportional to the Hamiltonian constraint
H , and a contribution due to a quantity ηbf , given by

ηbf =
√

detΨ(Ψ−1Ψ−1)bf , (48)

where detΨ 6= 0. Equation (74) is not to be confused with the Minkoski
metric, since it uses internal indices and also depends on position. The
quantity ηbf will take on the interpretation of an internal SU(2)−⊗SU(2)−
metric related to the 3-metric hij induced on 3-space Σ from the spacetime
metric gµν . The 3-metric can be obtained from ηbf via the relation

hij = (detη)−1ηbf(B−1)b
i(B

−1)f
j (detB). (49)

.

13



4 Classical algebra of constraints in the instanton

representation

4.1 A few preliminaries on notation

To put the transformations generated by the kinematic constraints into per-
spective, let us consider first the effect of a gauge transformation on the
connection. In the original Ashtekar variables this is given by

δ~θ
Aa

i = {Aa
i , Diσ̃

i
a} = −Diθ

a, (50)

which in the nonholonomic coordinates is given by

δ~θ
Xae = Bi

eδ~θ
Aa

i = −Bi
eDiθ

a ≡ −we{θa} =
δ ~G[~θ]
δΨae

. (51)

A spatial diffeomorphism of the connection is given by its Lie derivative

L ~N
Aa

i = (∂iN
j)Aa

j + N j∂jA
a
i = Di(N jAa

j ) − N jF a
ij . (52)

Multiplication of (52) by the magnetic field yields

Bi
eL ~NAa

i = Bi
eDi(N jAa

j ) − Bi
e( ~N × ~B)ia, (53)

which can be written in nonholonomic coordinates as

L ~N
Xae = we(N jAa

j ) −
δ ~H [ ~N ]
δΨae

(54)

where we = Bi
eDi. Let us now write the constraints in the instanton repre-

sentation in standard smeared form. The diffeomorphism constraint is given
by

Hi = εijkBj
aBk

e Ψae = ( ~N × ~B)kaB
k
e Ψae, (55)

which is distinguished by the fact that it is linear in the antisymmetric part
of Ψae. In smeared form this is given by

~H[ ~N ] = Ψ[ae][V
ae( ~N)] =

∫

Σ

d3xεijkN iBj
aB

k
e Ψ[ae](x)

=
∫

Σ
d3x

(
δ ~N ·AXae − L ~N

Xae
)
Ψ[ae], (56)
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which upon comparison with (53) and (54) shows that the antisymmetric
Ψ[ae] can be regarded as the generator of a spatial diffeomorphism adjusted
by a gauge transformation with field-dependent parameter N jAa

j .
The Gauss’ Law constraint is given by

Ga = ve{Ψae} + Cfg
a Ψfg ≡ we{Ψae} (57)

and is distinguished by two structures. First there is a triple of vector fields
va = Bi

a∂i constructed from the SO(3, C) magnetic field which contracts
one of the indices on Ψae as a kind of internal divergence operator. The
second structure is an object

Cfg
a =

(
fabfδge + febgδaf

)
Cbe, (58)

where Cbe = Ab
iB

i
e is defined as the ‘magnetic helicity density matrix’. The

effect of (58) in (57) is to act on Ψae, seen as a second-rank SO(3, C)-valued
tensor, in the tensor representation of the gauge group. Both structures
in (57) will in general be smeared with gauge parameters, and as in the
case of single parameters will combine to act on Ψae in some kind of tensor
representation (8). This is given by15

~G[~θ] = W ae(~θ){Ψae} =
∫

Σ

d3x
(
vfg(~θ) + θaCfg

a

)
Ψfg = −

∫

Σ

d3x(δ~θ
Xae)Ψae,(59)

where we have defined a parameter-dependent vector field vfg(~θ) ≡ θfvg.
Comparison of (59) with (51) shows that Ψae can be regarded as the gener-
ator of a gauge transformation.

Lastly, the Hamiltonian constraint is given by

H = (detB)1/2
√

detΨ
(
Λ + trΨ−1

)
. (60)

Note, due to the nondegeneracy of Bi
a and Ψae and to SO(3, C) invariance,

that (60) can be written in the equivalent form

Λ +
1
λ1

+
1
λ2

+
1
λ3

∼ 0, (61)

15As a convention, we will use V ae( ~N) and Wae(~θ) to signify the smearing functions
corresponding to the diffeomorphism and Gauss’ law constraints repectively. The boldface
versions of these V ae( ~N) and W ae(~θ) will signify the same constraints, but containing
momentum-dependent structure functions.

15



where λ1, λ2 and λ3 are the eigenvalues of Ψae. As a note of caution, the
solutions of the initial value constraints can only be used subsequent to, and
not before, computing the algebra of constraints.

We shall compute the constraints algebra using Poisson brackets

{f, g}NH =
∫

Σ
d3x

( δf

δΨbf

δg

δXbf
− δg

δΨbf

δf

δXbf

)

≡
∫

Σ
d3x

( δf

δΨbf
(B−1)f

j

δg

δAb
j

− δg

δΨbf
(B−1)f

j

δf

δAb
j

)
= {f, g}HN . (62)

We have written (62) to remind the reader that using holonomic coordinates
with a field-dependent symplectic structure is mathematically the same as
using nonholonomic with a field-independent canonical structure, when com-
puting Poisson brackets. As a review prior to proceeding, let us quote the
results regarding variational derivatives, rewritten in bf indices.

δ ~H[ ~N ]
δΨbf

= ( ~N × ~B)kbB
k
f ;

δ ~H[ ~N ]
δXbf

= −4(B−1)f
l D

jl
ab(( ~N × ~B)jeΨ[ae]);

δ ~G[~θ]
δΨbf

= −Bi
f Diθ

b ≡ wf{θb}; δ ~G[~θ]
δXbf

= W
ae
bf [~θ]Ψae;

δH [N ]
δΨbf

= (detB)1/2M bfN ;
δH [N ]
δXbf

=
1
2
(B−1)f

l D
kl
ab((B

−1)a
kHN). (63)

Numerical pre-factors will not be important in computing the algebra, and
we will occasionally omit them. Now that we have defined all notations
and conventions, we are ready to compute the algebra of constraints on the
phase space ΩInst.

4.2 Computation of the constraint subalgebras

We will now compute the algebra of constraints, starting with constraints
of the same type. In what follows we will omit the HN and NH notation,
since it should be clear form the context. Starting with the Poisson bracket
between two Gauss’ law constraints Ga,

{ ~G[~θ], ~G[~λ]} =
∫

Σ
d3x

[ δ ~G[~θ]
δΨbf (x)

δ ~G[~λ]
δXbf(x)

− δ ~G[~λ]
δΨbf (x)

δ ~G[~θ]
δXbf(x)

]

=
∫

Σ
d3x

[
(wf{θb})(Wae

bf (~λ)Ψae) − (wf{θb})(W ae
bf(~θ)Ψae)

]

≡ W ae(~θ,~λ)Ψae (64)

where W ae(~θ,~λ) ≡ (wf{θg})W ae
bf (~λ) will be suitably defined through the

following steps. We will interpret the Poisson bracket of two Gauss’ law
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constraints as a Gauss’ law constraint in the following sense. Expanding the
first term of (64) for illustrative purposes,

∫

Σ

d3x
δ ~G[~θ]

δΨbf (x)
δ ~G[~λ]

δXbf(x)
− ~θ ↔ ~λ

= −
∫

Σ
d3x(Bi

fDiθ
b)

(
(B−1)f

l D
il
eb(λ

aDiΨae) + λa(fabhδgf + ffbgδah)Ψhg

)

=
∫

Σ
d3x(Dil

eb{Dlθ
b})λaDiΨae −

∫

Σ
(Bi

fDiθ
b)λa(fabhΨhf + ffbgΨag)(65)

where we have integrated the first term by parts after using Bi
f (B−1)f

l =
δi
l . Applying the definition of curvature as the commutator of covariant

derivatives Dil
ebDlθ

b = febcB
i
bθ

c on the first term of (65), we have

∫

Σ
d3x

[
(febcB

i
bθ

c)λaDiΨae − λawf{θb}(fabhΨhf + ffbgΨag). (66)

Upon subtraction of the contribution when λa and θa are reversed, we obtain

febc(θcλa − λcθa)wb{Ψae} +
(
θawf{λb} − λawf{θb}

)
(fabhΨhf + ffbgΨag).(67)

To view (64) as a smeared Gauss’ law constraint, we must separate the
contribution to due to vector fields ve from the contribution due to the
tensor strucure of Cbe. The first term of (67) expands to

febc(θcλa − λcθa)wb{Ψae} = febc(θcλa − λcθa)vb{Ψae}
+febc(θcλa − λcθa)Cde

(
fadhΨhe + fedgΨag

)
, (68)

where we have used the definition of the covariant derivative of Ψae in the
tensor representation. Relabelling e → f and b → d on the second term of
the right hand side of (68) and combining the result of (68) with the second
term of (67) we obtain

febc(θcλa − λcθa)vb{Ψae}

+
(
λa

(
fbceθ

cCde −we{θd}
)
− θa

(
fbceλ

cCde −we{λd}
)(

fadhΨhe + fedgΨag

)
.(69)

The standard form of the contracted Gauss’ law generator is given by

θave{Ψae} + θaCfg
a Ψfg

= θave{Ψae}+ θaCbe

(
fabfΨfe + febgΨag

)
, (70)
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where Cbe = Ab
iB

i
e is defined as the ‘magnetic helicity density matrix’. If

(69) is interpreted as a Gauss’ law contraint defined with respect to com-
posite parameters vector field and a transformed magnetic helicity, then the
Gauss’ law part of the algebra in the instanton representation closes into a
subalgebra Agauge(ΩInst).16

Moving on to the Poisson bracket between two spatial diffeomorphism
constraints Hi, we have

{ ~H[ ~N ], ~H[ ~M ]} =
∫

Σ
d3x

[ δ ~H[ ~M ]
δΨbf (x)

δ ~H[ ~N ]
δXbf(x)

− δ ~H[ ~N ]
δΨbf (x)

δ ~H[ ~M ]
δXbf(x)

]

= 4
∫

Σ
d3x

[
( ~N × ~B)kbB

k
f (B−1)f

l D
jl
ab(( ~M × ~B)jeΨ[ae]) − ~M ↔ ~N

]
.

(71)

Using Bk
f (B−1)f

l = δk
l and integrating by parts, (71) yields

{ ~H[ ~N ], ~H[ ~M ]} = 4
∫

Σ
d3x

[
( ~M × ~B)keD

jk
ab( ~N × B)jb − N ↔ M

]
Ψ[ae]

≡ V ae( ~M, ~N)Ψ[ae]. (72)

The Poisson bracket of two diffeomorphism constraints is a diffeomorphism
constraint, since it is also linear in the antisymmetric part of Ψae. The
composite parameter for the resulting diffeomorphism has the intuitively
appealing form of a kind of covariant SU(2)− Lie derivative of ~N along
~M , which involves their components orthogonal to the spatial 3-vectors ~Ba.
The result is that the spatial diffeomorphisms form their own subalgebra
Adiff (ΩInst).

Next, we proceed to the Poisson bracket between two Hamiltonian con-
straints

{H [N ], H[M ]}=
∫

Σ
d3x

[ δH [N ]
δΨbf (x)

δH [M ]
δXbf(x)

− δH [M ]
δΨbf (x)

δH [N ]
δXbf(x)

]

=
∫

Σ
d3x

[
((detB)1/2NMbf )

(1
2
(B−1)f

l D
kl
ab

(
(B−1)a

kH(M)
))

−(detB)1/2MM bf
(1

2
(B−1)f

l D
kl
ab

(
(B−1)a

kH(N)
))

.

(73)

We are beginning to see the appearance of the momentum-dependent struc-
ture functions M bf , given by

16This is argued from the perspective that the aforementioned structures which de-
fine the transformations generated by Ga can be read off directly from (69), even if the
composition law of its constituents in relation to (70) may be intricate.
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M bf = (detB)−1/2
((1

2
(Ψ−1)bfH − (detB)1/2(Ψ−1Ψ−1)bf

))
(74)

as in (47). Integrating by parts and discarding boundary terms, we obtain

1
2

∫

Σ
d3x(detB)1/2(B−1)a

k(B
−1)f

l M bf εklm
(
M(Dm)abN − N(Dm)abM

)
H (75)

where we have used the fact that M and N are scalars under the antisym-
metry operation.17 Continuing along,

1
2

∫

Σ
d3x(detB)1/2(B−1)a

k(B−1)f
l M bfεklmδab

(
M∂mN − N ′∂mM

)
H

=
1
2

∫

Σ
d3x(detB)1/2(detB)−1εafdBm

d Maf
(
M∂mN ′ − N∂mM

)
H

=
1
2

∫

Σ

d3x(detB)−1/2εafdMaf
(
Mvd{N} − Nvd{M}

)
H, (76)

where we have defined vector fields va = Bi
a∂i. The Poisson bracket of two

Hamiltonian constraints is another Hamiltonian constraint with momentum
dependent structure functions. However, note that εafd attempts to select
the antisymmetric part of Maf . If Maf were symmetric in a and f , then
two Hamiltonian constraints in the instanton representation would strongly
commute. If we define a SU(2)−-valued internal three-vector md by

md = εafdM
af(detB)−1/2, (77)

and the three-vector Vd(M, N) = Mvd{N} − N ′vd{M}, then we have

{H [N ], H[M ]}= mdVd(M, N)H = ( ~m · ~V (M, N))H. (78)

Hence, the degree of noncommutativity of two normal deformations is re-
lated to the projection of the vector ~m into the vector ~V . The end result is
that the Hamiltonian constraint forms its own subalgebra AH(ΩInst) in the
instanton representation.18

17In other words, the covariant derivatives can be replaced by noncovariant derivatives,
since they act on scalars.

18This is in contrast to the Ashtekar and the metric variables, where the bracket be-
tween two Hamiltonian constraints is a diffeomorphism constraint. Hence the instanton
representation can provide an alternative approach to the resolution of the representation
theory, which for loop quantum gravity is one of the issues that the Master Constraint
programme was designed to address [8].
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4.3 Computation of the mixed Poisson brackets

Now that we have computed the Poisson brackets involving constraints of
the same type, we now move on to Poisson, brakcets between constraints
of different type. Starting with the Poisson bracket between a Gauss’ law
constraint Ga and a diffeomorphism constraint Hi we have

{ ~G[~θ], ~H[ ~N ]} =
∫

Σ
d3x

[ δ ~G[~θ]
δΨbf (x)

δ ~H[ ~N ]
δXbf(x)

− δ ~H[ ~N ]
δΨbf (x)

δ ~G[~θ]
δXbf(x)

]

=
∫

Σ
d3x

[
(Bi

fDiθ
b)

(
−4(B−1)f

l D
jl
ab(( ~N × ~B)jeΨ[ae])

)
− ( ~N × ~B)kbB

k
f W ae

bf (~θ)Ψae

]

=
∫

Σ
d3x

[
−4Djl

ab(Dlθ
b)(( ~N × ~B)jeΨ[ae])− ( ~N × ~B)kbB

k
f W ae

bf (~θ)Ψae

]
,(79)

where we have used Bi
f (B−1)f

l = δi
l in conjunction with an integration by

parts on the first term. Note that the part in brackets involving Ψ[ae] is no
longer acted on by spatial gradients. Upon application of the definition of
curvature as the commutator of covariant derivatives, the coefficient of this
factor is given by

Djl
abDlθ

b = εabcB
j
bθ

c = −(~θ × ~B)j
a (80)

Hence the first part of the right hand side of (79) is given by

4
∫

Σ
d3x(~θ × ~B)j

a(( ~N × ~B)jeΨ[ae]) ≡ V ae(~θ, ~N)Ψ[ae], (81)

which is clearly a diffeomorphism constraint with mixed parameters ~θ ≡ θa

and ~N ≡ N i. The second term of (79) can be interpreted as a Gauss’ law
constraint, which can be seen as follows. First recall the definition of W ae

bf

from (44), relabelling the indices h ↔ a and g ↔ e on the first term. This
is given by

W hg
bf (~θ)Ψhg = (B−1)f

l D
il
gb(θ

hDiΨhg) + θa
(
fabhδgf + ffbgδah

)
Ψhg . (82)

We will now contract (82) with ( ~N × ~B)kbB
k
f as in (79) followed by an inte-

gration by parts with discarding of boundary terms. The first contribution
to (82) upon integration by parts reduces to the vector field structure acting
as a divergence on Ψhg

( ~N × ~B)kbB
k
f (B−1)f

l D
ik
gb(θ

hDiΨhg) = ( ~N × ~B)kbD
ik
gb(θ

hDiΨhg)

−→ Dik
gb( ~N × ~B)kbθ

hDiΨhg ≡ vhg( ~N, ~θ)Ψhg .

(83)

20



Note that this vector field vhg( ~N, ~θ) is now determined by mixed composite
parameters ~θ ≡ θa and ~N ≡ N i. The second contribution to (82) involves
the tensor representation of structure acting on Ψhg , namely

∫

Σ
d3xεijkN iBj

bB
k
f θa

(
fabhδgf + ffbgδah

)
Ψhg . (84)

We will leave (84) in its present form, simply noting that it invovles the same
tensor structure of (58), evaluated on mixed parameters ~N and ~θ. Therefore
the combination of (84) with the result of (83) yields result of

∫

Σ
d3x

(
vhg( ~N, ~θ) + ( ~N × ~B)kbθ

aBk
f

(
fabhδgf + ffbgδah

))
Ψhg

≡
∫

Σ
d3xW hg( ~N, ~θ)Ψhg (85)

as per the notation of (59). Combining (85) with (81), the end result is

{ ~G[~θ], ~H[ ~N ]} = V ae( ~N, ~θ)Ψ[ae] − W ae( ~N, ~θ)Ψae. (86)

Equation (86) states that the Possion bracket between a Gauss’ law con-
straint Ga and a diffeomorphism constraint Hi yields a linear combination
of the two constraints with mixed parameters. Hence from equation (86),
in conjunction with the results of (64) and (71), one sees that the kine-
matic constraints in the instanton representation form their own algebra
AKin(ΩInst) = Agauge × Adiff , in a kind of semidirect product structure.
This is similar to the case in the Ashtekar variables.

We now compute the Poisson bracket between a diffeomorphism con-
straint Hi and a Hamiltonian constraint H

{H [N ], ~H[ ~N ]} =
∫

Σ

d3x
[ δH [N ]
δΨbf (x)

δ ~H[ ~N ]
δXbf(x)

− δ ~H[ ~N ]
δΨbf (x)

δH [N ]
δXbf(x)

]

∫

Σ
d3x

[
N(detB)1/2M bf

(
−4(B−1)f

l D
jl
ab(( ~N × ~B)jeΨ[ae])

)

−( ~N × ~B)kbB
k
f

(1
2
(B−1)f

l D
ml
ab ((B−1)a

mHN)
)
. (87)

Integration of the first term of (87) by parts transfers the derivative away
from Ψ[ae], yielding

−4
∫

Σ

d3xDjl
ab

(
N(detB)1/2M bf(B−1)f

l

)
( ~N × ~B)jeΨ[ae] ≡ V ae( ~N, N)Ψ[ae].(88)
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The result of (88) is categorized as a diffeomorphism constraint since a factor
linear in Ψ[ae] has been isolated. The boldface V ae(N ~N) signifies that there
are momentum-dependent structure functions M bf , smeared with composite
parameters N and ~N = N i.19

Integration of the second term of (87) by parts yields

−1
2

∫

Σ
d3xN(B−1)a

mDmk
ab (( ~N × ~B)kb)H ≡ SDiff [N, ~N]H ≡ H [N, ~N], (89)

which is clearly a Hamitlonian constraint. The quantity SDiff smearing the
Hamiltonian constraint arose from fully contracting all spatial and SU(2)−
indices as in (89), and should be a scalar with respect to the kinematic gauge
subgroup. But is seems appropriate for notational purposes to absorb this
whole quantity into an overall lapse function labelled by N and ~N , hence
the definition in (89). The end result is that the Hamiltonian and diffeomor-
phism constraints Hµ = (H, Hi) form their own subalgebra ADiff(ΩInst).
Combining the results of (89) with (88) we have

{H [N ], ~H[ ~N ]} = V ae(N, ~N)Ψ[ae] + H [N, ~N], (90)

namely that the Poisson bracket between a Hamiltonian constraint and a dif-
feomorphism constraint is a linear combination of the two constraints, with
momentum-dependent structure functions. Equation (90), in conjunction
with the results of (72) and (78), show that in the instanton representation
the Hamiltonian and the diffeomorphism constraints form their own algebra.
This is the case in the Ashtekar variables as well as in the metric variables,
although the structure of the algebra is slightly different.

The Poisson bracket between a Hamiltonian constraint H and a Gauss’
law constraint Ga is given by

{H [N ′], ~G[~θ]} =
∫

Σ
d3x

( δH [N ]
δΨbf (x)

δ ~G[~θ]
δXbf(x)

− δ ~G[~θ]
δΨbf (x)

δH [N ]
δXbf(x)

)

∫

Σ

d3x
(
(detB)1/2NM bfW hg

bf (~θ)Ψhg − (Bi
fDiθ

b)
(1

2
(B−1)f

l D
kl
ab((B

−1)a
kHN)

)
.

(91)

The second term of (91) upon integration by parts induces the replacement
D

kl
ab → Dkl

ab, which simplifies to

19Note that Mbf contains nonlinear dependence on Ψ[ae], and hence the full expres-
sion is in this sense not linear in Ψ[ae]. But this nonlinear dependence is attributed to
the structure functions whose coefficient, the part linear in Ψ[ae], is associated with the
diffeomorphism constraint.
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−1
2

∫

Σ

d3xεklm(Dm)ab(Dlθ
b)[(B−1)a

kHN ] =
1
2

∫

Σ

d3x(fadcB
k
dθc)(B−1)a

kNH = 0(92)

where we have used Bi
f (B−1)f

l = δi
l as well as the definition of curvature

as the commutator of covariant derivatives, as well as antisymmetry of the
structure constants fabc. The first term on the right hand side of (91) can
be computed using (82), which we repeat here

W
hg
bf (~θ)Ψhg = (B−1)f

l D
il
gb(θ

hDiΨhg) + θa
(
fabhδgf + ffbgδah

)
Ψhg . (93)

This will yield two contributions, one which upon integration by parts will
reduce to a vector field which contracts one index of Ψhg . The second part
reduces to a transformation of Ψhg as a second-rank tensor. Integrating by
parts, we obtain the first contribution

∫

Σ
d3x(detB)1/2NM bf(B−1)f

l D
il
gb(θ

hDiΨhg)

= Dil
gb

(
(detB)1/2NMbf (B−1)f

l

)
θhDiΨhg ≡

∫

Σ
d3xVhg(N,~θ)Ψhg , (94)

which involves the vector field V hg(N,~θ) labelled by composite parameters
N and ~θ.20 The second contribution is given by

∫

Σ
d3x(detB)1/2NMbfθa

(
fabhδgf + ffbgδah

)
Ψhg . (95)

The combination of (94) with (95) yields

{H [N ], ~G[~θ]}

=
∫

Σ

(
Vhg(N,~θ) + (detB)1/2NθaM bf

(
fabhδgf + ffbgδah

))
Ψhg

≡ W ae(N,~θ)Ψae, (96)

which can be classified as a smeared Gauss’ law constraint with mixed pa-
rameters according to the notation of (59). The final result of (91) is

{H [N ], ~G[~θ]} = W ae(N,~θ)Ψae (97)
20It is hopefully clear from the context that this is different from V ae in (90), since Vae

is designed to reflect the fact that it is a vector field containing spatial gradients that act
on Ψae. It is also different from vae in (83) in that now there are momentum-dependent
structure functions involved.
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which states that a Gauss’ law constraint transforms covariantly under
Hamiltonian evolution. Another way to state this is that the Hamiltonian
constraint on the full phase space ΩInst is not gauge invariant in the instan-
ton representation, and also that momentum dependent structure functions
appear in the Poisson bracket. This is in contrast to the case in Ashtekar
variables, where the two constraints commute.
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5 Summary and Recapitulation

The main results of this paper are as follows. We have transformed the action
for general relativity from the Ashtekar variables (σ̃i

a, A
a
i )HH into the instan-

ton representation, of phase space structure (Ψae, X
ae)NH ∼ (Ψae, A

a
i )HN .

This is a noncanonical transformation, since the symplectic two form ΩInst

for the latter representation is not the total exterior derivative of its cor-
responding canonical one form θInst.21 The noncanonical relationship of
phase space ΩInst to ΩAsh does not preclude the ability to formulate Pois-
son brackets in the former. We have used this feature to evaluate the algebra
of constraints in the instanton representation, and we have demonstrated the
closure of this algebra. The algebra of constraints is given by

{Ψ[ae][V
ae( ~N)], Ψ[bf ][V

bf( ~M)]} = Ψ[ae][V
ae( ~N, ~M)];

{Ψ[ae][V
ae( ~N)], Ψbf [W bf (~θ)]} = Ψ[hg][V

hg(~θ, ~N)] + Ψhg [W hg(~θ, ~N)
]
;

{Ψae[W ae(~θ)], Ψbf [W bf(~λ)]} = Ψae[W ae(~θ,~λ)];

{H [N ], Ψ[ae][V
ae( ~N)]} = V ae( ~N, N)Ψ[ae] + H [N, ~N];

{H [N ], Ψae[W ae(~θ)]} = W ae(N,~θ)Ψae;
{H [M ], H [N ]}= ~m · ~V (M, N)H. (98)

Let us rewrite (98) in the following standardized notation

{ ~H[ ~N ], ~H[ ~M ]} ∼ ~H [ ~N, ~M ];
{ ~H[ ~N ], ~G[~θ]} ∼ ~H[ ~N, ~θ] + ~G[ ~N, ~θ];

{ ~G[~θ], ~G[~λ]} ∼ ~G[~θ,~λ];
{H [N ], ~H[ ~N ]} ∼ ~H [ ~N, N ] + H [ ~N, N ];

{H [N ], ~G[~θ]} ∼ ~G[N,~θ];
{H [M ], H [N ]} ∼ H [M, N ], (99)

and compare and contrast the constraint algebra in instanton representation
with that in the Ashtekar variables, which we quote below for completeness

21This is when one considers the full phase space. It is shown in subsequent papers
in this series that for certain restricted configurations, one can obtain ΩInst = δθInst by
using densitized variables as the fundamental variables.
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{ ~H[ ~N ], ~H[ ~M ]} = Hk

[
N i∂kMi − M i∂kNi

]

{ ~H[N ], Ga[θa]} = Ga[N i∂iθ
a]

{Ga[θa], Gb[λb]} = Ga

[
fa
bcθ

bλc
]

{H(N), ~H[ ~N ]} = H [N i∂iN
]

{H(N), Ga(θa)} = 0[
H(N), H(M)

]
= Hi[

(
N∂jM − M∂jN

)
H ij ]. (100)

The algebra of kinematic constraints AKin(ΩAsh) in the Ashtekar variables,
a semi-direct product of SU(2) with spatial diffeomorphisms, is a Lie alge-
bra. The inclusion of the Hamiltoninan constraint enlarges the kinematic
algebra into an open algebra due to the structure functions [2],[3].

There are some similarities and some differences between the algebraic
structure of (99) and (100). (i) There are three subalgebras within the al-
gebraic structure (99). Spatial diffeomorphisms Hi and Gauss’ law Ga each
form independent subalgebras as for (100). However, the Hamiltonian con-
straint H now forms its own independent subalgebra. Also note the structure
[A, A] ∼ A, and [A, B] ∼ A + B, where A and B are transformations of dif-
ferent type. (ii) In (100) the structure functions occur only in the Poisson
bracket between two Hamiltonian constraints, whereas in (99) momentum-
dependent structure functions M bf appear in any Poisson bracket with the
Hamiltonian constraint H . The parameters of the transformations generated
by (99) contain field dependence, but there is a difference between config-
uration space dependence and momentum space dependence. The former
can in a sense be interpreted as part of the definition of the gauge parame-
ters of the transformation, but the latter is regarded as a new fundamental
structure induced by the Hamiltonian constraint H . Recall from [9] that
the structure functions of the hypersurface deformation algebra are related
to the induced 3-metric hij on the spatial hypersurface Σ. The analogue of
this in the instanton representation is the internal metric ηbf of (74), from
which hij is a derived object through the relation (49).
(iii) Lastly, in (100) all constraints transform covariantly under diffeomor-
phisms whereas in (99) the transformations appear on a more equal footing.
On this basis, we surmize that the instanton representation should provide
aspects of the dynamics of gravity which are different from those in the
Ashtekar variables.

(iv) Lastly, the Hamiltonian constraint part of (99) closes, unlike in
(100), and therefore by itself forms a first class system. This implies in
the instanton representation that it is possible to implement the kinematic
constraints, obtaining a reduced phase space in the full theory consistently
governed by the dynamics of the Hamiltonian constraint.22 From this per-

22This is shown both for the classical and for the quantum theory in the instanton
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spective, one may eliminate the kinematic constraints using Dirac brackets,
leaving behind just the physical degrees of freedom.

The main result of this paper is that the classical algebra of constraints
on the instanton representation phase space ΩInst = (Ψae, A

a
i ) closes in the

sense that we have explained in this paper. This means that the theory
is Direac consistent and as well amenable to a quantization on its reduced
phase space. This will form the basis for progressing to the quantum theory,
which is treated within the instanton representation series (See e.g. Paper
II for the listing of this series).

representation series of papers.
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6 Appendix A. Expansion of the instanton terms

Let us perform a 3+1 decomposition of the action, which contains terms of
the form F a

0iF
e
jkε

ijk . Expanding the time component, we have

F a
0iF

e
jkεijk = Bi

e

(
∂0A

a
i − ∂iA

a
0 + fabcAb

0A
c
i

)
= Bi

eȦ
a
i − Bi

e∂iA
a
0 + fabcAb

0Cce,(101)

where we have defined Cbe = Ab
iB

i
e. Now contract (101) with Ψae = Ψ(ae)

1
2
ΨaeF

a
µνF e

ρσεµνρσ = ΨaeB
i
eȦ

a
i − ΨaeB

i
e∂iA

a
0 + fabcAb

0CceΨae

= ΨaeB
i
eȦ

a
i − ∂i(ΨaeB

i
eA

a
0) + Aa

0∂i(ΨaeB
i
e) + fabcAb

0CceΨae. (102)

Applying the Leibniz rule, the right hand side of (102) reduces to23

ΨaeB
i
eȦ

a
i + Aa

0

(
Bi

e∂iΨae + Ψae∂iB
i
e

)
+ fabcAb

0CceΨae. (103)

Next, we make use of the Bianchi identity to write the divergence of Bi
e in

terms of a covariant divergence and simplify further.24

DiB
i
e = ∂iB

i
e + feghAg

i B
i
h = 0 → ∂iB

i
e = fehgCgh. (104)

Substituting (104) into (103) we obtain

ΨaeB
i
eȦ

a
i + Aa

0B
i
e∂iΨae + Aa

0ΨaefehgCgh + fabcA
b
0CceΨae. (105)

Relabelling indices a ↔ b on the last term and b ↔ f and e ↔ g on the
middle two terms of (105), we obtain

ΨaeB
i
eȦ

a
i + Aa

0

(
Bi

e∂iΨae +
(
fgheδaf + ffaeδgh

)
CehΨfg

)
. (106)

Now make the following definition

we{Ψae} = Bi
e∂iΨae +

(
fgheδaf + ffaeδgh

)
CehΨfg ≡ wfg

a {Ψfg}. (107)

23Omitting the total derivative, since it will integrate to a boundary term in the action
24The gauge connection Aa

i in (104) is precisely the connection from which the magnetic
field Bi

a = εijk∂jA
a
k + 1

2 εijkfabcAb
jA

c
k is derived. Hence the Bianchi identity is a highly

nonlinear constraint upon Bi
a. Moreover, the quantity Fa

0i expressed in terms of Bi
a is also

highly nonlinear, and contains three arbitrary degrees of freedom encoded in Aa
0 .
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We will see that wfg
a {Ψfg} = Bi

eDiΨae is the covariant divergence of Ψae

in the tensor representation of the gauge group. Integrating over spacetime
M , we obtain

∫

M
d4xΨaeF

a
µνF e

ρσεµνρσ =
∫ T

0

∫

Σ
d3x

(
ΨaeB

i
eȦ

a
i + Aa

0we{Ψae}
)
. (108)

The resulting action is a totally constrained system consisting of the con-
straint we{Ψae} ∼ 0.
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