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Abstract

In this paper we present various geometric structures induced by the
instanton representation of Plebanski gravity, to solidify the conceptual
foundations which will be needed for future papers in this series. The
main theme is the relation of these structures to integrability as regards
the Gauss’ law constraint and the existence of holonomic coordinates
on configuration space.
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1 Introduction

In this paper we examine in depth some of the geometric structures induced
by the instanton representation of Plebanski gravity. This is mainly to put
in place some of the conceptual foundations which will be needed for fu-
ture papers, including Papers VII, VIII and XIII, and the papers that build
on them. Since Paper VII deals with the rectangular form of the Gauss’
law constraint, we will be concerned with the integrability of this constraint
in the construction of solutions. Section 2 examines to a certain extent
some restrictions which may be imposed on the configuration space Aa

i as
a result of integrability considerations. From Paper II, the gauge-invariant,
diffeomorphism-invariant aspects of the theory are captured by the eigen-
values λf of the CDJ matrix. The aspects related to the coordinate system
and the gauge are contained within the connection Aa

i , which in the instan-
ton representation is a configuration space variable. More fundamentally,
we will regard Aa

i as being a derived quantity from the magnetic field Bi
a,

which in turn is derived from the set of three linearly vector fields whose
integral curves form a congruence filling 3-space Σ. Section 3 introduces the
magnetic helicity density matrix Cae = Aa

iB
i
e, which is motivated by analogy

to fluid dynamics and to abelian gauge theory. This matrix plays a role in
the integrability of the Gauss’ law constraint and in the canonical structure
of the instanton representation. Section 4 examines the Riemannian struc-
ture implied by the magnetic field Bi

a, without regard to any additional
structures. In section 5 we examine the physical interpretation of Bianchi
minisuperspace models within the context of the instanton representation.
Since the metric in the instanton representation is a derived quantity, then
there are no isometries of 3-space to preserve and consequently there are
no Bianchi groups in this representation. Hence minisuperspace for the
instanton representation has been re-defined. Nevertheless, the instanton
representation admits a generalization of the minisuperspace concept to the
full theory, which we address in this paper. Section 7 examines the induced
metric as an additional structure on top of the magnetic field, which brings
in the CDJ matrix. In section 8 we take a cursory look at the canonical
structure of the instanton representation, and the notion of globally holo-
nomic coordinates, in preparation for Paper XIII. The nonholonomic sector
of configuration space implies a certain algebra of momentum vector fields,
which we compute. The abelian part of this algebra provides variables suit-
able for quantization, which we relegate to separate papers.
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2 Integrability restrictions due to choice of coor-

dinates

Say that one wanted to solve the first order partial differential equation

3∑

j=1

Bj(x)
∂Ψ

∂xj
= Q(x) (1)

for a function Ψ = Ψ(x) on a 3-dimensional spatial manifold Σ, where
Bj ∈ C1Σ and Q ∈ C∞(Σ). One could attempt to determine the integral
curves of the vector field

Bj(x) =
(
B1(x), B2(x), B3(x)

)
(2)

defined by Bj(x). Let γ(t) be an integral curve of ~B parametrized by a
parameter t. Then one has that

d

dt
Ψ(γ(t)) =

3∑

j=1

Bj(γ(t))
∂

∂xj
Ψ(γ(t)). (3)

According to the theory of first order differential equations, solving (1) is
entirely equivalent to solving the ordinary differential equation

d

dt
Ψ(γ(t)) = Q(γ(t)). (4)

To solve (1), one must specify Ψ(0, x) on a two dimensional hypersurface
S ∈ Σ, and solve (4) along each integral curve. If the surface S is a non-
characteristic surface, then the theory of differential equations guarantees
locally the existence of a unique solution.1 One could then construct the
solution along the congruence of flow lines of ~B by

Ψ(t) =
( d
dt

)−1
Q(γ(t)) ≡ Ψ(0) +

∫ t

0
dt′Q(γ(t′)), (5)

where Ψ(0) ∈ Ker{d/dt} is the boundary data on S. Equation (5), in an
abuse of notation, makes sense provided that the differential operator d

dt is
invertible along the curve γ(t), and provided that Q is defined on γ.

1A necessary condition is that the vector field Bi∂i be nowhere tangent to S.
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Now let us generalize (1) to involve three of vector fields Bi
a = Bi

a(x)
labelled by the index a = 1, 2, 3, where one wishes to solve the triple of
equations

ve{Ψae} =

3∑

i=1

Bi
e(x)

∂Ψae

∂xi
= Qa(x) (6)

for Bi
a ∈ C0(Σ) and Qa ∈ C∞(Σ). The columns of Bi

a, seen as a 3 by 3
matrix with i labelling the rows and a the columns, define three vectors
which form a tetrahedron at each point of 3-space Σ,

Bi
a =




B1
1 B1

2 B1
3

B2
1 B2

2 B2
3

B3
1 B3

2 B3
3


 .

Corresponding to these vectors are three vector fields va = Bi
a∂i which

define three directional derivatives at each point. Equation (6) defines the
divergence of Ψae along the integral curves of each va. We would like to
parametrize each curve by a parameter ta for a = 1, 2, 3, which can serve as
local coordinates.2 Then the differential equations become

ve{Ψae} =
d

dte
Ψae(~γ(~t)) = Qa(~γ(~t)). (7)

The notation ~γ(~t) signifies that there are three congruences of integral
curves, and each index a corresponds to a particular choice of curve along
which to propagate the solution. Equation (7) is integrable if the index a
takes on only a single value, which under fairly general circumstances glob-
ally defines the coordinate ta. In the generalization to three dimensions, we
would like to be able in some sense to suitably define the object v−1

a . Then
v
−1
a becomes an operator, which has the ability to act on any function as a

kind of propagator along the ath direction through any point.3

If there exist local coordinates ta ≡ (t1, t2, t3) along the flow lines defined
by Bi

a, then would be able to write

dx

dta
= B1

a :
dy

dta
= B2

a;
dz

dta
= B3

a (8)

2This assumes that the vector fields corresponding to Bi
a form a congruence of flow

lines which fill Σ, such at each point there is a unique intesection of three integral curves
with linearly independent tangent vectors v1, v2 and v3.

3In the case that Bi
a = δia, the vector fields va denote differentiation ∂a along the

axes of a Cartesian coordinate system. In this case the inverse ∂−1
a , which corresponds to

antidifferentiation, is globally well-defined. We would like to generalize this concept, to
the extent feasible, to non-Cartesian coordinate systems.
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for a = 1, 2, 3. Equations (8) determine a set of characteristic curves along
which one would like to evolve the boundary data according to the starting
differential equation (7). Equation (8) yields

dx

B1
a

=
dy

B2
a

=
dz

B3
a

, (9)

three equations for each a, which implies that

dy

dx
=
B2

a

B1
a

= fa(x, y);
dz

dx
=
B3

a

B1
a

= ga(x, z), (10)

where fa and ga are arbitrary functions of two variables. Equation (10)
implies that

B2
a = B1

afa(x, y) : B3
a = B1

aga(x, z). (11)

As a consistency condition on (10), a third condition arising from (9) is that

dz

dy
=
B3

a

B2
a

= ha(y, z) =
ga(x, z)

fa(x, y)
. (12)

Since (12) must be entirely a fuction of y and z, therefore the x dependence
must cancel out.4 This in turn implies that

ga(x, z) = aa(x)ca(z) : fa(x, y) = aa(x)ba(y) −→ ha(y, z) =
ca(z)

ba(y)
(13)

for arbitrary functions aa(x), ba(y) and ca(z). The end result is that

B2
a(x, y, z) = B1

a(x, y, z)aa(x)ba(y); B3
a(x, y, z) = B1

a(x, y, z)aa(x)ca(z) (14)

where B1
a is an arbitrary function of three variables.

Letting the index a run through its values, which amounts to exhaus-
tively imposing the consistency requirements on integrability, one finds that
Bi

a can be written in the form

4This is a rather restrictive condition. Later in this work we will learn how such curves
be generalized to three dimensions with the present conditions seen as projections onto
the (y, z) hyperplane, which can in general be parametrized by x. A similar note holds
for the different cyclic permutations.
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Bi
a = Iij(δjaB

a
a) =




1 (a2b2)
−1 (a3c3)

−1

a1b1 1 b3c
−1
3

a1c1 c2b
−1
2 1







B1
1 0 0
0 B2

2 0
0 0 B3

3


 .

To standardize the notation, we will redefine the entries so that Bi
a =

IijδjaB
a
a , given in matrix form by

Bi
a =




1 a2(x)b2(y) a3(x)c3(z)
a1(x)b1(y) 1 b3(y)c3(z)
a1(x)c1(z) b2(y)c2(z) 1







B1
1(x, y, z) 0 0

0 B2
2(x, y, z) 0

0 0 B3
3(x, y, z)


 .

The matrix on the left Iij encodes the consistency conditions on integra-
bility, which consititues nine arbitrary functions aa(x), ba(y) and ca(z) for
a = 1, 2, 3. The diagonal matrix Ba

a is not resctricted by integrability con-
siderations, and consists of three arbitrary functions of position.

One clear case where the coordinates ta ∈ Σ′ exist is when there exists
a passive diffeomorphism Σ → Σ′, as in

(x, y, z) →
(
t1(x, y, z), t2(x, y, z), t3(x, y, z)

)
. (15)

Where the Jacobian matrix of this map exists, (15) induces a map Tp(Σ) →
Tp(Σ

′) between the tangent spaces

d

dta
=
dx

dta
∂

∂x
+
dy

dta
∂

∂y
+
dz

dta
∂

∂z
. (16)

One then identifies Bi
a = dxi

dta , whence the set of diffeomorphisms Σ → Σ
forms an equivalence class of Bi

a. Note that the configuration B
i
a are derived

objects from va upon the choice of a coordinate system xi, via the relations
Bi

a = va{xi}.5 The vector fields va are defined as the tangent vectors to
the set of (linearly independent) triples of congruences of integral curves ~γ,
which fill 3-space Σ.

5This is true irrespective of the existence of coordinates ta.
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2.1 Derivation of the connection from the magnetic field

In the instanton representation of gravity Bi
a will play the dual role of a

nonabelian magnetic field, which is a dynamical variable. Since we would
like to treat the vector fields va as more fundamental, then this raises two
main questions: (i) First, does the identification of Bi

a with integral curves
of va make sense for gravity, and does it restrict the space of solutions in any
way (ii) Secondly, to what extent can (15) be relaxed where the operator
v
−1
a is still meaningful. The practitioner has the capability to examine these

questions for each choice of Bi
a, which a-priori determines the allowable Bi

a.
Every nonabelian gauge potential Aa

i , defines a magnetic field Bi
a

Bi
a = ǫijk∂jA

a
k +

1

2
ǫijkfabcA

b
jA

c
k (17)

which satisfies the Bianchi identity DiB
i
a = ∂iB

i
a + fabcA

b
iB

i
c = 0, where Di

is the gauge covariant derivative with respect to Aa
i . Consider the inverse

problem to (17) namely, given an arbitrary Bi
a ∈ GL(3), with respect to

what potential Aa
i is Bi

a a magnetic field such that the Bianchi identity is
satisfied? It is shown in [9] for SU(2) Yang–Mills theory, an algorithm for
constructing the connection Aa

i = A[ ~B] given Bi
a. We will display the main

steps here for completeness.
The spatial components of Bi

a are 3-vectors in internal space given by

~B1 = ∂2 ~A3 − ∂3 ~A2 + ~A2 × ~A3;

~B2 = ∂3 ~A1 − ∂1 ~A3 + ~A3 × ~A1;

~B3 = ∂1 ~A2 − ∂2 ~A1 + ~A1 × ~A2. (18)

In the notation for this section the numerical subscripts refer to spatial
components of the vectors, and we will suppress the internal indices. First,
one writes the first and second lines of (18) in the form6

∂3 ~A2 = ∂2 ~A3 + ~A2 × ~A3 − ~B1 = − ~B1 +D2
~A3;

∂3 ~A1 = ∂1 ~A3 − ~A3 × ~A1 + ~B2 = ~B2 −D1
~A3. (19)

Equation (19) treats ~A1 and ~A2 as the unknowns, for given ~A3, ~B1 and
~B2. We will now eliminate ~A3 by finding ( ~A3)‖ and ( ~A3)⊥, its components

parallel and perpendicular to ~B3

~A3 = α~B3 + ~A3⊥ (20)

6Also, the notation Di = ∂i + ~Ai signifies the gauge covariant derivative using ~Ai as a
connection.
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The dot product of ~B3 with (20) is given by

~A3 · ~B3 = α| ~B3|2, (21)

where we have used ~B3 · ~A3⊥ = 0. To eliminate ~A3⊥ we will take the cross
product of ~B3 with (20).

The magnetic field Bi
a must satisfy the Bianchi identity, given by

~A3 × ~B3 = −∂i ~Bi − ~A1 × ~B1 − ~A2 × ~B2. (22)

Taking the cross product of ~B3 with (22) and using triple vector identities
for the left hand side, we have

~B3 × ~A3 × ~B3 = ~A3| ~B3|2 − ~B3( ~B3 · ~A3) = | ~B3|2( ~A3 − α~B3) (23)

where we have used (21). Equation (23) in conjunction with (22) yields

~A3 = α~B3 − ~B3 × ~M, (24)

where we have defined

~M =
1

| ~B3|2
~B3 ×

[
∂i ~Bi + ~B3 × ~A1 × ~B1 − ~B3 × ~A2 × ~B2

]
= ~M( ~Bi; ~A1, ~A2).(25)

To eliminate α, the parallel component of ~A3, will require a few steps. First
take the dot product of ~B3 with (22), which vanishes

− ~B3 · ( ~A3 × ~B3) = ~B3 · (∂i ~Bi) + ~B3 · ( ~A1 × ~B1) + ~B3 · ( ~A2 × ~B2)

= ~B3 · (∂i ~Bi) + ~A1 · ( ~B1 × ~B3) + ~A2 · ( ~B2 × ~B3) = 0. (26)

Next we will act on (26) with ∂3, using equation (19) to replace the ∂3 ~A1

and ∂3 ~A2 terms. This yields

∂3[ ~B3 · (∂i ~Bi)] + ~A2 · ∂3( ~B2 × ~B3) + ~A1 · ∂3( ~B1 × ~B3)

+( ~B2 × ~B3) ·D2
~A3 + ( ~B3 × ~B1) ·D1

~A3 − 2( ~B2 × ~B3) · ~B1 = 0. (27)

Next, put ~A3 from (24) into (27). The coefficients of all terms with deriva-
tives acting on α vanish, since they are of the form ~B3 · ( ~B2 × ~B3) and
~B3 · ( ~B3 × ~B1). This provides an algebraic solution
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α =
−∂3[ ~B3 · (∂i ~Bi)] + 2( ~B2 × ~B3) · ~B1 +

(
( ~B2 × ~B3)D2 − ( ~B3 × ~B1)D1

)
· ( ~B3 × ~M)

(
( ~B2 × ~B3)D2 − ( ~B3 × ~B1)D1

)
· ~B3

(28)

with ~M given by (25). Note that α = α( ~Bi; ~A1, ~A2) is independent of ~A3.
Substituting (28) back into (24) gives us

~A3 = ~A3( ~Bi; ~A1, ~A2) = α( ~Bi; ~A1, ~A2)− ~B3 × ~M( ~Bi; ~A1, ~A2). (29)

Substituting (29) back into (19) we obtain

∂3 ~A1 = ~B2 −D1{ ~A3( ~Bi; ~A1, ~A2)};
∂3 ~A2 = − ~B1 +D2{ ~A3( ~Bi; ~A1, ~A2)}. (30)

Equation (30) is a set of six partial differential equations for the compo-
nents of ~A1 and ~A2. Given boundary data ~A1(x, y, 0) and ~A2(x, y, 0) on
the hyperplane z = 0, and given all the components of the magnetic field
Bi

a = Bi
a(x, y, z) for all (x, y, z) ∈ Σ, equation (30) guarantees the existence

and uniqueness of ~A1(x, y, z) and ~A2(x, y, z). Putting the resulting solution
back into (29) provides ~A3 = ~A3(x, y, z).

The final result is that given any Bi
a and boundary data for Aa

1 and
Aa

2, this uniquely determines the Aa
i , everywhere in Σ, which is the gauge

connection such that Bi
a satisfies the Bianchi identity with respect to Aa

i .
7

For the purposes of the instanton representation we will restrict attention
to Bi

a consistent with the integrability of the Gauss’ law constraint.

7Note that there are no Gribov ambiguitites in Aa
i .
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3 Magnetic helicity density matrix

In addition to Bi
a there is another quantity Cae which arises in the instanton

representation. This is the magnetic helicity density matrix, defined as8

Cae = Aa
iB

i
e = ive(A

a), (31)

where ve = Bi
e∂i and A

a = Aa
i dx

i are the corresponding vector fields and one
forms, which are coordinate-independent. For nondegenerate connections
Aa

i , the magnetic field Bi
a is component form can be written as

Bi
a = ǫijk∂jA

a
k + (A−1)ia(detA). (32)

The first term of (32) corresponds to the curvature of three separate U(1)
gauge fields indexed by a, and the second term is a correction encoding the
nonabelian nature of the field. Using (32), the magnetic helicity density Cae

for these configurations takes on the form

Cae = ǫijkAe
i∂jA

a
k + δae(detA). (33)

Using the properties of determinants of nondegenerate three by three ma-
trices, (33) can be written as

Cae = (detA)
[
δae + ǫagh(A−1)jg(A

−1)kh∂jA
e
k

]
. (34)

Define vector fields va = (A−1)ia∂i, constructed from the connection Aa
i .

The vector fields va satisfy the commutator bracket

[va,vb] = hcabvc, (35)

with structure functions hcab are given by

hcab = (A−1)ma vb{Ac
m} − (A−1)mb va{Ac

m} = 2Jc
[ab], (36)

where Jc
ab = (A−1)ma vb{Ac

m}. By the Frobenius theorem, the existence of hcab
implies the integrability of the vector fields va. From the structure functions
construct the following objects

8Using the results of the previous section, Cae is actually a derived quantity form Bi
a.

But it is convenient to define this quantity, since it is coordinate-independent.
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nae ≡ 1

2
ǫ(ahgh

e)
gh; aa = hbba (37)

Then (34) can be written in the form

Cae ≡ (detA)Uae = (detA)
(
δae + ǫabchebc

)
. (38)

Hence the object Uae contains a part intermingled with the integrability
properties of a coordinate system, and a part free of the coordinate system.
From the Bianchi identity

∂jB
j
a + fabcA

b
jB

j
c = 0 (39)

one obtains

(B−1)bivb{Bi
a}+ fabeCbe = 0 −→ hbba = aa = −fabeCbe (40)

which provides the interpretation of the antisymmetric part of the magnetic
helicity density as the trace of the structure functions.

The Gauss’ law constraint in the instanton representation is given by

we{Ψae} = ve{Ψae}+ Cfg
a Ψfg, (41)

where Ψfg ∈ SO(3, C)⊗ SO(3, C) is the CDJ matrix. We have defined the
object

Cfg
a =

(
fabfδge + febgδaf

)
Cbe (42)

from the magnetic helicity density. Equation (41) can also be written in the
form

Ga = CT
eb

(
δaf δegvb + fabf δge + febgδaf

)
Ψfg. (43)

For CT
eb ∝ δeb, then only the part of (43) involving vector fields survives and

Ga can be straightforwardly integrated. Any departure from isotropy for
Cbe could potentially present an obstruction to this integrability.
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3.1 Physical interpretation of magnetic helicity density

The term ‘magnetic helicity density’ can be motivated by analogy to Maxwell
theory, where one defines the magnetic helicity for an abelian gauge field ~A
with curvature ~B = ~∇× ~A by

h =

∫
~A · ~Bd3x. (44)

The Gauss’ linking formula is given by

L =
1

4π

∫

Σ
d3x

∫

Σ
d3y ~B(x) ·

(
~B(y)× ~x− ~y

|~x− ~y|3
)
, (45)

which measures the self-linkage, or number of times the field ~A winds around
itself. Note that the following field ~A may be defined

~A(x) =
1

4π

∫

Σ
d3y ~B(y)× ~x− ~y

|~x− ~y|3 , (46)

such that ∇ · A = 0 and ~B = ∇× ~A. Then ~A is the gauge potential in the
Coulomb gauge corresponding to the magnetic field ~B. Hence one sees that
the Gauss’ linking number (45) is the same in this gauge as the magnetic
helicity (44).

In the generalization to gravity there are two modifications in relation
to the abelian theory. The isotropic contribution (detA) to (33), which is
free of spatial gradients, does not play a role in the linkage of magnetic field
lines. Hence any self-linkage is confined to the spatial gradient terms. Since
these latter terms correspond to three independent U(1) gauge fields, we
may extend the concept of (46) as follows

Cae ≡
1

4π

∫

Σ
d3yǫijkB

i
a(x)

( ~x− ~y

|~x− ~y|3
)
Bj

e(y). (47)

The magnetic helicity density matrix encodes the linkage between Bi
e(x)

and Bi
a(y) for all y ∈ Σ. This includes not only self-linkage, but also the

linkage between the different internal components of Bi
a. It is a measure of

the extent to which the magnetic field lines wind around themselves.
For example if one chooses

Bi
a(x) =

(dxi
dta

)
δ(3)(x− x(γ(~t))) ≡ Bi

a(γ(~t)) (48)

11



to be the restriction of Bi
a to one dimensional curves parametrized by ta

along these directions, then the linking number for these curves is

L(γ, γ′) =
1

4π

∫

γ
dta

∫

γ′

dt′
e
ǫijk

(dxi
dta

)
γ

( ~x− ~y

|~x− ~y|3
)( dyi
dt′e

)
γ′

, (49)

which can be written as

L(γ, γ′) =

∫

γ
dta

∫

γ′

dteCae. (50)

Hence, the helicity can be seen as a direct measure of the tendency of the
integral curves of the vector fields va ∼ d

dta to wind around themselves. In
a certain sense we will regard ~γ, the set of congruences of integral curves, as
fundamental. Then Bi

a = va{xi} amounts to a choice of cooridnate xi. The
magnetic field Bi

a are simply the components of va expressed in a basis of
the tangent space Tp(Σ).

The magnetic helicity density defines a three form

Caed
3x = Aa ∧ dAe + δae(detA)d3x. (51)

From (51) one sees that the connection one forms of Cae forms a Pfaff
sequence (Aa, dAe, Aa ∧ dAe). We will see that these terms characterize the
cumulative self-linkage of dAa, the Abelian part of the magnetic field Bi

a.
It is known from the theory of exterior differential systems [10] that the
vanishing of topological torsion τ = Aa ∧ dAa, with no summation over a, is
a necessary condition for a process defined by Aa to be thermodynamically
reversible. In the case of gravity the analogue of topological torsion is a 3
by 3 matrix τae = Aa ∧ dAe.

Helicity density may in some cases constitute an obstruction to the abil-
ity to solve the Gauss’ law constraint Ga, which may be seen as follows. If
the integral curves ~γ are homeomorphic to the three coordinate directions of
R3, then the inversion of vector fields v−1

a may be well defined in the sense of
antidifferentiation with respect to the parameters ta denoting location along
these curves. If magnetic helicity distorts the integral curves so that they
are no longer topologically equivalent to R3, then the integrability might be
in jeopardy. So we will see that a sufficient condition for integrability is that
the helicity density be zero.9

It is always possible to choose Bi
a such that the vector fields va are

integrable. For example, one may regard the atlas of Σ, namely the set

9This is not a necessary condition, as there are various examples where the Gauss’ law
constraint is integrable with Cae 6= 0 (See e.g. Paper VII).
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of all coordinate charts, as being fundamental. Then Bi
a can be derived

for a given chart from the congruence of integral curves for each of the
directions.10 With each pair of charts is associated a homeomorphism φi
from Σ to the local coordinates in that chart. The magnetic field may be
locally derived from the transition functions φi ◦φ−1

j via the derivative map

J =
(∂xi
∂te

)
(52)

which defines the Jacobian of the transformations. For detB 6= 0 and
detB < ∞, the transition maps correspond to passive diffeomorphisms.
Hence a procedure to ascertain solubitility of Ga is, given Bi

a find Aa
i and

then compute Cae for this configuration, for all configurations. The well-
defined configurations can be a-priori determined and used to construct
solutions.

10Integrability may in some cases be restricted to a subset of Σ, if the choice of integral
curves does not cover Σ.
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4 Riemannian structure induced by the Ashtekar

magnetic field

4.1 Nonorthogonal coordinate systems

Thus far, we have defined on 3-space Σ a magnetic field Bi
a ∈ C∞(Σ),

constructible from a potential Aa
i such that the Bianchi identity is satisfied.

But one may regard the integrals curves ~γ as fundamental, with Bi
a derived

from va upon choice of coordinates xi via the relation

Bi
a = va{xi}, (53)

whence the vector fields act on the coordinate functions. The vector fields
va = Bi

a∂i constructed from Bi
a satisfy the Lie bracket

[va,vb] = heabve (54)

with ‘structure functions’ heab given by

heab = (B−1)ej
(
Bi

a∂iB
j
b −Bi

b∂iB
j
a

)
= (B−1)ejv[a{Bj

b]}. (55)

The integrability condition for va is given by the theorem of Frobenius,
which is the condition that if there exist such functions heab(x) such that
(55) holds, then the vector fields va are tangent to some k dimensional
submanifold of Σ, where 0 < k ≤ 3 [6]. From (55), one sees that a necessary
condition for the existence of such an integral manifold is that (B−1)ia exists,
which requires detB 6= 0.

The vector fields va admit an interpretation in terms of nonorthogonal
coordinate systems. First, one makes the loose identification of the basis
vectors ∂i and corresponding co-vector one-forms dxi spanning the tangent
and cotangent spaces, Tp(Σ) and T

∗
p (Σ) respectively, with counterparts

va = Bi
a

∂

∂xi
; θ

a = (B−1)ai dx
i. (56)

The vector fields va define the rate of change of a function in any of the
three internal directions defined by Bi

a, with dual one-forms θa such that

〈
dxi

∣∣ ∂
∂xj

〉
= δij −→

〈
θ
a
∣∣vb

〉
= δab . (57)

We would like to construct a local internal coordinate system using te ≡
(t1, t2, t3) as coordinates, which ascribes to va an equivalent interpretation
via integral curves Bi

e ∼ dxi/dte. One could then write
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te(~x) = te(0) +

∫ x

0
dyj(B−1(~y))ej , (58)

and for nongegenerate Bi
a, the map xi ↔ te would be invertible.

A sufficient condition for the existence of the coordinate system te can
alternatively be expressed in inverted form

∂te

∂xi
= (B−1)ei . (59)

Due to the commutativity of the coordinate differential operators [∂i, ∂j ]t
e =

0, (59) leads to the condition

∂j(B
−1)ei − ∂i(B

−1)ej = 0. (60)

Upon contraction of (60) with Bi
gB

j
h and comparison with (55), one finds

Bi
gB

j
h

(
−(B−1)fi (∂jB

k
f ) + (B−1)fj (∂iB

k
f )
)
(B−1)ek = hehg = 0, (61)

or that the structure functions hehg must all vanish, which amounts to a

restriction on the allowable Bi
a. In the language of differential forms, this

implies that the one form θ
a while not in general exact, must be closed dθa =

0. Whether closed or not closed, a necessary condition for the integrability
of θa is that the topological torsion be zero [8], namely that

θ
a ∧ dθa = 0. (62)

with no summation over a.
However there might be at least three obstructions to the ability to write

(58), aside from the issue of path dependence of the integral. First, if the
configuration Bi

a results in the self-intersection of integral curves, then the
tangent vectors would be ill-defined at the intersection points. Secondly, the
coordinates te might not be globally defined in Σ.11

A third obstruction might arise when one wishes to invert ‘twisted’
vector fields of the form wa = va + aa, for an arbitrary aa ∈ C∞(Σ). The
commutator bracket becomes

11In the first case, one then confines oneself to configurations which avoid self-
intersections, which includes smooth fields Bi

a ∈ C∞(Σ). In the second case, one may
confine oneself to a neighborhood on which ta is locally defined, when solving equations
using these vector fields. The issue of path dependence of (58) can be addressed by
restricting the allowed paths of integration to integral curves of Bi

a.
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[wa,wb] =
[
va + aa,vb + ab

]
= hfabvf + Fab, (63)

which acquires a central extension Fab, given by

Fab = va{Cb} − vb{Ca}. (64)

However, if there exists a Kab
g such that Kab

g h
f
ab = δfg , then one obtains

[wa,wb] = hfabwf (65)

which closes as long as Kab
f Fab ∈ C∞(Σ). Then the twisted vector fields

would indeed be integrable.
In the general case where (60) is not satisfied, one can rewrite (55) as

Bi
gB

j
h

(
(B−1)fj ∂iB

k
f − (B−1)fi ∂jB

k
f

)
(B−1)ek = hehg. (66)

Upon transferring the terms outside of the brackets to the right, we obtain

∂j(B
−1)ei − ∂i(B

−1)ej = (B−1)gi (B
−1)hj h

e
hg (67)

which upon contraction with the two-form dxi ∧ dxj yields

dθe +
1

2
heghθ

g ∧ θ
h = 0. (68)

If hegh(x) were numerical constants, then they would correspond to the struc-

ture constants f egh for a Lie algebra, where Bi
a are the generators of the Lie

algebra. In this case (68) would reduce to the Maurer-Cartan equation. In
this paper we would like to examine the structures conferred upon Σ in the
general case when heab are not constants.

4.2 Teleparallel structure

Starting with a 3 dimensional Riemannian manifold Σ with metric gij , define

an isometry of gij by an infinitesimal coordinate transformation x′i = xi +
θaEi

a for some Ei
a ∈ GL(3, R), parametrized by parameters θa. The metric

gij must then satisfy the Killing equation

Ek
a∂kgij + glj∂iE

l
a + gli∂jE

l
a = 0. (69)
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From Ek
a one may construct a flat affine connection Γk

ij, such that

∂iE
j
b = −Em

b Γj
im. (70)

The flatness of Γk
ij can be verified directly by computation of its curvature

(E−1)bl [∂k, ∂i]E
j
b = ∂kΓ

j
il − ∂iΓ

j
kl + Γm

klΓ
j
im − Γm

il Γ
j
km = Rj

kil = 0, (71)

which vanishes due to commutativity of the partial derivatives, where we
have used (70). Substitution of (E−1)bm∂iE

j
b = −Γj

im into (69) yields

Ek
a

(
∂kgij − Γl

kiglj − Γl
kjgli

)
= 0 (72)

which upon multiplication by (E−1)am becomes recognized as the condition
that Γk

ij be compatible with the 3-metric gij

∇kgij = ∂kgij − Γl
kiglj − Γl

kjgli = 0. (73)

The connection Γi
jk is not unique, though its symmetric part Γk

(ij) is uniquely

fixed by gij through the relation [11]

Γk
(ij) =

1

2
gkm

(
∂igmj + ∂jgmi − ∂mgij

)
= −(E−1)b(i∂j)E

k
b . (74)

Multiplying Ek
a into (73) and summing over the index k, we have

3∑

k=1

Ek
a∂kgij −

3∑

k=1

Ek
aΓ

l
kiglj −

3∑

k=1

Ek
aΓ

l
kjgli = 0. (75)

The result is that every metric gij defines a flat connection Γk
ij constructable

from the generators of isometries for gij .
12 While the connection is flat, it

may still in general have a nonvanishing torsion.

T k
ij ≡ Γk

[ij] = (E−1)b[i∂j]E
k
b . (76)

Such spaces are known as teleparallel spaces [?] except in the case of the
Levi–Civita connection, which is torsion-free.

12Note, while Γk
ij is flat, the Levi–Civita part Γk

(ij) in (74) is not in general flat.
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4.3 Induced nonmetricity

We would like to make the extension Ei
a → Bi

a and analyze some possible
structures conferred on Σ by Bi

a. Since DiB
i
a = 0, then there exists an Aa

i

such that

Bi
a = ǫijk

(
∂jA

a
k +

1

2
fabcAb

jA
c
k

)
. (77)

Define an internal SU(2)− ⊗ SU(2)− metric by ηfa, where ηfa = ηae(~r)
are arbitrary functions of position in Σ. The metric ηfa induces a natural
metric H ij on Σ, determined from Bi

a via the relation

H ij = ηafB
i
aB

j
f . (78)

Also, (78) implies the following relations for nondegenerate Bi
a

Bj
fηfa = Hji(B−1)ai ; Bk

fηfa = Hki(B−1)ai . (79)

First, let us examine what sort of Riemannian structure may be obtained
from the structure functions heab. Multiplying (55) by ηfaB

k
f , we obtain

ηfa

(
Bk

fB
i
a∂iB

j
b −Bk

fB
i
b∂iB

j
a

)
= ηfah

e
abB

j
eB

k
f . (80)

We will now add (80) to its clone upon the replacement j ↔ k. Making use
of (78), this leads to

Hki∂iB
j
b +Hji∂iB

k
b −Bi

bηfa∂i(B
j
fB

k
a)

= heabB
k
e (B

j
fηfa) + heabB

j
e(B

k
fηfa). (81)

Using the Liebniz rule and making use of (79), we obtain

Hki∂iB
j
b +Hji∂iB

k
b −Bi

b∂iH
jk +Bi

bB
j
fB

k
a∂iηfa

= heab
(
Bk

eH
ji(B−1)ai +Bj

eH
ki(B−1)ai

)
. (82)

Multiplication of (82) through by (B−1)bm leads to the relation

∂mH
jk +

(
heabB

k
e (B

−1)ai (B
−1)bm − (B−1)bm∂iB

k
b

)
Hji

+
(
heabB

j
e(B

−1)ai (B
−1)bm − (B−1)bm∂iB

j
b

)
Hki = Bj

fB
k
a∂mηfa. (83)
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When the right hand side vanishes, for example for spatially homogeneous
ηfa, (83) would imply the existence of an affine connection Γ

j
im where

Γ
j
im = −(B−1)ai (B

−1)bmh
e
abB

j
e − (B−1)bm∂iB

j
b ≡ +(B−1)bm∇iB

j
b , (84)

compatible with the metric H ij . If one regards Bi
a as an element of a gauge

group, then Γ
j
im is a gauge transformation of the structure functions heab,

seen as a connection. The antisymmetric part Γj
[im] is the torsion, which is

essentially heab as seen in a different gauge

Γ
j
[im] = heabB

j
e(B

−1)ai (B
−1)bm − (B−1)b[m∂i]B

j
b ; Γ

j
(im) = −(B−1)b(m∂i)B

j
b .(85)

The inhomogeneous term (B−1)bm∂iB
j
b is pure gauge, where Bi

a is the gener-
ator of an isometry of the metric H ij in direct analogy to (70). Hence, the
internal indices a now exist on the same footing as the spatial indices i.

However, since the right hand side of (83) is in general nonvanishing,
then the connection Γ

j
im is not compatible with the metric H ij and therefore

the quantity Qjk
m = Bj

fB
k
a∂mηfa can be seen as a measure of nonmetricity

inherent in the theory.13 Thus, one can write

∂mH
jk − Γ

k
imH

ji − Γ
j
imH

ki = ∇mH
jk = Qjk

m . (86)

The interpretation of (84) as a gauge transformation can be justified by com-
puting the curvature associated with the inhomogeneous term (B−1)bm∂iB

j
b ,

which vanishes in direct analogy to (71). Hence, one should then expect
the curvature of Γi

jk to transform covariantly under ‘gauge’ transformations

induced by Bi
a.

While naively a nonmetric theory, one may nevertheless attempt to
phrase it in metric terms by associating a connection Γk

ij [H] with the part

of Γk
ij = Γk

ij [H] + qkij, which is compatible with the metric H ij , in direct
analogy to (74), and a remainder due to the nonmetricity, where

qkij =
1

2
Him

(
Qjk

m −Qmj
k −Qkm

j

)
. (87)

The the Riemann curvature tensor can explicitly be written in terms of the
nonmetricity as

Rj
kil[Γ] = Rj

kil[H] +Rj
kil[q] + Γm

klq
j
im + qmklΓ

j
im − Γm

il q
j
km − qmil Γ

j
km, (88)

where Rj
kil[H] is the part derived from the metric H ij .14

13In this case the nonmetricity is associated with the Riemannian structure implied by
the connection defined by the structure functions he

ab.
14Within the context of (70), the connection Γk

ij plays a subordinate role within a more
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5 Geometry: Full theory versus minisuperspace

5.1 Bianchi minisuperspace models

In the conventional approach to minisuperspace dynamics, one defines min-
isuperspace with respect to a Bianchi Lie group of isometries which acts
simply transitively on 3-space Σ [12]. The Killing vector fields Ka corre-
sponding to the isometry satisfy a Lie algebra

[Ka,Kb] = Cc
abKc, (89)

where Cc
ab = −Cc

ba are the structure constants of the Bianchi group. Associ-
ated with the Bianchi group are a set of left-invariant one forms ωa = χa

i dx
i,

which satisfy the Maurer–Cartan relation

dωa +
1

2
Ca
bcω

b ∧ ω
c = 0 (90)

with respect to the same structure constants Ca
bc. The dynamical variables

may then be expressed in this basis via

Aa
i = χa

Ia
I
i (t); σ̃ia = Ri

Ie
I
a(t). (91)

In (91), all spatial dependence is confined to within χa
I and invariant vector

fieldsRi
I , and aIi = aIi (t) and eIa = eIa(t) depend only on time. Equation

(91) excludes the full theory of general relativity, where there should be two
physical degrees of freedom per each point. In the instanton representation
of gravity, the full theory is incorporated using the connection as Aa =
Aa

i dx
i, which defines a configuration on which the Gauss’ law constraint

may be evaluated. It seems naively that this is tantamount identifying
ω

a ∼ Aa
i dx

i as the gauge connection itself. However, according to (90) the
curvature of ωa vanishes which would make Bi

a = 0.
Therefore the interpretation of minisuperspace within the Bianchi clas-

sification scheme is meaningless within the instanton representation, since it
implies a vanishing of the vector fields va. Conversely, the full theory eval-
uated on a non-gauge configuration would yield a nontrivial right hand side
to (90). Therefore we redefine minisuperspace to signify that the connection
Aa

i is spatially homogeneous in whatever coordinates it is expressed in.15 We
will see that (89) and (90) have direct analogues in the full theory, which
preserve the notion of non-gauge configurations. The main modification is
that we must allow the structure constants Ca

bc to be no longer constants,
but now functions of position.

general geometric structure.
15Note that spatially constant Aa

i is not necessary pure gauge.
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5.2 The full theory

In the instanton representation of Plebanski gravity the spacetime metric gµν
is not a fundamental quantity, but is derived. This means that there is no
a-priori spatial metric on 3-space Σ to preserve, and therefore no isometry.
We therefore lift the restriction of Ka in (89) from generators of isometries
to a triple of vector fields va = Bi

a∂i, promoting the structure constants Ca
bc

to the status of structure functions habc in the commutator bracket

[va,vb] = heab(x)ve. (92)

Given the above, then the question arises as to what for the instanton rep-
resentation plays the analogous role that the Bianchi group plays for min-
isuperspace. We will see that this role is played by the Ashtekar magnetic
field Bi

a ∈ GL(3) such that DiB
i
a = 0. In the instanton representation each

congruence ~γ defines vector fields va, which in turn define Bi
a corresponding

to each choice of coordinates. The ‘structure functions’ heab satisfying (92)
may be explicitly computed for each Bi

a via

heab = (B−1)ej
(
Bi

a∂iB
j
b −Bi

b∂iB
j
a

)
= (B−1)ejv[a{Bj

b]}. (93)

The invariant one form ω
a in (90) is a pure gauge connection, with vanishing

curvature F a[ω] = 0. However, the connection Aa = Aa
i dx

i is not flat, since
it has a curvature

F a = dAa +
1

2
fabcAb ∧Ac = ǫijkB

i
adx

j ∧ dxk 6= 0. (94)

In (94) fabc are not the structure constants for a general Bianchi group but
are the structure constants of a particular group, namely the left-handed
SU(2)− of the Ashtekar variables. Moreover, the connection Aa is not flat
and from (94) one can obtain all the structures necessary to construct solu-
tions to the Gauss’ law constraint Ga.

The Jacobi identity for the vector fields va is given by

[va, [vb,vc]] + [vb, [vc,va]] + [vc, [va,vb]] = 0, (95)

which implies the following condition on the structure functions

va{hebc}+ vb{heca}+ vc{heab}+
(
headh

d
bc + hebdh

d
ca + hecdh

d
ab

)
vd = 0. (96)

Since the vector fields are linearly independent by supposition, the the co-
efficient of vd must vanish
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headh
d
bc + hebdh

d
ca + hecdh

d
ab = 0, (97)

and the c-number term must independently vanish

va{hebc}+ vb{heca}+ vc{heab} = 0. (98)

Define ab ≡ heeb = −hebe as the trace of the structure functions. Then taking
the trace of (97) by summation over c = e yields

ve{heab} = va{ab} − vb{aa}. (99)

Decompose the structure functions as

heab = ǫabdn
ed +

1

2

(
δaeab − δbeaa

)
, (100)

where nef = nfe. This is in direct analogy to the decomposition of the
structure constant of a Lie algebra, except that af = af (x) and n

ef = nef (x)
are no longer constants, but functions of position. Note that

heabǫ
abf = 2nef + ǫfebab −→ nef =

1

2
h
(e
abǫ

abf). (101)

Additionally, note unlike the case in minisuperspace that nefaf needn’t be
zero in the full theory. Now act on (100) with ve, which yields

ve{heab} = ǫabdve{ned}+
1

2

(
va{ab} − vb{aa}

)
. (102)

Substituting (98), which comes from the Jacobi identity for the vector fields,
into (102), we obtain

va{ab} − vb{aa} = 2ǫabdve{ned}. (103)

Equation (103) is a set of three differential equations involving noncommut-
ing vector fields. This can be put into the matrix form




0 −v3 v2

v3 0 −v1

−v2 v1 0


 = 2




ve{ne1}
ve{ne2}
ve{ne3}


 .

The solution is given by
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af = −2Mfeve{nef}, (104)

where

Mfe =




0 −v3 v2

v3 0 −v1

−v2 v1 0




−1

= UV,

where we have defined

U =




v3v
−1
1 v2 − v2v

−1
1 v3 0 0

0 v1v
−1
2 v3 − v3v

−1
2 v1 0

0 0 v2v
−1
3 v1 − v1v

−1
3 v2


 ;

V =




1 v2v
−1
1 v3v

−1
1

v1v
−1
2 1 v3v

−1
2

v1v
−1
3 v2v

−1
3 1


 .

The result is that the structure functions heab in the full theory have only six
degrees of freedom per point, which are encoded in nef .

To see the physical interpretation of nef , let us construct the analogue
of the group metric for the full theory. This is given by

κab = headh
d
be =

(
ǫadrn

er +
1

2

(
δaead − δdeaa

))

(
ǫbesn

ds +
1

2

(
δbdae − δedab

))
= ǫbesǫadrn

ernds +
1

2
aaab

+
1

2

[
ǫbasn

dsas − ǫbesn
esaa + ǫabrn

erae − ǫaern
erab

]
. (105)

The first and third terms in the square brackets of (105) vanish due to
antisymmetry of the epsilon symbols, and the second and fourth terms vanish
since nef is symmetric. The result is that

κab = −(detn)(n−1)ab +
1

2
aaab, (106)

where we have used the properties of determinants of three by three matrices.
Putting in the result from (104), we have that

κab = −(detn)(n−1)ab + 2MagMbhve{neg}vv{nhf}. (107)

In minisuperspace nef are numerical constants, and the second contribution
to (107) is zero. Then κab reduces to the Cartan–Killing metric on a Lie
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algebra. The full theory has an additional contribution from terms involving
va, which are well-defined only on integrable confiurations. This shows that
in the full theory, af is dependent on nef which means that the structure
functions contain only six out of nine independent components per point.
Hence heab = haab[n], where degrees of freedom are encoded in the symmetric
object nef . For minisuperspace nef and af are spatially constant and anni-
hilated by the vector fields va. It is clear that af is in general nonvanishing
if one is considering the full theory. Comparion of (105) with the results of
Paper V suggest the identifications

heab −→ T k
[ij]; nef −→ Kij . (108)

This implies that the structure functions heab the projection of the torsion
of 3-space T k

ij = Γk
[ij] into SO(3, C), and that nef is the projection of the

exterior curvature into SO(3, C).

5.3 Differential geometry of Σ

Given what we have learned about the structures induced on Σ from the
integral curves ~γ, let us now formalize the differential geometry of Σ. First,
note that the vector fields va satisfy the relation

dva = (dBi
a)∂i = (B−1)bidB

i
avb ≡ ωb

avb. (109)

This can be expanded further, using θ
a = (B−1)ai dx

i to obtain

ωb
a = (B−1)bi (∂jB

i
a)dx

j = (B−1)bi (∂jB
i
a)B

j
cθ

c

= (B−1)bivc{Bi
a}θc ≡ Jb

caθ
c. (110)

Separation of (110) into symmetric and antisymmetric parts and comparison
with (109) implies

ωe
a = (heab + Je

(ab))θ
b. (111)

Since the antisymmetric part Je
[ab] ≡ heab is determined by the commutator of

vector fields va, then it remains the physical interpretation of the symmetric
part ωe

(ab).

Let us now introduce a metric g on Σ, such that g(va,vb) = va·vb ≡ mab.
Then we have

dg(va,vb) = ωc
ag(vc,vb) + ωc

bg(va,vc), (112)
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which implies the condition

dmab − ωc
amcb − ωc

bmac

= −
(
hcafmcb + hcbfmac

)
θ
f

+dma −
(
Jc
afmcb + Jc

bfmac

)
θ
f = 0. (113)

The coefficient of θf second line of (113) can be written as

hcafmcb + hcbfmac = hbaf + habf , (114)

which is zero if habc is totally antisymmetric in its indices. Then Ja
(bc) be-

comes the Levi–Civita connection compatible with the metric mab. Using
d = θ

f
vf , the condition of metric compatibility can be written in internal

indices as

vf{mab} − Jc
(af)mcb − Jc

(bf)mae = 0. (115)

The second exterior derivative of (109) yields

d2va =
(
dωc

a + ωb
a ∧ ωc

b

)
vc = Rb

avb, (116)

which defines the Riemann curvature of the metric mab. If one uses va as a
(non-orthonormal) basis of Tp(Σ), then a vector with components Ka would
be given by K = Ka

va. Equation (109) allows the covariant derivative to
be extended to vectors via the exterior derivative as

dK =
(
dKc +Kaωc

a

)
vc = (DK)cvc. (117)

The components of a contravariant tensor M of rank n is given by

Ma1a2...an =M(va1 ,va2 , . . . van). (118)

The relation of the vector fields va to the corresponding one forms θa =
(B−1)ai dx

i can be seen by exterior differentiation

dθa = −(B−1)aj (∂kB
j
b )(B

−1)bidx
k ∧ dxi = −(B−1)aj (∂kB

j
b )(B

−1)bi (B
k
c θ

c) ∧ (Bi
dθ

d)(119)

where we have used the definition of the one-forms θa. Equation (119) can
be written as
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dθa +
1

2
hacdθ

c ∧ θ
d = 0, (120)

which brings in the structure functions. With the structure functions for
θ
a the same as for va, one can make the identification of va as dual to

θ
a. Comparison of (120) with (90) show that the full theory generalizes the

concept of the Bianchi group to incorporate structure functions hcab. The
role of the Bianchi group for the full theory is played by the algebra of
smooth vector fields. Since, as we have shown, there are really six degrees
of freedom in habc, and from (93) heab is completely determined by Bi

a, then it
follows that only six degrees of freedom of Bi

a are relevant for the geometry
of Σ, with three D.O.F. unphysical.

A consistency condition on (120) can be found from the rearrangement
dθa = −1

2h
a
bcθ

b ∧ θ
c in conjunction with d2θa = 0, which implies that

(
vc{haef} −

1

2
habfh

b
ce −

1

2
hacbh

b
ef

)
θ
c ∧ θ

e ∧ θ
f = 0. (121)

Equation (121) can be seen as a generalization of the Jacobi identity for a
Lie algebra, where the structure constants f eab have been promoted to the
status of structure functions heab(x). This is the same identity as in (97),
(98) and (99).

The conclusion then is as follows. The analogue for the full theory of the
left invariant one forms for Bianchi groups is θa, which is a flat connection
in the sense of (120).

5.4 Generalized notion of integrability

Take any triple of one forms θ
a = uai dx

i, where uai ∈ C∞(Σ). Then θ
a

satisfies the equation

dθa = −1

2
habcθ

b ∧ θ
c, (122)

where habc = habc[u
−1] are the structure functions with respect to (u−1)ia, seen

as a magnetic field. These structure functions admit a decomposition

habc = ǫbcdn
da +

1

2

(
δab ac − δac ab

)
. (123)

The one forms θa define a Pfaff sequnce

Pfaff =
(
θ
a, dθa, θa ∧ θ

e, dθa ∧ dθe
)
. (124)
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The last term of (124) vanishes since it is a four form on 3-space Σ. The third
term defines the top 3-form of Σ, and is a kind of ‘generalized’ topological
torsion. This is given by

θ
a ∧ dθe = −1

2
hebcθ

a ∧ θ
b ∧ θ

c. (125)

Using θ
a ∧ θ

b ∧ θ
c = (detu)d3x for detu 6= 0, as well as (144), we have the

relation

θ
a ∧ dθe = −1

2
hebcǫ

abc(detu)d3x

= −1

2
(detu)

[
2nae + ǫaecac

]
d3x. (126)

The vanishing of topological torsion as a condition of integrability [8] τ =
θ
a ∧ dθa = 0 is simply the requirement that naa = 0, namely that the di-

agonal components of nef must vanish. In the application to the instanton
representation of Plebanski gravity we will be interested in the antisymmet-
ric part

ǫdaeθ
a ∧ dθe = −1

2
(detu)add

3x. (127)
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6 Minisuperspace versus the full theory: Revis-

ited

In the Bianchi classification of homogeneous spaces, one absorbs all spatial
dependence into invariant one forms given by

(
∂i(B

−1)ej − ∂j(B
−1)ei

)
Bi

aB
j
b = Ce

ab (128)

since the number of degrees of freedom (nine) is the same in either case.
The Bianchi group structure constants can be parametrized by

Ce
ab = ǫabfn

ef + δeaab − δebaa, (129)

where nef is symmetric and aa = Cb
ab is the trace of the structure constants,

which yields 3 + 6 = 9 degrees of freedom, the same as the number of
independent components of bia. In the general situation where the magnetic
fields are not numerically constant, one might be able to solve the Gauss’
law constraint by expansion about a known spatially homogeneous solution.
First, split the vector fields as follows va = va + ρ̂a, where va = Bi

a(x0)∂i ≡
bia∂i is the spatially homogeneous part. The remainder ρ̂a is given by

ρ̂a =

∞∑

n=1

1

n!
xi1xi2 . . . xin(bi1...in)

i
a∂i, (130)

where we have defined

bi1i2...in =
∂n

∂xi1 . . . ∂xin
Bi

a(x)

∣∣∣∣
x=x0

(131)

The inversion in a neighborhood of x0 then is given schematically by

v
−1
a = v−1

a − v−1
a ρ̂av

−1
a + v−1

a ρ̂av
−1
a ρ̂av

−1
a + . . . . (132)

The expansion (132) is reminiscent of the use of Riemann normal coordinates
in metric general relativity. To obtain an idea of the local structure of the
geometry induced, let us revisit the algebra of the vector fields

[
va,vb

]
= heabve. (133)

For Bi
a = bia, we have that heab = 0 for all e, a, b, which corresponds to a

locally flat space. The simplest nontrivial case occurs where Bi
a depends
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linearly on position Bi
a(x) = bia + (bk)

i
ax

k. One may envision a local neigh-
borhood of x0 such that all terms of O(x2) are negligible. From a power
counting argument of (133), one sees that in the linearized approximation,
the structure functions heab are numerically constant. Performing a Taylor
expansion, we have

heab(x) = heab(x0) +
∞∑

n=0

(hi1...in)
e
abx

i1 . . . xin . (134)

where we have defined

hi1...in =
∂n

∂xi1 . . . ∂xin
heab(x)

∣∣∣∣
x=x0

. (135)

The zeroth order term of (134) can then be identified with the structure
constants for a Lie algebra of vector fields consisting of linear Bi

a, as in
heab(x0) ≡ f eab. Using (92) after multiplication by Bj

h leads to the condition

(
bia + (bi1)

i
ax

i1
)
∂i
(
bjb + (bj1)

j
bx

j1
)

−
(
bib + (bi1)

i
bx

i1
)
∂i
(
bja + (bj1)

j
ax

j1
)
= f eab

(
bje + (bj1)

j
ex

j1
)
. (136)

Equating of the corresponding zeroth and first order terms in (136) leads to
the two equations

bia(bi)
j
b − bib(bi)

j
a = f eabb

j
e;

(bk)
i
a(bi)

j
b − (bk)

i
b(bi)

j
a = f eab(bk)

j
e. (137)

Elimination of the structure constants f eab from (137) yields the condition

(bk)
i
a(bi)

j
b − (bk)

i
b(bi)

j
a =

(
bia(bi)

m
b − bib(bi)

m
a

)
(b−1)em(bk)

j
e. (138)

Taking into consideration the antisymmetry in a, b, (138) constitutes 27
equations in 36 unknowns, which implies 9 degrees of freedom. This on first
sight seems an underdetermined system, however the choice of bia exhausts
nine of those degrees of freedom. This leaves remaining 27 equations in 27
unknowns which uniquely fix the first order term (bm)ia, and consequently
the structure constants f eab. The result is that the local value of the Ashtekar
magnetic field, which is freely specifiable, fixes the structure constants of a
corresponding Lie algebra.
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7 The induced metric

In the Ashtekar variables the connection Aa
i is a fundamental variable while

the contravariant three metric hij is is derived through the relation

hij =
σ̃iaσ̃

j
b

detσ̃
δab, (139)

which utilizes a flat metric δae for the internal SU(2)− space. The four
dimensional form of equation (139) defines a line element

ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj)

= −N2dt2 + δaeω
a
ω

e, (140)

where ω
a =

√
detσ̃(σ̃−1)ai (N

idt + dxi) and we have defined by (N,N i) the
laspe/shift combination. The instanton representation shifts status of dy-
namical variables from hij to the CDJ matrix Ψae. Equation (140) is based
on δae as the internal metric left invariant under triad rotation.

Using a 3 by 3 matrix Ψae ∈ SU(2)− ⊗ SU(2)−, let us define a new
internal metric

ηae ≡ (detB)(detΨ)(Ψ−1Ψ−1)ae. (141)

We can then absorb the configuration variable dependence into the one forms
by defining

(B−1)ai (dx
i +N idt) = θ

a + ηadt = ω
a, (142)

where ηa = N i(B−1)ai takes on the role of an SU(2)− valued shift function.
Hence upon taking into account the initial value constraints, (140) becomes
generalized to

ds2 = −N2dt2 + ηaeω
a
ω

e, (143)

where now ω
a = (

√
detB)(B−1)ai (dx

i +N idt). The spacetime metric gµν is
given in component form by

gµν =

(
−N2 + ηaeη

aηe ηaeη
e

ηeaη
a ηae

)
,

whence the internal SU(2)− manifold replaces 3-space Σ. Equation (143) has
the same form as the equations for minisuperspace models, where ω

a play
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the role of the left invariant one forms for the corresponding Bianchi group.
However it is the full theory, and ω

a should satisfy some generalization of
the Maurer–Cartan equations. To see this, first note that θa satisfies

dθa = −1

2
habcθ

b ∧ θ
c. (144)

Using dωa = dθa + dηa ∧ dt, we have

dωa = −1

2
habcθ

b ∧ θ
c + dηa ∧ dt. (145)

Substituting (142) into (145), we have

dωa +
1

2
habcω

b ∧ ω
c = −dt ∧Dηa, (146)

where Dηa = dηa + habcω
bηc. So we see that the presence of a shift vector is

yet another aspect which distinguishes the full theory from minisuperspace.
Since we would like to absorb all configuration space dependence into

the definition of the one forms, let us define a ‘densitized’ one form

θ̃a = (detB)1/2θa (147)

There we have

dθ̃a =
1

2
(detB)1/2(B−1)dm(∂nB

m
d )dxn ∧ θ

a + (detB)1/2dθa

=
1

2
(detB)1/2(B−1)dmvb{Bm

d }θb ∧ θa − (detB)1/2habcθ
b ∧ θc. (148)

Using (147), this can be written in the form

dθ̃a +
1

2
(detB)−1/2

(
habc − δacJ

d
bd

)
θ̃b ∧ θ̃c = 0. (149)

Defining ω̃a = θ̃a + η̃adt, we have

dω̃a = dθ̃a + dη̃a ∧ dt
= −1

2
(detB)−1/2

(
habc − δac J

d
bd

)
θ̃b ∧ θ̃c + dη̃a ∧ dt. (150)

The result is that

dω̃a +
1

2
(detB)−1/2

(
habc − δac J

d
bd

)
θ̃b ∧ θ̃c = −dt ∧Dη̃a. (151)
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7.1 Metric compatibility

Having defined the geometric structures, we will now make use of the fact
that Bi

a is a magnetic field. We will see that this requires the introduction
of a connection from which Bi

a can be constructed. The spatial 3-metric in
terms of the instanton representation variables is given by

hij = ηae(B
−1)ai (B

−1)ej(detB), (152)

where ηae is an internal SO(3, C) ⊗ SO(3, C) metric derived from the CDJ
matrix Ψae.

16 Let us now define a gauge covariant derivative

DkB
m
b = ∂kB

m
b + fbcdA

b
kB

m
c ≡ Γm

knB
n
b , (153)

which defines an affine connection Γk
ij on Σ. We will now take the gauge

covariant derivative of (152) using Dkhij = ∂khij , which uses the fact that
the spatial 3-metric does not transform under the gauge group. Hence we
have

Dkhij = ∂khij = (Dkηae)(B
−1)ai (B

−1)ej(detB)

+ηae(Dk(B
−1)ai )(B

−1)ej(detB) + ηae(B
−1)ai (Dk(B

−1)ej)(detB)

+ηae(B
−1)bm(DkB

m
b )(detB)(B−1)ai (B

−1)ej . (154)

Using the identity

Dk(B
−1)ai = −(B−1)am(DkB

m
b )(B−1)bi = (B−1)amΓm

knB
n
b (B

−1)bi = Γm
ki(B

−1)am,(155)

we have, upon defining the covariant derivative of hij with respect to the
affine connection,

∇khij = ∂khij − Γm
kihmj − Γm

kjhim

= (detB)(B−1)ai (B
−1)ejDkηae − hijΓ

m
km. (156)

Using (152), let us rewrite this in the form

∇khij = (detB)(B−1)ai (B
−1)ej

(
Dkηae − Γm

kmηae
)
. (157)

16The CDJ matrix Ψae is used to parametrize the physical degrees of freedom of general
relativity through implementation of the initial value constraints.
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A necessary condition that the connection Γi
jk be compatible with hij is

that Dkηae = Γm
kmηae, otherwise we would have a nonmetric theory. Let us

decompose this into symmetric and antisymmetric parts

Dkηae = (Γm
mk + 2Γm

[km])ηae. (158)

We see upon taking the trace of (153) that

DkB
k
b = −Γk

knB
n
b = 0, (159)

which is simply the requirement that Bi
a satisfy the Bianchi identity, namely

that it is a magnetic field of a connection Aa
i . Since we assume that Bi

a is
nondegenerate, then (159) implies that Γk

kn must be zero. Since Bi
A satisfies

the Bianchi identity, then the first term on the right hand side of (158)
vanishes and we have

Dkηae = 2Γm
[km]ηae. (160)

The result is that in order for the affine connection induced by the gauge field
Aa

i to be compatible with the metric hij whose curvature it is constructed
from, three conditions need to be met: (i) The metric connection Γa

ij must be

torsion-free. Hence Γi
[jk] = 0 which makes Γi

jk the Levi–Civita connection

for hij . (ii) Secondly, Bi
a must satisfy the Bianchi identity, which means

that it is the magnetic field for some connection Aa
i . (iii) The connection A

a
i

must be compatible with the internal metric ηae in the gauge sense. This
condition makes (160) within (158) vanish.

Since Aa
i defines a torsion-free metric compatible connection, the next

question is how one obtains a four dimensional geometry. Let us perform
the following decomposition of Aa

i

Aa
k = Γa

k + βK l
k(B

−1)al , (161)

where β is a numerical constant. Substituting (161) into (153), we have

DkB
m
b = ∂kB

m
b + fbcdΓ

c
kB

m
d + βfbcdK

l
k(B

−1)clB
m
d = Γm

knB
n
b . (162)

Next, impose the condition that Bi
a satisfy the Bianchi identity upon taking

the trace of (162). This yields

DkB
k
b = ∂kB

k
b + fbcdΓ

c
kB

k
d + βKmlǫ

lmn(B−1)bn(detB). (163)

Note for Kij an arbitrary symmetric matrix that Γa
i is also a gauge con-

nection for Bi
a. This introduces a Wu–Yang type ambiguity, which can be

resolved by fixing Kij to be the exterior curvature of Σ. This requires some
additional input from general relativity.
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7.2 Metric diagonalization

By exploiting the freedom to choose the a particular SO(3, C) frame di-
agonalizing the CDJ matrix Ψae, one can further reduce the metric to the
physical degrees of freedom. Starting from the CDJ Ansatz

σ̃ia = ΨaeB
i
e, (164)

rotate the free index a by a complex orthogonal transformation O = eθ·T to
obtain

σ̃′
i

a = Oaa′ σ̃
i
a′ = Oaa′Ψa′e′O

T
e′f ′(Of ′fB

i
f ). (165)

where λa ≡ (λ1, λ2, λ3) are the eigenvalues of Ψae. We will show in this
paper how one may choose the rotation angles ~θ such that Ψae satisfies all
of the initial value constraints, whence one diagonalizes Ψae to obtain

σ̃′
i

a = λaB
′i
a. (166)

The 3-metric can them be redefined by absorbing the complicated depen-
dence inherent in Oae into the one-forms ωa = ω

a[~λ, ~Ba]. The four dimen-
sional line element then becomes

ds2 = −N2dt2 +
3∑

a=1

λaω
a[~λ; ~Ba]ω

a[~λ; ~Ba]. (167)

When λa satisfy the required constraints of GR, then the metric gµν defined
by (167) should satisfy the Einstein’s equations by construction for nonde-
generate Bi

a. The only remaining task remains that of finding the angles ~θ.
We will see in the course of this paper that these angles acquire the interpre-
tation of the parameters corresponding to an equivalence class of nonlinear
Lorentz transformations taking one from the instrinsic frame of λa into the
frame explicitly solving the Gauss’ law constraint.
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8 Instanton representation of Plebanski gravity

We have seen, as a necessary condition for metric compatibility, that Bi
a

must be the magnetic field for a connection Aa
i . This means that it can be

written in the form

Bi
a = ǫijk∂jA

a
k + (detA)(A−1)ia. (168)

Equation (168) looks extremely close to the definition of Bi
a as a ‘densitized’

triad corresponding to Aa
i , seen as a triad, if not for the spatial gradient

term. Let us assume the existence of a triad eai , such that

Bi
a =

1

2
ǫijkǫabce

b
je

c
k. (169)

Then the spatial gradient term of (168) constitutes an obstruction to the
equality Aa

i ∼ eai . Next, let us examine the implications of the Bianchi
identity for the triad eai

DiB
i
a = ǫabce

b
j(ǫ

ijkDie
c
k) = 0. (170)

This implies that Aa
i is the spin connection for the triad eai . Defining σ̃ia =

1
2ǫ

ijkǫabce
b
je

c
k, we see that (169) can be written as

F a
ij = δaeǫijkσ̃

k
e , (171)

which corresponds to CDJ Ansatz which from Paper II is the spatial restric-
tion of one of Plebanski equations of motion. If we make the identification

F a
ij = Ψ−1

ae ǫijkσ̃
k
e −→ Bi

e = Ψ−1
ea σ̃

i
a, (172)

then we see from (169) that Ψ−1
ae = Λ

3 δae is the CDJ matrix for spacetimes
of Petrov Type O, which are conformally related to Minkowski or Euclidean
spacetime. This conclusion is borne out when one looks at the BF theory. To
obtain more general solutions, let us allows Ψae to be a function of position.
Hence we will include a massive spin two part

Ψ−1
ae = −Λ

3
δae + ψae, (173)

where ψae is Weyl, the antiself-dual part of the Weyl curvature. Since Bi
a is

still a magnetic field, then it must still satisfy the Bianchi identity. Taking
the gauge covariant divergence of (172), we have

35



DiB
i
e = Ψ−1

ea Diσ̃
i
a + σ̃iaD −Ψ−1

ea . (174)

Equation (174) expands into

Ψ−1
ea Diσ̃

i
a − σ̃iaΨ

−1
ef (DiΨfg)Ψ

−1
ga = 0. (175)

Multiplying by Ψde, we have

Diσ̃
i
d −Ψ−1

ga σ̃
i
a(DiΨdg) = Diσ̃

i
a −Bi

gDiΨdg = 0. (176)

Using the definition of the vector fields, this implies that

Diσ̃
i
a = wg{Ψdg} = 0. (177)

The left hand side of (177) is the Gauss’ law constraint on the densitized
triad, which is one of the initial value constraints of the Ashtekar variables. If
we require this to hold, then a necessary condition is that the right hand side
vanish, which is the Gauss’ law constraint in the instanton representation.
This is a total of three conditions on Ψae, which upon implementation should
leave behind an unconstrained ΨAe with two degrees of freedom per point.
Note that (173) satisfies the constraints

trΨ−1 + Λ = 0; ǫdaeΨae = 0; we{Ψae} = 0, (178)

which are the Hamiltonian, diffeomorphism and Gauss’ law constraints for
the instanton representation.

8.1 Canonical structure of the instanton representation

The basic variables for the instanton representation of Plebanski gravity are
(Ψae, A

a
i ), where Ψae ∈ SO(3, C) ⊗ SO(3, C) is the CDJ matrix and Aa

i is
the Ashtekar SO(3, C) connection. The canonical one form θInst is given by

θInst =

∫

Σ
d3xΨaeB

i
eδA

a
i , (179)

where Bi
a is the magnetic field for Aa

i . The integrand of (179) can be written
by eliminating the magnetic field Bi

e in favor of the magnetic helicity density
matrix Cbe
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ΨaeC
T
ef (A

−1)if Ȧ
a
i = Ψae

(
ǫmjkAe

m∂jA
f
k + δef (detA)

)
(A−1)if Ȧ

a
i . (180)

The last factor of (180) can be seen as the temporal component of a 4-vector

Jaf
µ = (A−1)if∂µA

a
i . If A

a
i is regarded as an element of the group GL(3, C),

where the indices i and a are placed on equal footing, then Jaf
µ is a flat

connection for this group. We can think of this as a one form

Jaf = (A−1)if
(
Ȧa

i dt+ ∂jA
a
i dx

j
)
= (A−1)if

(
δAa

i + ∂kA
a
i dx

k
)
, (181)

where the temporal variation Ȧa
i dt induces a functional variation δAa

i on
the configuration space of fields ΓInst. The spatial part Ja

fk = (A−1)if∂kA
a
i

has an antisymmetric part related to the structure functions of an algebra
of vector fields va = (A−1)ia∂i, where

[va,vb] = hcabvc. (182)

Just as the spatial part of Jaf
µ is involved in the integrability of va, we

will see that temporal part is involved in the canonical structure for (179).
Equation (179) is given in three form notation by

θInst =

∫

Σ
Ψae(detA)

(
(detA)−1Ae ∧ dAf + δefd3x

)
δXaf , (183)

which motivates the following definition of densitized momentum space vari-
able and left-invariant one forms

Ψ̃ae = Ψae(detA); δXae = (A−1)ieδA
a
i . (184)

We can now use the definition of topological torsion and structure functions
to obtain

∫

Σ
d3xΨ̃ae

[
δef + nef +

1

2
ǫefcac

]
δXaf . (185)

The condition Ae ∧ dAf = 0 implies that nef = af = 0, which is the
analogue for gravity of the vanishing of topological torsion. We will see
in Paper XIII that this enables one to obtain a canonical structure for the
instanton representation. In this case Uae = δae and the canonical one form
would be given by
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θ =

∫

Σ
d3xΨ̃af (x)δX

af (x), (186)

provided that δXaf ∈ ∧1(ΓInst) is a closed functional one form. According
to the Maurer–Cartan relations

δ2Xae +
1

2
faebfcgδX

bf ∧ δXcg = 0, (187)

therefore one does not have globaly holonomic coordinates on ΓInst except
when the structure constants are vanishing.17 Along with the one forms
δXae ∈ T ∗

X(ΓInst) in the cotangent space to configuration space ΓInst, come
vector fields δ/δXae = Ae

i δ/δA
a
i ∈ TX(ΓInst) living in the tangent space.

An action principle for the instanton representation of Plebanski gravity can
be obtained by smearing the constraints (178) with appropriate auxilliary
fields and appending to the canonical one form. This yields an action of the
form

IInst =

∫

Σ

(
Ψ̃aeẊ

ae − ξawe{Ψ̃ae(detA)
−1}

+ǫdaeη
dΨ̃ae − χ

(
Λ(detA)−1 + trΨ̃−1

))
. (188)

Equation (188) constitutes the fundamental starting point for the classical
and the quantum theory.

8.2 Algebra of vector fields

The algebra of vector fields forming the canonical structure of the instanton
representation of 4-D gravity is given by

[ δ

δXae(x, t)
,

δ

δXbf (y, t)

]
=

[
Ae

i (x, t)
δ

δAa
i (x, t)

, Af
j (y, t)

δ

δAb
j(y, t)

]

=
(
δaf

δ

δXae(x, t)
− δbe

δ

δXaf (x, t)

)
δ(3)(x, y). (189)

The triviality of the first cohomology group H1(ΓInst) = ∅, would imply the
existence of globally holonomic coordinates Xae. Defining Mae = δ/δXae,
we see that (189) is isomorphic to the algebra of GL(3, C)

17One clear case where τae = 0 is in minisuperspace, where the spatial gradients of
all fields are zero. Since all points are the same according to this definition, there is no
such thing as a magnetic linkage between points. Additionally, for diagonal Ψae it is more
straightforward to find configurations where τae vanishes, which is done in Paper XIII.
The issue of integrability brings us to consider the algebra of vector fields on functional
space ΓInst.
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[
Mae,Mbf

]
= δafMbe − δbeMaf . (190)

We will split the generators into symmetric, antisymmetric and diagonal
parts. First we have

[
M(ae),M(bf)

]
= δafM[be] − δbeM[af ] + δabM[fe] − δfeM[ab] (191)

and

[
M[ae],M(bf)

]
= δafM(be) − δbeM(af) + δabM(fe) − δfeM(ab), (192)

which have the same structure constants, and the subalgebra

[
M[ae],M[bf ]

]
= δafM[be] − δbeM[af ] − δabM[fe] + δfeM[ab], (193)

which is the algebra of SO(3). Note the difference in sign on the last two
terms of (193) in relation to (191) and (192). To visualize this algebra let
us define the following quantities

M[12] = ψ̂3; M(12) = K̂3; M(11) = 2â1, (194)

with the remaining cases fixed by cyclic permutation of indices. Then the
algebra is given by

[
ψ̂1, ψ̂2

]
= ψ̂3;

[
K̂1, K̂2

]
= ψ̂3, (195)

with cyclic permuation of indices, and

[
ψ̂1, K̂2

]
= K̂3;

[
ψ̂2, K̂2

]
= 2(â1 − â3). (196)

For the algebra induced by the diagonal generators âf , we have

[
â1, K̂1

]
= 0;

[
â1, K̂2

]
= ψ̂2;

[
â1, K̂3

]
= −ψ̂3;[

â1, ψ̂1

]
= 0;

[
â1, ψ̂2

]
= K̂2;

[
â1, ψ̂3

]
= −K̂3;[

âf , âg
]
= 0. (197)

We will now transform into a new basis where the representation theory can
readily be constructed. Making the definition
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M+
f = ψf +Kf ; M−

f = ψf −Kf , (198)

we obtain the following algebra

[
â1,M

+
1

]
=

[
â1,M

−
1

]
= 0;[

â1,M
±
2

]
= ±M±

2 ;
[
â1,M

±
3

]
= ∓M±

3 ;[
M+

1 ,M
+
2

]
= 2M−

3 ;
[
M+

1 ,M
−
2

]
= 0;[

M−
1 ,M

−
2

]
= 2M+

3 ;
[
M+

1 ,M
−
1

]
= 2(â2 − â3), (199)

with the remaining determined by cyclic permuation of indices. Defining
ǫ12 = ǫ23 = ǫ31, and ǫfg = −ǫgf , we can write the algebra in the following
compact form

[
âf ,M

±
g

]
= ±ǫfgM±

g ;
[
M±

f ,M
±
g

]
= 2ǫfghM

∓
h ;

[
M+

f ,M
−
g

]
= 2δfgIgab(âa − âb);

[
âf , âg

]
= 0. (200)

From the sixteen generators of this algebra, the diagonal elements form the
maximal abelian subalgebra. We will see in Paper XIII that the diagonal
elements are degrees of freedom duitable for the instanton representation as
well as its quantization. The remaining elements, since they do not com-
mute, will be associated with unphysical motions which can be eliminated
upon implementation of the initial value constraints.
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