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Abstract

In this paper we present various geometric structures induced by the
instanton representation of Plebanski gravity, to solidify the conceptual
foundations which will be needed for future papers in this series. The
main theme is the relation of these structures to integrability as regards
the Gauss’ law constraint and the existence of holonomic coordinates
on configuration space.
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1 Introduction

In this paper we examine in depth some of the geometric structures induced
by the instanton representation of Plebanski gravity. This is mainly to put
in place some of the conceptual foundations which will be needed for fu-
ture papers, including Papers VII, VIII and XIII, and the papers that build
on them. Since Paper VII deals with the rectangular form of the Gauss’
law constraint, we will be concerned with the integrability of this constraint
in the construction of solutions. Section 2 examines to a certain extent
some restrictions which may be imposed on the configuration space A{ as
a result of integrability considerations. From Paper II, the gauge-invariant,
diffeomorphism-invariant aspects of the theory are captured by the eigen-
values Ay of the CDJ matrix. The aspects related to the coordinate system
and the gauge are contained within the connection A{, which in the instan-
ton representation is a configuration space variable. More fundamentally,
we will regard A? as being a derived quantity from the magnetic field B,
which in turn is derived from the set of three linearly vector fields whose
integral curves form a congruence filling 3-space 3. Section 3 introduces the
magnetic helicity density matrix Cpe = A?B?, which is motivated by analogy
to fluid dynamics and to abelian gauge theory. This matrix plays a role in
the integrability of the Gauss’ law constraint and in the canonical structure
of the instanton representation. Section 4 examines the Riemannian struc-
ture implied by the magnetic field B!, without regard to any additional
structures. In section 5 we examine the physical interpretation of Bianchi
minisuperspace models within the context of the instanton representation.
Since the metric in the instanton representation is a derived quantity, then
there are no isometries of 3-space to preserve and consequently there are
no Bianchi groups in this representation. Hence minisuperspace for the
instanton representation has been re-defined. Nevertheless, the instanton
representation admits a generalization of the minisuperspace concept to the
full theory, which we address in this paper. Section 7 examines the induced
metric as an additional structure on top of the magnetic field, which brings
in the CDJ matrix. In section 8 we take a cursory look at the canonical
structure of the instanton representation, and the notion of globally holo-
nomic coordinates, in preparation for Paper XIII. The nonholonomic sector
of configuration space implies a certain algebra of momentum vector fields,
which we compute. The abelian part of this algebra provides variables suit-
able for quantization, which we relegate to separate papers.



2 Integrability restrictions due to choice of coor-
dinates

Say that one wanted to solve the first order partial differential equation

3
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for a function ¥ = W¥(z) on a 3-dimensional spatial manifold ¥, where

BJ € O'Y and Q € C®°(X). One could attempt to determine the integral
curves of the vector field

Bl(z) = (B'(x), B*(x), B*(x)) (2)

defined by B’(z). Let ~(t) be an integral curve of B parametrized by a
parameter t. Then one has that

d\If = : B ? 1\
ax (’y(t))—z (’y(t))@ (v(1))- (3)

According to the theory of first order differential equations, solving (1) is
entirely equivalent to solving the ordinary differential equation

Lur(1) = QGi(1). )

To solve (1), one must specify ¥(0,x) on a two dimensional hypersurface
S € X, and solve (4) along each integral curve. If the surface S is a non-
characteristic surface, then the theory of differential equations guarantees
locally the existence of a unique solution.! One could then construct the
solution along the congruence of flow lines of B by

d
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where ¥(0) € Ker{d/dt} is the boundary data on S. Equation (5), in an
abuse of notation, makes sense provided that the differential operator % is
invertible along the curve ~(t), and provided that @ is defined on 7.

1A necessary condition is that the vector field B'9; be nowhere tangent to S.



Now let us generalize (1) to involve three of vector fields B! = B!(x)
labelled by the index a = 1,2,3, where one wishes to solve the triple of
equations

3
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for B € C%X%) and Q, € C*(X). The columns of B!, seen as a 3 by 3
matrix with ¢ labelling the rows and a the columns, define three vectors
which form a tetrahedron at each point of 3-space %,

Bf B) Bi
B.=| B} B} B?
B} B3 Bj
Corresponding to these vectors are three vector fields v, = B!9; which

define three directional derivatives at each point. Equation (6) defines the
divergence of ¥,. along the integral curves of each v,. We would like to
parametrize each curve by a parameter t* for a = 1,2, 3, which can serve as
local coordinates.? Then the differential equations become

Vel Wark = - Vae((0) = Qu(7 (D) @

The notation ¥(f) signifies that there are three congruences of integral
curves, and each index a corresponds to a particular choice of curve along
which to propagate the solution. Equation (7) is integrable if the index a
takes on only a single value, which under fairly general circumstances glob-
ally defines the coordinate t®. In the generalization to three dimensions, we
would like to be able in some sense to suitably define the object v, !. Then
v, ! becomes an operator, which has the ability to act on any function as a
kind of propagator along the a'® direction through any point.3

If there exist local coordinates t* = (t!,¢2,3) along the flow lines defined
by B, then would be able to write

dx dy dz
dt® @7 dte @ dte “ ()

2This assumes that the vector fields corresponding to B form a congruence of flow
lines which fill ¥, such at each point there is a unique intesection of three integral curves
with linearly independent tangent vectors vi, va and vs.

3In the case that B = &%, the vector fields v, denote differentiation 9, along the
axes of a Cartesian coordinate system. In this case the inverse 9, ', which corresponds to
antidifferentiation, is globally well-defined. We would like to generalize this concept, to
the extent feasible, to non-Cartesian coordinate systems.



for a = 1,2,3. Equations (8) determine a set of characteristic curves along
which one would like to evolve the boundary data according to the starting
differential equation (7). Equation (8) yields

dr  dy dz
BB By ©
three equations for each a, which implies that

dy _ Bq
dr Bl

dz B?
= Ja\Z,Y); — === a\Ly <), 1
falz,y); — BI =Y (z,2) (10)

where f, and g, are arbitrary functions of two variables. Equation (10)
implies that

Bg = B;fa(xay) : Bg = B;ga(*%z)' (11)

As a consistency condition on (10), a third condition arising from (9) is that

dz B3

az _ Da ga(l‘,Z)
dy B2

faz,y)

Since (12) must be entirely a fuction of y and z, therefore the z dependence
must cancel out.* This in turn implies that

= ha(yvz) = (12)

9a(7,2) = aa(z)ca(2) : ful@,y) = aa(2)ba(y) — haly,2) = b(y) (13)

for arbitrary functions a,(x), be(y) and c,(z). The end result is that

Bg(‘xayvz) = Bé(xvyrz)aa(x)ba(y); Bs(‘xayvz) = B;(‘rayvz)aa(z)ca(z) (14)

where B! is an arbitrary function of three variables.

Letting the index a run through its values, which amounts to exhaus-
tively imposing the consistency requirements on integrability, one finds that
B! can be written in the form

4This is a rather restrictive condition. Later in this work we will learn how such curves
be generalized to three dimensions with the present conditions seen as projections onto
the (y, z) hyperplane, which can in general be parametrized by z. A similar note holds
for the different cyclic permutations.



' ‘ 1 (agbg)_l (agcg)_l Bll 0 0
Bl =TI)(6;aB2) = | aiby 1 bcy ! 0 B 0
atcr caby’ 1 0 0 B3

To standardize the notation, we will redefine the entries so that B! =
I]’:éjaBg, given in matrix form by

| a@by) a@ea) \ [ By 0 0
B! =1 ai(z)bi(y) 1 bs(y)cs(2) 0 B%(:E,y, 2) 0
aj(z)e1(z)  ba(y)ea(z) 1 0 0 B3(z,y,2)

The matrix on the left I]’: encodes the consistency conditions on integra-
bility, which consititues nine arbitrary functions a,.(x), b,(y) and c,(z) for
a =1,2,3. The diagonal matrix B2 is not resctricted by integrability con-
siderations, and consists of three arbitrary functions of position.

One clear case where the coordinates t* € Y/ exist is when there exists
a passive diffeomorphism X — Y/, as in

(z,y,2) = (tl(a:, y,2),t2(z,y, 2), t3(z,y, z)) (15)

Where the Jacobian matrix of this map exists, (15) induces a map T,,(X) —
T,(X') between the tangent spaces

d dr 0 dy 0 dz 0

G deor deoy  dwos (16)

One then identifies B! = %, whence the set of diffeomorphisms ¥ — X
forms an equivalence class of B.. Note that the configuration B}, are derived
objects from v, upon the choice of a coordinate system z‘, via the relations
B! = v,{z'}.5 The vector fields v, are defined as the tangent vectors to
the set of (linearly independent) triples of congruences of integral curves 7,

which fill 3-space X.

5This is true irrespective of the existence of coordinates t*.



2.1 Derivation of the connection from the magnetic field

In the instanton representation of gravity B! will play the dual role of a
nonabelian magnetic field, which is a dynamical variable. Since we would
like to treat the vector fields v, as more fundamental, then this raises two
main questions: (i) First, does the identification of B! with integral curves
of v, make sense for gravity, and does it restrict the space of solutions in any
way (ii) Secondly, to what extent can (15) be relaxed where the operator
v, ! is still meaningful. The practitioner has the capability to examine these
questions for each choice of B!, which a-priori determines the allowable B:.
Every nonabelian gauge potential A¢, defines a magnetic field B,

a =

) - 1 ..
B! e”'fajAngiewk Fanc AL AS, (17)

which satisfies the Bianchi identity D; B: = 0; B! + fu.A?BL = 0, where D;
is the gauge covariant derivative with respect to A¢. Consider the inverse
problem to (17) namely, given an arbitrary B! € GL(3), with respect to
what potential A% is B! a magnetic field such that the Bianchi identity is
satisfied? It is shown in [9] for SU(2) Yang—Mills theory, an algorithm for
constructing the connection A{ = A[E] given B.. We will display the main
steps here for completeness.

The spatial components of B% are 3-vectors in internal space given by

Bl = 82,@3 — 831‘?2 + ffg X ng;

ég = 63/_(1 — 81/_(3 + /_f3 X /_(1;

Eg = 81/_{2 — 62/_(1 + /Yl X /_fg. (18)
In the notation for this section the numerical subscripts refer to spatial

components of the vectors, and we will suppress the internal indices. First,
one writes the first and second lines of (18) in the form®

(931‘_1)2 = (921‘?3 + ffg X ffg — l§1 = —gl + Dggg;
83X1 = 811@3 — ffg X ffl + gg = gg — Dlgg. (19)

Equation (19) treats Ay and A, as the unknowns, for given As, B; and
By. We will now eliminate A3 by finding (A3)|| and (As),, its components

parallel and perpendicular to ]§3

/_f3 = Oégg + /_f;u_ (20)

6Also, the notation D; = 0; + fﬁ signifies the gauge covariant derivative using ffl as a
connection.



The dot product of Bs with (20) is given by

gg-gg :a\§3\2, (21)
where we have used §3 . ffg L = 0. To eliminate ffg L we will take the cross

product of Bs with (20).
The magnetic field B! must satisfy the Bianchi identity, given by

/_(3 X ég = _82§2 — /_(1 X él — /_(2 X gz. (22)

Taking the cross product of Bz with (22) and using triple vector identities
for the left hand side, we have

Bg X ng X Bg = A},‘B},P — 53(53 . gg) ’Bg’ ( 3 — aBg) (23)

where we have used (21). Equation (23) in conjunction with (22) yields

/_(3:0(53—53 XM, (24)

where we have defined

— —

3 X E?B —I-Bg XAl XBl Bg ng Xég] :M(gi;Al,Ag).(25)

To eliminate «, the parallel component of ffg, will require a few steps. First
take the dot product of Bs with (22), which vanishes

—By+ (A5 x By) = By - (0,By) + By - (
= B3 - (0;B) + A, - (é X
Next we will act on (26) with ds, using equation (19) to replace the d3A4,
and 03As terms. This yields

83[§3 . (8Z§Z)] + ffg . (93(52 X ég) + z‘Tl '83(§1 X gg)
+(BQ X Bg) - Dy Ag + (Bg X Bl) - D1 A3 — 2(32 X Bg) -B; =0. (27)
Next, put Az from (24) into (27). The coefficients of all terms with deriva-

tives acting on « vanish, since they are of the form Bs - (§2 X l§3) and
Bs - (B3 x By). This provides an algebraic solution



o =

_ —83[53 . (OZEZ)] + 2(§2 X gg) . El + ((EQ X §3)D2 — (gg X EI)DI) . (gg X M)

((gg X gg)DQ — (gg X gl)Dl) . gg

with M given by (25). Note that a@ = a(éi; /_fl,/_fg) is independent of Aj.
Substituting (28) back into (24) gives us

— — —

Ay = A3(Bj; Ay, Ay) = a(By; Ay, Ay) — By x M(By; Ay, Ay). (29)

Substituting (29) back into (19) we obtain

—

83A; = By — D1{A3(B;; A1, A)};
03As = —B)1 + Do{A3(B;; A1, A2) }. (30)

Equation (30) is a set of six partial differential equations for the compo-
nents of A; and Ay. Given boundary data A; (z,y,0) and Eg(:p,y,O) on
the hyperplane z = 0, and given all the components of the magnetic field
Bl = Bi(z,y,z) for all (z,y,z) € ¥, equation (30) guarantees the existence
and uniqueness of A; (z,y,z) and ffg(az, Y, z). Putting the resulting solution
back into (29) provides As = As(z,y, 2).

The final result is that given any B. and boundary data for A¢ and
A$g, this uniquely determines the Af, everywhere in ¥, which is the gauge
connection such that BY satisfies the Bianchi identity with respect to A%.7
For the purposes of the instanton representation we will restrict attention
to B! consistent with the integrability of the Gauss’ law constraint.

"Note that there are no Gribov ambiguitites in AZ.

(28)



3 Magnetic helicity density matrix

In addition to Bfl there is another quantity C,. which arises in the instanton
representation. This is the magnetic helicity density matrix, defined as®

Coe = A?Bé = Z‘ve (Aa)v (31)

where v, = B!0; and A = A?dmi are the corresponding vector fields and one
forms, which are coordinate-independent. For nondegenerate connections
A?, the magnetic field B} is component form can be written as

Bl = ¢7k9; A% + (A71)i(det A). (32)

The first term of (32) corresponds to the curvature of three separate U(1)
gauge fields indexed by a, and the second term is a correction encoding the
nonabelian nature of the field. Using (32), the magnetic helicity density Cye
for these configurations takes on the form

Coe = €T AS0; A% 4 §ue (det A). (33)
Using the properties of determinants of nondegenerate three by three ma-

trices, (33) can be written as

Cae = (detA) [0% + "M (A1) (A™1)F ;A (34)

Define vector fields v, = (A71).9;, constructed from the connection A¢.
The vector fields v, satisfy the commutator bracket

[va, vp] = hgyve, (35)

with structure functions h{, are given by

6 = (Ao {AS, ) — (A vl AL} = 275, (36)

where J& = (A71)™v,{ A }. By the Frobenius theorem, the existence of h¢,
implies the integrability of the vector fields v,. From the structure functions
construct the following objects

8Using the results of the previous section, Cj. is actually a derived quantity form B?.
But it is convenient to define this quantity, since it is coordinate-independent.



e(“hghzal; Qg = hga (37)

N =

n% =

Then (34) can be written in the form

Cue = (det A)Upye = (detA) (Jge + €?hi,). (38)

Hence the object U,. contains a part intermingled with the integrability
properties of a coordinate system, and a part free of the coordinate system.
From the Bianchi identity

0B} + func ATB = 0 (39)

one obtains

(B_l)?vb{Bé} + fabecbe =0— hga = Qq = _fabecbe (40)

which provides the interpretation of the antisymmetric part of the magnetic
helicity density as the trace of the structure functions.
The Gauss’ law constraint in the instanton representation is given by

We{Wac} = ve{Wac} + C9T g, (41)
where U, € SO(3,C) ® SO(3,C) is the CDJ matrix. We have defined the

object

C[{g = (fabf‘sge + febg(saf)cbe (42)

from the magnetic helicity density. Equation (41) can also be written in the
form

Ga = Cey(018°0y + fabyOge + febgdaf) ¥ sg- (43)

For C’gl; X dep, then only the part of (43) involving vector fields survives and
G, can be straightforwardly integrated. Any departure from isotropy for
Cpe could potentially present an obstruction to this integrability.

10



3.1 Physical interpretation of magnetic helicity density

The term ‘magnetic helicity density’ can be motivated by analogy to Maxwell
theory, where one defines the magnetic helicity for an abelian gauge field A
with curvature B = V x A by

= / A-Bdz. (44)

The Gauss’ linking formula is given by

1 _ _ i—q
L=—|[da& 3yB(z)- (B 4
= [ [ duB)- (B < =), (15)

which measures the self-linkage, or mimber of times the field A winds around
itself. Note that the following field A may be defined

f )
- / d*yB(y) v (46)

such that V- A =0and B =V x A. Then A is the gauge potential in the
Coulomb gauge corresponding to the magnetic field B. Hence one sees that
the Gauss’ linking number (45) is the same in this gauge as the magnetic
helicity (44).

In the generalization to gravity there are two modifications in relation
to the abelian theory. The isotropic contribution (detA) to (33), which is
free of spatial gradients, does not play a role in the linkage of magnetic field
lines. Hence any self-linkage is confined to the spatial gradient terms. Since
these latter terms correspond to three independent U(1) gauge fields, we
may extend the concept of (46) as follows

Cue = 3= [ PvenBio) (=15 ) Bw). (a7)
The magnetic helicity density matrix encodes the linkage between B(x)
and Bi(y) for all y € ¥. This includes not only self-linkage, but also the
linkage between the different internal components of BZ. It is a measure of
the extent to which the magnetic field lines wind around themselves.
For example if one chooses

Bi(w) = (%2)60) (& — a(4(i1)) = Bi+(7) (48)

11



to be the restriction of B! to one dimensional curves parametrized by t*
along these directions, then the linking number for these curves is

Lo =g [ | i) (55 (o), @9

which can be written as

L(v,y) = /dta/ dt®Ce. (50)
v Y

Hence, the helicity can be seen as a direct measure of the tendency of the
integral curves of the vector fields v, ~ d% to wind around themselves. In
a certain sense we will regard 7, the set of congruences of integral curves, as
fundamental. Then B! = v,{x’} amounts to a choice of cooridnate x*. The
magnetic field B! are simply the components of v, expressed in a basis of
the tangent space T),(X).

The magnetic helicity density defines a three form

Coed®z = A® A dA® + §%¢(det A)d>z. (51)

From (51) one sees that the connection one forms of C,. forms a Pfaff
sequence (A% dA¢, A A dA¢). We will see that these terms characterize the
cumulative self-linkage of dA%, the Abelian part of the magnetic field B:.
It is known from the theory of exterior differential systems [10] that the
vanishing of topological torsion 7 = A% A dA%, with no summation over a, is
a necessary condition for a process defined by A% to be thermodynamically
reversible. In the case of gravity the analogue of topological torsion is a 3
by 3 matrix 7% = A* A dA°.

Helicity density may in some cases constitute an obstruction to the abil-
ity to solve the Gauss’ law constraint GG, which may be seen as follows. If
the integral curves ¥ are homeomorphic to the three coordinate directions of
R3, then the inversion of vector fields v, ! may be well defined in the sense of
antidifferentiation with respect to the parameters t* denoting location along
these curves. If magnetic helicity distorts the integral curves so that they
are no longer topologically equivalent to R3, then the integrability might be
in jeopardy. So we will see that a sufficient condition for integrability is that
the helicity density be zero.’

It is always possible to choose B! such that the vector fields v, are
integrable. For example, one may regard the atlas of X, namely the set

9This is not a necessary condition, as there are various examples where the Gauss’ law
constraint is integrable with Cae 7# 0 (See e.g. Paper VII).

12



of all coordinate charts, as being fundamental. Then B! can be derived
for a given chart from the congruence of integral curves for each of the
directions.'® With each pair of charts is associated a homeomorphism ¢;
from ¥ to the local coordinates in that chart. The magnetic field may be

locally derived from the transition functions ¢; o (15]-_ via the derivative map

- (%) 2

which defines the Jacobian of the transformations. For detB # 0 and
detB < o0, the transition maps correspond to passive diffeomorphisms.
Hence a procedure to ascertain solubitility of Gy is, given B! find A¢ and
then compute C,. for this configuration, for all configurations. The well-
defined configurations can be a-priori determined and used to construct
solutions.

OIntegrability may in some cases be restricted to a subset of ¥, if the choice of integral
curves does not cover .

13



4 Riemannian structure induced by the Ashtekar
magnetic field

4.1 Nonorthogonal coordinate systems

Thus far, we have defined on 3-space ¥ a magnetic field B, € C*(%),
constructible from a potential A¢ such that the Bianchi identity is satisfied.
But one may regard the integrals curves 5 as fundamental, with B derived
from v, upon choice of coordinates z* via the relation

B(il = Va{xi}v (53)

whence the vector fields act on the coordinate functions. The vector fields
v, = B0; constructed from B}, satisfy the Lie bracket

[Va, V] = A Ve (54)

with ‘structure functions’ h¢, given by

o = (B™);(BLoiB] — BioiB}) = (B™)5via{Bj}. (55)

The integrability condition for v, is given by the theorem of Frobenius,
which is the condition that if there exist such functions h¢,(x) such that
(55) holds, then the vector fields v, are tangent to some k dimensional
submanifold of 3, where 0 < k < 3 [6]. From (55), one sees that a necessary
condition for the existence of such an integral manifold is that (B~1)? exists,
which requires detB # 0.

The vector fields v, admit an interpretation in terms of nonorthogonal
coordinate systems. First, one makes the loose identification of the basis
vectors 0; and corresponding co-vector one-forms dx’ spanning the tangent
and cotangent spaces, T,,(%) and T (¥) respectively, with counterparts

9 ~ .

vy = B! RIE 0 = (B~ 1)%dx". (56)

The vector fields v, define the rate of change of a function in any of the
three internal directions defined by B, with dual one-forms 8 such that

(o[ ) = 8 — (0w = 0. (57)

We would like to construct a local internal coordinate system using t¢ =
(t',t2,13) as coordinates, which ascribes to v, an equivalent interpretation
via integral curves B! ~ dz"/dt¢. One could then write

14



(7) = 19(0) + /O " ad (BT @), (58)

and for nongegenerate B, the map x' ++ t¢ would be invertible.
A sufficient condition for the existence of the coordinate system t¢ can
alternatively be expressed in inverted form

ote
oxt (

B, (59)

Due to the commutativity of the coordinate differential operators [0;, 9;]t¢ =
0, (59) leads to the condition

0;(B™) —8i(B™h)5 =0. (60)

Upon contraction of (60) with B;Bi and comparison with (55), one finds

BB} (~(B (0B + (B (0B B~V = by =0, (61)

or that the structure functions hzg must all vanish, which amounts to a
restriction on the allowable B’. In the language of differential forms, this
implies that the one form 8% while not in general exact, must be closed d@® =
0. Whether closed or not closed, a necessary condition for the integrability
of 8” is that the topological torsion be zero [8], namely that

6% A d6” = 0. (62)

with no summation over a.

However there might be at least three obstructions to the ability to write
(58), aside from the issue of path dependence of the integral. First, if the
configuration B! results in the self-intersection of integral curves, then the
tangent vectors would be ill-defined at the intersection points. Secondly, the
coordinates t¢ might not be globally defined in 3.1

A third obstruction might arise when one wishes to invert ‘twisted’
vector fields of the form w, = v, + a,, for an arbitrary a, € C*(X). The
commutator bracket becomes

MIn the first case, one then confines oneself to configurations which avoid self-
intersections, which includes smooth fields B € C'* (X). In the second case, one may
confine oneself to a neighborhood on which ¢ is locally defined, when solving equations
using these vector fields. The issue of path dependence of (58) can be addressed by
restricting the allowed paths of integration to integral curves of BZ.

15



[Wq, Wp| = [va + g, Vp + ab] = hﬁbe + Fy, (63)

which acquires a central extension F;, given by

Fup = v {Cp} — vip{C,}. (64)

However, if there exists a Kgb such that Kgbhgb = 55]; , then one obtains

[Wa, wp] = hywy (65)

which closes as long as K J%bFab € C*°(X). Then the twisted vector fields
would indeed be integrable.
In the general case where (60) is not satisfied, one can rewrite (55) as

BéBi((B‘l)f@B’} - (B—l){ajB’;) (B, = hf. (66)
Upon transferring the terms outside of the brackets to the right, we obtain
9;(B~1; = 0,(B™")5 = (B~ (B~ ")} hig (67)

which upon contraction with the two-form da’ A dz? yields

1
do° + 515,07 A 6" = 0. (68)

If h;h(az) were numerical constants, then they would correspond to the struc-

ture constants fgeh for a Lie algebra, where BY are the generators of the Lie
algebra. In this case (68) would reduce to the Maurer-Cartan equation. In
this paper we would like to examine the structures conferred upon X in the
general case when h¢, are not constants.

4.2 Teleparallel structure

Starting with a 3 dimensional Riemannian manifold ¥ with metric g;;, define
an isometry of g;; by an infinitesimal coordinate transformation a’ =gt
9°E: for some E! € GL(3,R), parametrized by parameters #°. The metric
g;; must then satisfy the Killing equation

EX0kgi; + g1;0,EL + g1i0; B, = 0. (69)

16



From EF one may construct a flat affine connection Ffj, such that

O,E] = —E"Y, . (70)

The flatness of Ffj can be verified directly by computation of its curvature

(B~} (0%, 81| E] = OpT) — T}, + TTL — 9T, =Rl =0, (71)

which vanishes due to commutativity of the partial derivatives, where we
have used (70). Substitution of (E~1)% 9,/ = —T" into (69) yields

EF (0kgij — Thigiy — Thjou) =0 (72)

which upon multiplication by (E~!)% becomes recognized as the condition

that I‘fj be compatible with the 3-metric g;;

Vigij = Okgij — Dhigis — Dhjon = 0. (73)

k

The connection F;» & 1s not unique, though its symmetric part F(ij

fixed by g;; through the relation [11]

) is uniquely

1 e B
L) = ggk (9igmy + 039mi — Omgi) = —(E~")405 B (74)

Multiplying E¥ into (73) and summing over the index &, we have

3 3 3
Z Efj@kgij — Z Egl“ﬁ“.glj — Z Egrggjgli == 0 (75)
k=1 k=1 k=1

The result is that every metric g;; defines a flat connection Ffj constructable
from the generators of isometries for gij.lz While the connection is flat, it
may still in general have a nonvanishing torsion.

TE =T, = (E"),05Ep. (76)

Such spaces are known as teleparallel spaces [?] except in the case of the
Levi—Civita connection, which is torsion-free.

2Note, while Ffj is flat, the Levi-Civita part Ffij) in (74) is not in general flat.
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4.3 Induced nonmetricity

We would like to make the extension E! — B! and analyze some possible
structures conferred on X by B;,. Since D;B; = 0, then there exists an A{
such that

a =

. y 1

Bl = R (9; A8 + 3 fereAbAL). (77)

Define an internal SU(2)_ ® SU(2)_ metric by 1, where n¢q = 1ge(7)

are arbitrary functions of position in ¥. The metric 7, induces a natural
metric HY on X, determined from B! via the relation

HY = 14y B,Bj. (78)

Also, (78) implies the following relations for nondegenerate B

Binge = H'(B™V){; Bfnsa = H*(B™){. (79)

19

First, let us examine what sort of Riemannian structure may be obtained
from the structure functions h¢,. Multiplying (55) by nfaB'J? , we obtain

Na (B’;Bé@iBg - B’;Bi&-Bﬁ) — 17ahG, Bl BE. (80)
We will now add (80) to its clone upon the replacement j <+ k. Making use

of (78), this leads to

H*0;B] + H'0,Bf — Bins.0:(B}By)
= thBf(B;T/fa) + thBZ(BI;T/fa)’ (81)

Using the Liebniz rule and making use of (79), we obtain
H*9,B] + H'0,Bf — Bj0; H'* + B{B}BF0inq
= hgy (BEH(B™Y)] + BILH™(B™)). (82)

Multiplication of (82) through by (B~!)? leads to the relation

3 m

O HI" + (hgy BE(B™)2 (BT, — (B~)},0:BF ) '

+(hey BIB B, — (B7Y50B ) HY = BB Ownse.  (83)
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When the right hand side vanishes, for example for spatially homogeneous
Nfa, (83) would imply the existence of an affine connection I/, where

T}, =—(B Y4B )ohe,Bl — (B..0,B] = +(B7),V,B], (84)

3 a,

compatible with the metric H . If one regards B! as an element of a gauge
group, then I/ is a gauge transformation of the structure functions k¢,
seen as a connection. The antisymmetric part I‘fim] is the torsion, which is

essentially h¢, as seen in a different gauge

I’

[im]

i —1 —1\b —1\b j j —1\b j
= hepyBL(B™ )i (B~ "), — (B )[maﬂBi; Ffim) =—(B )(m@-)Bi-(%)
The inhomogeneous term (B_l)l;n&-Bg is pure gauge, where B! is the gener-
ator of an isometry of the metric H" in direct analogy to (70). Hence, the
internal indices a now exist on the same footing as the spatial indices 3.
However, since the right hand side of (83) is in general nonvanishing,
then the connection I, is not compatible with the metric H . and therefore
the quantity Q%? = B}Bf@mnfa can be seen as a measure of nonmetricity

inherent in the theory.'> Thus, one can write

OmH® — Tk HI' T HK =V, HI* = Qik. (86)
The interpretation of (84) as a gauge transformation can be justified by com-
puting the curvature associated with the inhomogeneous term (B _1)2,182-311,
which vanishes in direct analogy to (71). Hence, one should then expect
the curvature of I‘; i to transform covariantly under ‘gauge’ transformations
induced by B.

While naively a nonmetric theory, one may nevertheless attempt to
phrase it in metric terms by associating a connection I f] [H] with the part
of I‘fj = Ffj [H] + qu, which is compatible with the metric HY, in direct
analogy to (74), and a remainder due to the nonmetricity, where

1 . .
k k k
Qi = §H2m(Q£n - QY - jm)- (87)
The the Riemann curvature tensor can explicitly be written in terms of the
nonmetricity as

Ry [T) = Ry [H] + Ryl + Tl + aiiThn — T dyn — €1 i (88)

where Riil [H] is the part derived from the metric H%.14

3n this case the nonmetricity is associated with the Riemannian structure implied by
the connection defined by the structure functions hg,.
1M\Within the context of (70), the connection Ffj plays a subordinate role within a more
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5 Geometry: Full theory versus minisuperspace

5.1 Bianchi minisuperspace models

In the conventional approach to minisuperspace dynamics, one defines min-
isuperspace with respect to a Bianchi Lie group of isometries which acts
simply transitively on 3-space ¥ [12]. The Killing vector fields K, corre-
sponding to the isometry satisfy a Lie algebra

[KaaKb] = Cgme (89)

where C¢, = —C}, are the structure constants of the Bianchi group. Associ-
ated with the Bianchi group are a set of left-invariant one forms w® = x%dz*,
which satisfy the Maurer—Cartan relation

1
dw® + §C’§cwb ANw®=0 (90)

with respect to the same structure constants Cy.. The dynamical variables
may then be expressed in this basis via

A¢ = xfai(t); 7, = Rieg(t). (91)

In (91), all spatial dependence is confined to within x¢ and invariant vector
fieldsR%, and a! = af(t) and el = el(t) depend only on time. Equation
(91) excludes the full theory of general relativity, where there should be two
physical degrees of freedom per each point. In the instanton representation
of gravity, the full theory is incorporated using the connection as A* =
A%dz', which defines a configuration on which the Gauss’ law constraint
may be evaluated. It seems naively that this is tantamount identifying
w® ~ A%z’ as the gauge connection itself. However, according to (90) the
curvature of w® vanishes which would make B = 0.

Therefore the interpretation of minisuperspace within the Bianchi clas-
sification scheme is meaningless within the instanton representation, since it
implies a vanishing of the vector fields v,. Conversely, the full theory eval-
uated on a non-gauge configuration would yield a nontrivial right hand side
to (90). Therefore we redefine minisuperspace to signify that the connection
A¢ is spatially homogeneous in whatever coordinates it is expressed in.'5 We
will see that (89) and (90) have direct analogues in the full theory, which
preserve the notion of non-gauge configurations. The main modification is
that we must allow the structure constants Cj., to be no longer constants,
but now functions of position.

general geometric structure.
15Note that spatially constant A¢ is not necessary pure gauge.
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5.2 The full theory

In the instanton representation of Plebanski gravity the spacetime metric g,,,,
is not a fundamental quantity, but is derived. This means that there is no
a-priori spatial metric on 3-space ¥ to preserve, and therefore no isometry.
We therefore lift the restriction of K, in (89) from generators of isometries
to a triple of vector fields v, = B!9;, promoting the structure constants Cy.
to the status of structure functions hj, in the commutator bracket

[Va, Vi) = hip(x)ve. (92)

Given the above, then the question arises as to what for the instanton rep-
resentation plays the analogous role that the Bianchi group plays for min-
isuperspace. We will see that this role is played by the Ashtekar magnetic
field B! € GL(3) such that D; B = 0. In the instanton representation each
congruence 7 defines vector fields v,, which in turn define B corresponding
to each choice of coordinates. The ‘structure functions’ h¢, satisfying (92)
may be explicitly computed for each B! via

o = (B™1);(Bio:B] — BioiB}) = (B™)5via{Bj)}. (93)

The invariant one form w® in (90) is a pure gauge connection, with vanishing
curvature F'*[w] = 0. However, the connection A* = Afdz’ is not flat, since
it has a curvature

1 L
F*=dA" + 5 feAP N AC = e Bidad A dx® 0. (94)

In (94) fo%¢ are not the structure constants for a general Bianchi group but
are the structure constants of a particular group, namely the left-handed
SU(2)- of the Ashtekar variables. Moreover, the connection A% is not flat
and from (94) one can obtain all the structures necessary to construct solu-
tions to the Gauss’ law constraint GG,,.

The Jacobi identity for the vector fields v, is given by

[VCL’ [va VCH + [Vb’ [VC’ VGH + [Vm [Va, Vb]] =0, (95)

which implies the following condition on the structure functions

Vaihpe} + volheo ) + velhgy ) + (hidhic + highl, + hidhgb>vd =0. (96)

Since the vector fields are linearly independent by supposition, the the co-
efficient of v4; must vanish
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heghil, + highd, + hEyhd, = 0, (97)

and the c-number term must independently vanish

Va{lipe} + vothea} + vel{hg} = 0. (98)

Define a; = h¢y = —hj, as the trace of the structure functions. Then taking
the trace of (97) by summation over ¢ = e yields

velhapt = valan} — vi{aa}- (99)
Decompose the structure functions as

1
hiy, = eabdned + B} (5aeab — (5beaa), (100)

where n¢/ = nf¢. This is in direct analogy to the decomposition of the
structure constant of a Lie algebra, except that ay = af(z) and n® = n®/(z)
are no longer constants, but functions of position. Note that

1
heye®®l = onl 4 fq, — nel = §hf§)e“bf). (101)

Additionally, note unlike the case in minisuperspace that n¢fa ¢ needn’t be
zero in the full theory. Now act on (100) with v., which yields

1
ve{h&} = €apave{n} + 5 (va{as} — vi{aa}). (102)
Substituting (98), which comes from the Jacobi identity for the vector fields,
into (102), we obtain

va{ap} — vi{aa} = 2eqpqve{n?}. (103)

Equation (103) is a set of three differential equations involving noncommut-
ing vector fields. This can be put into the matrix form

0 —-v3 vy ve{n®}
V3 0 —vi | =2 ve{n?}
—Vy Vi 0 ve{n®}

The solution is given by
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ap = —2Mpve{n}, (104)

where
-1
0 —V3 V9
Mfe = V3 0 —Vi = UV,
—V9 Vi 0
where we have defined
—1 —1
V3V] Vg — VoV V3 0 0
U= 0 V1V2_1V3 — V3V2_1V1 0 ;
0 0 v2vglvl — V1V§1V2
-1 —1
1 ) VoV, V3V) X
V=1 vivg 1 V3V,
Vlvgl nggl 1

The result is that the structure functions h{, in the full theory have only six
degrees of freedom per point, which are encoded in n¢f.

To see the physical interpretation of n¢f, let us construct the analogue
of the group metric for the full theory. This is given by

1
Kab = thhge = (Eadrner + 5 (5aead - 6deaa))

1 1
(ebesnds + 5 (5bdae - 5edab)) = ebeseadrnernds + §aaab

1
+§ [Ebasndsas — €pesN g + €apyn e — 6aernerab:| . (105)

The first and third terms in the square brackets of (105) vanish due to
antisymmetry of the epsilon symbols, and the second and fourth terms vanish
since n®f is symmetric. The result is that

1
Kah = —(detn)(n_l)ab + §aaab, (106)

where we have used the properties of determinants of three by three matrices.
Putting in the result from (104), we have that

Kab = _(detn)(n_l)ab + 2MagMth6{neg}Vv{nhf}' (107)

In minisuperspace n¢ are numerical constants, and the second contribution
to (107) is zero. Then kg, reduces to the Cartan—Killing metric on a Lie
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algebra. The full theory has an additional contribution from terms involving
Vg, which are well-defined only on integrable confiurations. This shows that
in the full theory, ay is dependent on n®/ which means that the structure
functions contain only six out of nine independent components per point.
Hence h¢, = h¢,[n], where degrees of freedom are encoded in the symmetric
object n¢f. For minisuperspace n/ and a ¢ are spatially constant and anni-
hilated by the vector fields v,. It is clear that ay is in general nonvanishing
if one is considering the full theory. Comparion of (105) with the results of

Paper V suggest the identifications

hg, — Ty n® — Kij. (108)
This implies that the structure functions h¢, the projection of the torsion
of 3-space Ti’; = F’[‘;j] into SO(3,C), and that n®f is the projection of the
exterior curvature into SO(3,C).

5.3 Differential geometry of X

Given what we have learned about the structures induced on ¥ from the
integral curves 7, let us now formalize the differential geometry of X. First,
note that the vector fields v, satisfy the relation

dv, = (dBY)9; = (B~1)2dBlvy = wbvy,. (109)
This can be expanded further, using 8% = (B~1)%dz* to obtain
wq = (B™1(0;B;)dx? = (B™1);(9;B;) BL6°
= (B~Ybv {Bi}6° = J,6°. (110)
Separation of (110) into symmetric and antisymmetric parts and comparison
with (109) implies
wi = (hiy + J(,))0". (111)

Since the antisymmetric part .J, [fl b = h¢, is determined by the commutator of
vector fields v,, then it remains the physical interpretation of the symmetric
part wfab).

Let us now introduce a metric g on X, such that g(vy, vy) = v vy = mgp.
Then we have

dg(Va, Vi) = wag(Ve, Vi) + wig(Va, Vo), (112)
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which implies the condition

dmgp — WeMep — WyMae
= —(hg pmcp + i pmac) 6/
+dma — (J5pmey + J5pmae) 87 = 0. (113)

a

The coefficient of 87 second line of (113) can be written as

hﬁfmcb + hgfmac = hbaf + habf, (114)

which is zero if hg. is totally antisymmetric in its indices. Then J(‘}) o) be-
comes the Levi—Civita connection compatible with the metric mg,. Using
d =6 f» the condition of metric compatibility can be written in internal
indices as

Vi{map} — J(Caf)mcb - J(be)mae =0. (115)

The second exterior derivative of (109) yields

d*v, = (dw + wl Awg)ve = Rbvy, (116)
which defines the Riemann curvature of the metric mgp. If one uses v, as a
(non-orthonormal) basis of T},(X), then a vector with components K* would

be given by K = K%v,. Equation (109) allows the covariant derivative to
be extended to vectors via the exterior derivative as

dK = (dK°® + K°wj)v. = (DK)“ve. (117)

The components of a contravariant tensor M of rank n is given by
Maiay..an = M(Vay, Vags .- Va, ). (118)

The relation of the vector fields v, to the corresponding one forms 8 =
(B71)%dz* can be seen by exterior differentiation

0" = —(B~")4(0xB])(B~")2da A da' = —(B™1)4(0xB]) (B~ 1)} (BF6°) A (B16)119)

where we have used the definition of the one-forms 8“. Equation (119) can
be written as
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1
do° + Shig0° A 6¢ =0, (120)

which brings in the structure functions. With the structure functions for
0¢ the same as for v,, one can make the identification of v, as dual to
0“. Comparison of (120) with (90) show that the full theory generalizes the
concept of the Bianchi group to incorporate structure functions hS,. The
role of the Bianchi group for the full theory is played by the algebra of
smooth vector fields. Since, as we have shown, there are really six degrees
of freedom in h{,, and from (93) k¢, is completely determined by B, then it
follows that only six degrees of freedom of B! are relevant for the geometry
of 3, with three D.O.F. unphysical.

A consistency condition on (120) can be found from the rearrangement
de* = —%hgceb A 6 in conjunction with d?6% = 0, which implies that

| 1
(vc{hgf} — Shisht. - 5hgbhgf) 0° A 6° A 6T = 0. (121)

Equation (121) can be seen as a generalization of the Jacobi identity for a
Lie algebra, where the structure constants f have been promoted to the
status of structure functions hS,(x). This is the same identity as in (97),
(98) and (99).

The conclusion then is as follows. The analogue for the full theory of the
left invariant one forms for Bianchi groups is 8¢, which is a flat connection
in the sense of (120).

5.4 Generalized notion of integrability

Take any triple of one forms 6% = uldx?, where u¢ € C°°(X). Then 6°
satisfies the equation

1
de® = —§hgcab A 6°, (122)

where h{ = h{ [u~1] are the structure functions with respect to (u™'), seen
as a magnetic field. These structure functions admit a decomposition

1
hit = epcan™ + 3 (6fac — 0%ap). (123)

The one forms 8% define a Pfaff sequnce

Pfaff = (6% d6° 6°n6°, do A d6°). (124)
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The last term of (124) vanishes since it is a four form on 3-space 3. The third
term defines the top 3-form of X, and is a kind of ‘generalized’ topological
torsion. This is given by
1

0 N dO° = — 1 0% N 6" A 6°. (125)
Using 8% A 8° A 6¢ = (detu)d>z for detu # 0, as well as (144), we have the
relation

a e 1 e _abc 3
0 N\ dO° = —ihbce (detu)d’x
1

= — 5 (detu) [2n% + €*“a.|d*x. (126)
The vanishing of topological torsion as a condition of integrability [8] 7 =
0% N\ dO* = 0 is simply the requirement that n®* = 0, namely that the di-
agonal components of n/ must vanish. In the application to the instanton

representation of Plebanski gravity we will be interested in the antisymmet-
ric part

1
€dae®® N dO° = —§(detu)add3x. (127)
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6 Minisuperspace versus the full theory: Revis-
ited

In the Bianchi classification of homogeneous spaces, one absorbs all spatial
dependence into invariant one forms given by

(0B — 0,(B™Y)¢ ) BLB] = Ciy (128)
since the number of degrees of freedom (nine) is the same in either case.
The Bianchi group structure constants can be parametrized by

C% = eapyn® + 6Sap — 8y, (129)

a

where n¢/ is symmetric and a, = Cgb is the trace of the structure constants,
which yields 3 + 6 = 9 degrees of freedom, the same as the number of
independent components of b%. In the general situation where the magnetic
fields are not numerically constant, one might be able to solve the Gauss’
law constraint by expansion about a known spatially homogeneous solution.
First, split the vector fields as follows v, = v, + pa, Where v, = B (1)0; =
b 0; is the spatially homogeneous part. The remainder p, is given by

[e.e]

R 1 . . . .
Do = Z al’“:ﬁz o g;ln(bh...in)fzai, (130)

n=1

where we have defined

o B! (x) (131)

bivin i =
122...1n i i a
oz ... Jxin w=10

The inversion in a neighborhood of zy then is given schematically by

-1 -1

vl = vt — v pavgt vy pavy vt (132)

The expansion (132) is reminiscent of the use of Riemann normal coordinates
in metric general relativity. To obtain an idea of the local structure of the
geometry induced, let us revisit the algebra of the vector fields

[Va, V] = A ve. (133)

For B! = b’, we have that h¢, = 0 for all e, a,b, which corresponds to a
locally flat space. The simplest nontrivial case occurs where B! depends
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linearly on position B! (z) = b’ + (b)%2*. One may envision a local neigh-
borhood of zg such that all terms of O(z?) are negligible. From a power
counting argument of (133), one sees that in the linearized approximation,
the structure functions h¢, are numerically constant. Performing a Taylor
expansion, we have

hiy(@) = hoy(w0) + > (hay iy ) pa™ - ™. (134)
n=0

where we have defined

an

iin = i i)

(135)

T=x0

The zeroth order term of (134) can then be identified with the structure
constants for a Lie algebra of vector fields consisting of linear Bl as in
h,(zo) = f&,- Using (92) after multiplication by Bj leads to the condition

(0 + (b1 )az™) 9 (8 + (b3, ")
= (b, + (0iy )™ ) 05 (0l + (b ha™) = fiap (b1 + (bj,)1a”). (136)

Equating of the corresponding zeroth and first order terms in (136) leads to
the two equations

b;(bﬁ{; — by (b)) = fobl
(br) (b)), — (be) (Bi)% = fiy (bi)?. (137)

Elimination of the structure constants fS, from (137) yields the condition

(b (Bi)] = (r)b(0:)s = (L 05 = (0 ) 075 (b) (138)

Taking into consideration the antisymmetry in a,b, (138) constitutes 27
equations in 36 unknowns, which implies 9 degrees of freedom. This on first
sight seems an underdetermined system, however the choice of b}, exhausts
nine of those degrees of freedom. This leaves remaining 27 equations in 27
unknowns which uniquely fix the first order term (b,,), and consequently
the structure constants f7,. The result is that the local value of the Ashtekar
magnetic field, which is freely specifiable, fixes the structure constants of a

corresponding Lie algebra.

29



7 The induced metric

In the Ashtekar variables the connection A{ is a fundamental variable while
the contravariant three metric A% is is derived through the relation

Oabs 1
= (139)

which utilizes a flat metric dq4e for the internal SU(2)_ space. The four
dimensional form of equation (139) defines a line element

ds® = —N2dt? + hij(N'dt + dx*) (N7 dt + da?)
= —N2dt? + §peww®, (140)

where w? = Vdet(c1)#(N'dt + dx’) and we have defined by (N, N?) the
laspe/shift combination. The instanton representation shifts status of dy-
namical variables from h;; to the CDJ matrix ¥,.. Equation (140) is based
on 04 as the internal metric left invariant under triad rotation.

Using a 3 by 3 matrix ¥, € SU(2)- ® SU(2)_, let us define a new
internal metric

Nae = (detB)(det®) (T~ 101, (141)

We can then absorb the configuration variable dependence into the one forms
by defining

(B™HY%(dz' + N'dt) = 0" + n°dt = w°, (142)

where 7% = N'(B~1)% takes on the role of an SU(2)_ valued shift function.
Hence upon taking into account the initial value constraints, (140) becomes
generalized to

ds® = —N?dt? + ngeww®, (143)

where now w® = (vV/detB)(B~1)¢(dz' + N'dt). The spacetime metric g, is
given in component form by

Juy = < _N2 +77f1677a776 77[16776 )
- Nean® Nae )’

whence the internal SU(2)_ manifold replaces 3-space 3. Equation (143) has
the same form as the equations for minisuperspace models, where w® play
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the role of the left invariant one forms for the corresponding Bianchi group.
However it is the full theory, and w® should satisfy some generalization of
the Maurer—Cartan equations. To see this, first note that 8% satisfies

a 1 a b c

Using dw® = d@® + dn® A dt, we have

1
dw® = —§hgcob A 6° + dn® A dt. (145)

Substituting (142) into (145), we have

1
dw® + ghgcwb A w® = —dt A Dn®, (146)

where Dn® = dn® + hgcwbnc. So we see that the presence of a shift vector is
yet another aspect which distinguishes the full theory from minisuperspace.

Since we would like to absorb all configuration space dependence into
the definition of the one forms, let us define a ‘densitized’ one form

6 = (detB)/29" (147)

There we have

i — %(detB)1/2(B—1)g(anBy)dx" A0 + (detB)/2d6°
1
= §(detB)1/2(B_1)fnvb{Bg”}0b A 6% — (detB)Y/2hg 6% A 6°. (148)

Using (147), this can be written in the form

df® + = (detB) Y2 (hg, — 62J3,)6° A 6° = 0. (149)

1
2
Defining & = 6% + 7%d¢, we have
do® = dO® + dif® A dt
1 o e
= —§(detB)_1/2( o — 8LTE)6° A O° + dif® A dt. (150)

The result is that
1 ~
di® + - (detB) Y2 (hf, — 52.J54)0° A 6° = —dt A D (151)
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7.1 Metric compatibility

Having defined the geometric structures, we will now make use of the fact
that B! is a magnetic field. We will see that this requires the introduction
of a connection from which B can be constructed. The spatial 3-metric in
terms of the instanton representation variables is given by

hij = mae(B~1)F(B71)5(det B), (152)

)

where 74 is an internal SO(3,C) ® SO(3,C) metric derived from the CDJ
matrix U,..'0 Let us now define a gauge covariant derivative

DyB" = 9y BI* + fpeaAB™ =T7 BY, (153)

which defines an affine connection I' f] on Y. We will now take the gauge
covariant derivative of (152) using Dyh;j = Ohi;, which uses the fact that
the spatial 3-metric does not transform under the gauge group. Hence we
have

Dk‘h‘j = 8khzy - (Dknae)(B 1)?(B 1) (detB)
+ae (DR(B™1))(B™1)5(det B) + 1ae (B™1){(Di(B™1)5) (det B)
(B~

+ilae(B™ )0, (Dk B")(detB) (B~ (B™1)5. (154)

Using the identity

Di(B™Y)§ = —(B™ )5 (DkBy")(B™)] = (B~ 15Tl By (B™1)] = T{H(B™1)5,155)

(2

we have, upon defining the covariant derivative of h;; with respect to the
affine connection,

vkhij = 8khij — Fzmihmj — Z}him
— (detB)(B™)¢(B™); Ditiae — hiy TR (156)

Using (152), let us rewrite this in the form

Vihij = (detB)(B~)F (B~ (Ditae — TiiTac) - (157)

The CDJ matrix ¥, is used to parametrize the physical degrees of freedom of general
relativity through implementation of the initial value constraints.
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A necessary condition that the connection F;k be compatible with h;; is
that Dgnge = I'})} Mae, otherwise we would have a nonmetric theory. Let us
decompose this into symmetric and antisymmetric parts

Dk”?ae = (F%k + Zme])nae' (158)
We see upon taking the trace of (153) that

DyBy = —T}, By =0, (159)

which is simply the requirement that B! satisfy the Bianchi identity, namely
that it is a magnetic field of a connection A¢. Since we assume that B is
nondegenerate, then (159) implies that Fﬁn must be zero. Since BY, satisfies
the Bianchi identity, then the first term on the right hand side of (158)
vanishes and we have

Ditiae = 21 Mae- (160)

The result is that in order for the affine connection induced by the gauge field
A? to be compatible with the metric h;; whose curvature it is constructed
from, three conditions need to be met: (i) The metric connection I'f; must be
torsion-free. Hence Ffjk] = 0 which makes I‘;—k the Levi—Civita connection

for hy;. (ii) Secondly, B! must satisfy the Bianchi identity, which means
that it is the magnetic field for some connection A¢. (iii) The connection A¢
must be compatible with the internal metric 7, in the gauge sense. This
condition makes (160) within (158) vanish.

Since A¢ defines a torsion-free metric compatible connection, the next
question is how one obtains a four dimensional geometry. Let us perform
the following decomposition of A¢

¢ =T¢ + BKL(B~YY, (161)

where 3 is a numerical constant. Substituting (161) into (153), we have

DBy = Ok Bi* + foedUi By + BfocaKi(B~ )i By =T By (162)

Next, impose the condition that BY satisfy the Bianchi identity upon taking
the trace of (162). This yields

DyBF = 0,BF + foeal$BY + BK, ™ (B4 (detB). (163)

Note for K;; an arbitrary symmetric matrix that I'{ is also a gauge con-
nection for B’. This introduces a Wu-Yang type ambiguity, which can be
resolved by fixing Kj;; to be the exterior curvature of X. This requires some
additional input from general relativity.
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7.2 Metric diagonalization

By exploiting the freedom to choose the a particular SO(3,C) frame di-
agonalizing the CDJ matrix W, one can further reduce the metric to the
physical degrees of freedom. Starting from the CDJ Ansatz

G\ =V,.B, (164)
rotate the free index a by a complex orthogonal transformation O = €7 to
obtain

O'/; = Oaa/’&i, = Oaa’\Ila’e’Og;f/(Of’fB})- (165)

where A\ = (A1, A2, A3) are the eigenvalues of ¥,.. We will show in this
paper how one may choose the rotation angles # such that ¥,. satisfies all
of the initial value constraints, whence one diagonalizes ¥,. to obtain

o' = AaB". (166)

The 3-metric can them be redefined by absorbing the complicated depen-
dence inherent in O, into the one-forms w® = w?[\, B,]. The four dimen-
sional line element then becomes

3
ds? = —N2dt? + Z Agw [X7 ga]wa[x; ga]' (167)

a=1

When ), satisfy the required constraints of GR, then the metric g, defined
by (167) should satisfy the Einstein’s equations by construction for nonde-
generate BY. The only remaining task remains that of finding the angles g,
We will see in the course of this paper that these angles acquire the interpre-
tation of the parameters corresponding to an equivalence class of nonlinear
Lorentz transformations taking one from the instrinsic frame of A\, into the
frame explicitly solving the Gauss’ law constraint.
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8 Instanton representation of Plebanski gravity

We have seen, as a necessary condition for metric compatibility, that B
must be the magnetic field for a connection A¢. This means that it can be
written in the form

B! = ¢7k9; A% + (det A) (A1) (168)
Equation (168) looks extremely close to the definition of BY as a ‘densitized’
triad corresponding to AY, seen as a triad, if not for the spatial gradient
term. Let us assume the existence of a triad ef, such that

A
B! = Eelﬂ’feabcegez. (169)
Then the spatial gradient term of (168) constitutes an obstruction to the
equality A? ~ ef. Next, let us examine the implications of the Bianchi

identity for the triad e

D; B} = €apc€) (€77 Dyef) = 0. (170)

This implies that A¢ is the spin connection for the triad e?. Defining ¢ =
%e”keabce?eﬁ, we see that (169) can be written as

F;'l} = aeeijk5]g7 (171)

which corresponds to CDJ Ansatz which from Paper 11 is the spatial restric-
tion of one of Plebanski equations of motion. If we make the identification

Ff =V, ejror — Bl =U_'Gh, (172)
then we see from (169) that ¥ ! = %5[16 is the CDJ matrix for spacetimes
of Petrov Type O, which are conformally related to Minkowski or Euclidean
spacetime. This conclusion is borne out when one looks at the BF theory. To
obtain more general solutions, let us allows W, to be a function of position.
Hence we will include a massive spin two part

\Ilgel = _géae + T;Z)aea (173)

where 1), is Weyl, the antiself-dual part of the Weyl curvature. Since B! is

still a magnetic field, then it must still satisfy the Bianchi identity. Taking
the gauge covariant divergence of (172), we have
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D;B. =V_!'Di5 +5.D — W_ (174)

Equation (174) expands into

Vo Digl, — o,V (DiW )W, = 0. (175)
Multiplying by W4, we have
DGy — W, 5. (DjWay) = DiGy — BLD;¥ gy = 0. (176)

Using the definition of the vector fields, this implies that

D5l = wy{W4,} = 0. (177)

The left hand side of (177) is the Gauss’ law constraint on the densitized
triad, which is one of the initial value constraints of the Ashtekar variables. If
we require this to hold, then a necessary condition is that the right hand side
vanish, which is the Gauss’ law constraint in the instanton representation.
This is a total of three conditions on ¥, which upon implementation should
leave behind an unconstrained V¥ 4. with two degrees of freedom per point.
Note that (173) satisfies the constraints

trU 4 A =0; €gaePoe =0; We{Tu} =0, (178)

which are the Hamiltonian, diffeomorphism and Gauss’ law constraints for
the instanton representation.
8.1 Canonical structure of the instanton representation

The basic variables for the instanton representation of Plebanski gravity are
(We, AY), where ¥, € SO(3,C) ® SO(3,C) is the CDJ matrix and A{ is
the Ashtekar SO(3,C') connection. The canonical one form 07, is given by

O1nst = / 32V, BLAY, (179)
%

where B! is the magnetic field for A?. The integrand of (179) can be written
by eliminating the magnetic field BY in favor of the magnetic helicity density
matrix Cp,
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U CT (AT AS = U (€MIRAC,0; A + 69 (det A)) (A1) AL, (180)

The last factor of (180) can be seen as the temporal component of a 4-vector
Jﬁf = (A_l)}OHA?. If A? is regarded as an element of the group GL(3,C),

where the indices 7 and a are placed on equal footing, then Jﬁf is a flat
connection for this group. We can think of this as a one form

J = (AT (Aldt + 0;Alda’l) = (A7), (SAY + O Afda®),  (181)

where the temporal variation A?dt induces a functional variation 0A{ on
the configuration space of fields I'z,s¢. The spatial part J}’k = (A_l);akAg’
has an antisymmetric part related to the structure functions of an algebra
of vector fields v, = (A71).d;, where

[Va, Vp) = hipve. (182)

Just as the spatial part of Jﬁf is involved in the integrability of v,, we
will see that temporal part is involved in the canonical structure for (179).
Equation (179) is given in three form notation by

Ornst = / U qe(detA) ((detA) 1A A dAT + 647 dPz)s X7, (183)
b

which motivates the following definition of densitized momentum space vari-
able and left-invariant one forms

Wy = Uye(detAd); X% = (A71)i5AL. (184)

We can now use the definition of topological torsion and structure functions
to obtain

~ 1
/ Bz, [5ef +nef + ieefcac] sxf (185)
b

The condition A° A dA7 = 0 implies that n¢/ = ay = 0, which is the
analogue for gravity of the vanishing of topological torsion. We will see
in Paper XIII that this enables one to obtain a canonical structure for the
instanton representation. In this case Uy = d4e and the canonical one form
would be given by
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= 30U, (2)0 XY (2
0_/Ed T (0)5X% (), (186)

provided that X% e /\1(F nst) is a closed functional one form. According
to the Maurer—Cartan relations

1
PX + = fifeg0 X NOX =0, (187)

therefore one does not have globaly holonomic coordinates on I'j,s except
when the structure constants are vanishing.!” Along with the one forms
X € T%(I'1nst) in the cotangent space to configuration space I'ryq, come
vector fields 0/0X% = AS5/0A? € Tx (st living in the tangent space.
An action principle for the instanton representation of Plebanski gravity can
be obtained by smearing the constraints (178) with appropriate auxilliary
fields and appending to the canonical one form. This yields an action of the
form

[Inst = / (\T/anae - fawe{\iae(detA)_l}
P
—i—edaend\flae - X(A(detA)_l + tr\i_l)>. (188)

Equation (188) constitutes the fundamental starting point for the classical
and the quantum theory.

8.2 Algebra of vector fields

The algebra of vector fields forming the canonical structure of the instanton
representation of 4-D gravity is given by

) 5 § 5
= A (2, ) ————— Al (g, ) ———
5X“e(:1:,t)’5be(y,t)] { (@ )5Ag(x,t)’ J(y’t)M?(y,t)}
) §
— % 52 B
(5af5X“e(:1:,t) 5b65Xaf(:n,t))5 (z,y). (189)

The triviality of the first cohomology group H'(I'1,s) = 0, would imply the
existence of globally holonomic coordinates X®. Defining My, = 6/0X%,
we see that (189) is isomorphic to the algebra of GL(3,C)

17One clear case where 7%¢ = 0 is in minisuperspace, where the spatial gradients of
all fields are zero. Since all points are the same according to this definition, there is no
such thing as a magnetic linkage between points. Additionally, for diagonal W, it is more
straightforward to find configurations where 7%¢ vanishes, which is done in Paper XIII.
The issue of integrability brings us to consider the algebra of vector fields on functional
space ['rnst.
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[Mamef] = anbe - 5beMaf- (190)

We will split the generators into symmetric, antisymmetric and diagonal
parts. First we have

[Mae), Mivof)] = 0ayMipe) — e Mag) + v Mge) — O e Miap) (191)

and

[Mige), Mippy] = 8arMpey — Ooe M) + apM(fe) — OpeMap) (192)

which have the same structure constants, and the subalgebra

[Miae)s M| = Saf Mipe) — 8be Miag) — SabMge] + 0 e Miap), (193)
which is the algebra of SO(3). Note the difference in sign on the last two

terms of (193) in relation to (191) and (192). To visualize this algebra let
us define the following quantities

Mg =35 Mpgy = K3, My = 24, (194)

with the remaining cases fixed by cyclic permutation of indices. Then the
algebra is given by

[h1,42) = 1bs;  [K1, Ka] = 43, (195)

with cyclic permuation of indices, and

(1, K] = K3y [, Ko = 2(a1 — as). (196)

For the algebra induced by the diagonal generators ay, we have

A~

[a1, K] = 0; [&1,f(2] = {y; [dl,f(:a] = —3;
[&1,%] =0; [&1,%] = Ko; [dl,%] = —Ks;

las,aq] = 0. (197)

We will now transform into a new basis where the representation theory can
readily be constructed. Making the definition
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M} =dp+ Ky My =1y — Ky, (198)

we obtain the following algebra

(a1, M{"] = [an, My} = 0;

(a1, M) = £M5 [an, M| = M

(M, M) =2M5; M, My ] =0
[My7, My | =2Mg75 [M", My ] = 2(as — as), (199)

with the remaining determined by cyclic permuation of indices. Defining
€12 = €23 = €31, and €4 = —¢€4¢, we can write the algebra in the following
compact form

lag, M ] = tepg My [My, M| = 2ep0, M7

(M}, M| = 2655 1gap (a0 — @p);  [ay,ag] = 0. (200)

From the sixteen generators of this algebra, the diagonal elements form the
maximal abelian subalgebra. We will see in Paper XIII that the diagonal
elements are degrees of freedom duitable for the instanton representation as
well as its quantization. The remaining elements, since they do not com-
mute, will be associated with unphysical motions which can be eliminated
upon implementation of the initial value constraints.
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