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Abstract

This paper is a self-contained summary of the instanton represen-
tation at the classical level. In this paper we show that starting from
the Plebanski theory of gravity, one can obtain two theories of grav-
ity. The first theory is the Ashtekar theory and the second is dual to
Ashtekar’s theory, where the antiself-dual Weyl curvature is the funda-
mental momentum space variable. We have called this dual theory the
instanton representation. We show how the instanton representation
leads to the Einstein equations in the same sense as does the origi-
nal Plebanski theory, modulo the initial value constraints of GR. The
canonical analysis and quantization of the theory is covered in separate
papers.
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1 Introduction: Plebanski theory of gravity

The starting Plebanski action [1] writes GR using self-dual two forms in lieu
of the spacetime metric gµν as the basic variables. We adapt the starting
action to the language of the SO(3, C) gauge algebra as

IP leb =
1
G

∫

M
δaeΣa ∧ F e − 1

2
(δaeϕ+ ψae)Σa ∧ Σe, (1)

where Σa = 1
2Σa

µνdx
µ ∧ dxν are a triplet of SO(3, C) two forms and F a =

1
2F

a
µνdx

µ ∧ dxν is the field-strength two form for gauge connection Aa =
Aa

µdx
µ. Also ψae is symmetric and traceless and ϕ is a numerical constant.

The field strength is written in component form as F a
µν = ∂µA

a
ν − ∂νA

a
µ +

fabcAb
µA

c
ν , with SO(3, C) structure constants fabc = εabc. The equations of

motion resulting from (1) are (See e.g. [2] and [3])

δI

δAg
= DΣg = dΣg + εgfhA

f ∧ Σh = 0;

δI

δψae
= Σa ∧ Σe − 1

3
δaeΣg ∧ Σg = 0;

δI

δΣa
= F a − Ψ−1

ae Σe = 0 −→ F a
µν = Ψ−1

ae Σe
µν . (2)

The first equation of (2) states that Ag is the self-dual part of the spin con-
nection compatible with the two forms Σa, where D is the exterior covariant
derivative with respect to Aa. The second equation implies that the two
forms Σa can be constructed from tetrad one-forms eI = eIµdx

µ in the form

Σa = ie0 ∧ ea − 1
2
εafge

f ∧ eg, (3)

which enforces the equivalence of (1) to general relativity. Note that (3) can
also be written in the form [3]

i

2
Σa ∧ Σe = δae√−gd4x, (4)

which fixes the conformal class of the spacetime metric gµν = ηIJe
I
µ ⊗ eJν

defined by the tetrads. The third equation of motion in (2) states that the
curvature of Aa is self-dual as a two form, which implies that the metric gµν

derived from the tetrad one-forms eI satisfies the vacuum Einstein equations.
The starting action (1) in component form is given by
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IP leb[Σa, Aa,Ψ] =
1
4

∫

M

d4x
(
Σa

µνF
a
ρσ − 1

2
Ψ−1

ae Σa
µνΣ

e
ρσ

)
εµνρσ (5)

where ε0123 = 1 and we have defined Ψ−1
ae = δaeϕ+ ψae.

For ϕ = −Λ
3 , where Λ is the cosmological constant, then we have that

Ψ−1
ae = −Λ

3
δae + ϕae. (6)

The matrix ψae, presented in [4], takes on the physical interpretation of the
antiself-dual part of the Weyl curvature tensor in SO(3, C) language. Ψ−1

ae

is the matrix inverse of Ψae which we will refer to as the CDJ matrix, and
is the result of appending to ψae a trace part.

The starting action (5) presently contains two auxilliary fields Ψae and
Σa

µν ,1 each of which may be eliminated by their respective equations of
motion in (2). For example, elimination of both Ψae and Σa leads to the
metric-free Jacobson action (see e.g. [4], [5]), which can be written almost
completely in terms of the connection Aa

ICDJ [η, Aa] =
∫

M
habcd(η · F a ∧ F b)F c ∧ F d, (7)

where η is a totally antisymmetric fourth rank tensor, equivalent to a scalar
density of weight −1, and

habcd = α(δcaδbd + δcbδad) + βδabδcd (8)

for numerical constants α and β. For α = −β and for nondegenerate ψae,
(7) implies the Einstein equations in the following sense [4]. Varying η and
Aa yield the equations

habcd(ε · F a ∧ F b)F c ∧ F d = 0;
D[habcd(η · F a ∧ F b)F c] = 0. (9)

When one makes the definitions

Σd = habcd(η · F a ∧ F b)F c;
ψa

b = ([h(η · F ∧ F )]−1)a
b , (10)

1For the purpose of the present paper we will assume that Ψae is nondegenerate, so
that its inverse exists. This limits consideration to spacetimes of Petrov Type I, D and
O where Ψae has three linearly independent eigenvectors.
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then (9) for nondegenerate ψae imply (2).
The purpose of this paper is to show that by eliminating one rather than

both auxilliary fields from the starting Plebanski action, that there are two
possible actions that can result. One action is the Ashtekar theory of gravity
which we derive in section 2. This action follows from elimination of the
CDJ matrix Ψae from (1), and has been well-studied in the literature. The
second action, which we derive in section 3, follows from retention of Ψae and
elimination of the Ashtekar densitized triad (spatial part of the self-dual two
forms Σa

µν). We have called this latter action the instanton representation
of Plebanski gravity, which to the best of the present author’s knowledge
appears to be unknown. The present paper will show that the instanton
representation also leads to the Einstein equations, which we show in section
4. In section 5 we show an interesting relation to Yang–Mills theory implied
by the instanton representation.

2 Derivation of the Ashtekar theory of gravity

We will now perform a 3+1 decomposition of the starting Plebanski action
(5). Defining εijkΣa

jk ≡ 2σ̃i
a and εijkF a

jk ≡ 2Bi
a for the spatial parts of the

self-dual and curvature two forms, this is given by

IP l =
∫
dt

∫

Σ

d3xσ̃a
i Ȧ

a
i + Aa

0Diσ̃
i
a + Σa

0i

(
Bi

a − Ψ−1
ae σ̃

i
e

)
, (11)

where we have integrated by parts, using F a
0i = Ȧa

i −DiA
a
0 from the temporal

component of the curvature.2 We will use (2) and (3) to redefine the two
form components in (11). Define eai as the spatial part of the tetrads eIµ and
make the identification

eai =
1
2
εijkε

abcσ̃j
b σ̃

k
c (detσ̃)−1/2 =

√
detσ̃(σ̃−1)a

i . (12)

For a special case e0i = 0, known as the time gauge, then the temporal
components of the two forms (3) are given by

Σa
0i =

i

2
Nεijkε

abcσ̃j
b σ̃

k
c + εijkN

jσ̃k
a , (13)

where N = N(detσ̃)−1/2 with N and N i being a set of four nondynamical
fields (See e.g. [6],[7]).

2As with the convention of this paper, lowercase symbols from the Latin alphabet
a, b, c, . . . will denote internal SO(3, C) indices, and those from the middle i, j, k, . . . will
denote spatial indices.
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Substituting (13) into (11), we obtain the action

IP leb =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i + Aa

0Ga −NµHµ[σ̃, A,Ψ]. (14)

The fields Aa
0 and Nµ = (N,N i) are auxilliary fields whose variations yield

respectively the following constraints

Ga = Diσ̃
i
a; Hi = εijkN

iσ̃j
aB

k
a + εijk σ̃

j
aσ̃

k
e Ψ−1

ae ;

H = (detσ̃)−1/2
(1

2
εijkε

abcσ̃i
aσ̃

j
bB

k
c − 1

6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)
. (15)

To obtain the Ashtekar theory of gravity let us impose the following condi-
tions on Ψ−1

ae

εbaeΨ−1
ae = 0; trΨ−1 = −Λ (16)

where Λ is the cosmological constant. Equation (16) eliminates the antisym-
metric part of Ψae and fixes its trace. When (16) holds, then Ψ−1

ae becomes
eliminated and equation (14) reduces to the action for general relativity in
the Ashtekar variables ([8],[9],[10])

IAsh =
1
G

∫
dt

∫

Σ

d3xσ̃i
aȦ

a
i +Aa

0Diσ̃
i
a

−εijkN iσ̃j
aB

k
a +

i

2
Nεijkεabcσ̃

i
aσ̃

j
b

(
Bk

c +
Λ
3
σ̃k

c

)
, (17)

where N = N(detσ̃)−1/2 is the lapse density function. The action (17)
is written on the phase space ΩAsh = (σ̃i

a, A
a
i ) and the variable Ψ−1

ae has
been eliminated. The auxilliary fields Aa

0, N and N i respectively are the
SO(3, C) rotation angle, the lapse function and the shift vector. The aux-
illiary fields are Lagrange multipliers smearing their corresponding initial
value constraints Ga, H and Hi, respectively the Gauss’ law , Hamiltonian
and diffeomorphism constraints. Note that σ̃i

a in the original Plebanski ac-
tion was part of an auxilliary field Σa

µν , but now in (17) it has been promoted
to the status of a momentum space dynamical variable.

3 Instanton representation: the dual theory

We will now show that there exists a theory of gravity based on the field
Ψae, which is dual to the Ashtekar formulation of gravity, which can also be
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derived directly from (5). Let us, instead of eliminating Ψ−1
ae , eliminate the

densitized triad σ̃i
a from (14) by enforcing the initial value constraints in the

Ashtekar variables. The constraints on the initial Plebanski action are given
by (15). We will impose the Hamiltonian and diffeomorphism constraints
from the theory based on the Ashtekar variables (read off from (17)

εijkεabcσ̃
i
aσ̃

j
bB

k
c = −Λ

3
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c ; εijk σ̃

j
aB

k
a = 0. (18)

Substitution of (18) into (15) yields

Hi = εijk σ̃
j
aσ̃

k
e Ψ−1

ae ;

H = (detσ̃)−1/2
(
−Λ

6
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

−1
6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)
= −

√
detσ̃

(
Λ + trΨ−1

)
. (19)

Hence substituting (19) into (14), we obtain an action given by

I =
∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a

+εijkN iσ̃j
aσ̃

k
e Ψ−1

ae − iN
√

detσ̃
(
Λ + trΨ−1

)
. (20)

But (20) still contains σ̃i
a, therefore we will completely eliminate σ̃i

a by sub-
stituting the spatial restriction of the third equation of motion of (2)

σ̃i
a = ΨaeB

i
e, (21)

into (20). This substitution, known as the CDJ Ansatz, yields the action3

IInst =
∫
dt

∫

Σ

d3xΨaeB
i
aȦ

a
i +Aa

0B
i
eDiΨae

+εijkN iBj
aB

k
e Ψae − iN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)
, (22)

which depends on the CDJ matrix Ψae and the Ashtekar connection Aa
i , with

no appearance of σ̃i
a. In the original Plebanski theory Ψae was an auxilliary

field which could be eliminated. But in (22) Ψae is now a momentum space
dynamical variable, analogously to the case for σ̃i

a in the Ashtekar theory.
3The CDJ Ansatz is valid when Bi

a and Ψae are nondegenerate as three by three
matrices. Hence all results of this letter will be confined to configurations where this is
the case.
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There are a few items of note regarding (22). Note that it contains the
same auxilliary fields (Aa

0, N,N
i) as in the Ashtekar variables. Since we have

imposed the constraints Hµ = (H,Hi) on the Ashtekar phase space within
the starting Plebanski theory in order to obtain IInst, then this implies
that the initial value constraints (Ga, H,Hi) must play the same role in
(22) as their counterparts in (17). This observation is borne out, whence
substitution of (21) into the Ashtekar action transforms (17) directly into
(22). This relation holds only where Ψae is nondegenerate, which limits
one to spacetimes of Petrov Type I, D and O where Ψae has three linearly
independent eigenvectors. For these cases, one might be able to easily derive
results from the instanton representation which are difficult to derive in the
Ashtekar theory, and vice versa.

4 Einstein equations of motion

We will now show that the action (22) produces the Einstein equations. The
starting action of the dual theory is

IDual =
∫
dt

∫

Σ
d3xΨaeB

i
eF

a
0i + εijkN

iBj
aB

k
e Ψae

−iN(detB)
√

detΨ
(
Λ + trΨ−1

)
. (23)

Variation of (23) with respect to the shift vector N i yields the diffeo-
morphism constraint

δIDual

δN i
= (detB)(B−1)d

iψd = 0 −→ ψd = 0, (24)

where ψd ≡ εdaeΨae parametrizes the antisymmetric part of Ψae. Since
ψd vanishes, then Ψae on-shell must be symmetric. Accompanied with the
imposition of the diffeomorphism constraint we will gauge fix the shift vector
N i, using the equation of motion for ψd

δIDual

δψd
= εdaeB

i
eF

a
0i + 2N i(B−1)d

i (detB) = 0. (25)

Using the property of the determinant of nondegenerate 3 by 3 matrices Bi
a,

this yields the solution

N j =
1
2
εjikF a

0i(B
−1)a

k. (26)
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The Hamiltonian constraint is given by the equation of motion for the lapse
function N

δI

δN
= H = (detB)1/2

√
detΨ

(
Λ + trΨ−1

)
= 0. (27)

Since Bi
a and Ψae are nondegenerate by assumption, then the requirement

that the Hamiltonian constraint be satisfied is equivalent to the vanishing
of the term in brackets

Λ +
1
λ1

+
1
λ2

+
1
λ3

= 0 −→ λ3 = − λ1λ2

Λλ1λ2 + λ1 + λ2
, (28)

which allows us to write λ3 explicitly as a function of λ1 and λ2. λ1 and λ2

will be regarded in the instanton representation as the physical degrees of
freedom.

Since we have already examined the equations involving the antisym-
metric part of Ψae, we will now focus on the symmetric part. Note that the
action (23) can also be written in the form

IInst =
∫

M
d4x

(1
8
ΨaeF

a
µνF

e
ρσε

µνρσ

+
(
Bi

[eȦ
a]
i − εijkN

iBj
aB

k
e

)
Ψae −

√
−g

(
Λ + trΨ−1

))
, (29)

where we have absorbed the Gauss’ law constraint into the definition of the
covariant curvature. We will now show that (23) implies the same Einstein
equations of motion arising from the original Plebanski action (1). More
precisely, we will verify consistency with equations (2) and (3). Using

√
−g = N

√
detσ̃ = N

√
h = N(detB)1/2

√
detΨ, (30)

which writes the determinant of gµν in terms of its 3+1 decomposition and
uses the determinant of (21), we have

δIInst

δΨ(bf)
=

1
8
F b

µνF
f
ρσε

µνρσ + i
√
−g(Ψ−1Ψ−1)bf = 0. (31)

Left and right multiplying (31) by Ψ, we obtain

1
4
(Ψbb′F b′

µν)(Ψff ′
F f ′

ρσ)εµνρσ = −2i
√
−gδbf . (32)
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Note that this step and the steps that follow require that Ψae be nondegen-
erate as a 3 by 3 matrix. Let us make the definition

Σa
µν = (Ψ−1)aeF e

µν = Σa
µν [Ψ, A], (33)

which retains Ψae and Aa
µ as fundamental, with the two form being derived

quantities. Upon using the third line of (2) as a re-definition of variables,
which amounts to using the curvature and the CDJ matrix to construct a
two form, (32) reduces to

1
4
Σb

µνΣ
f
ρσε

µνρσdxµ ∧ dxν ∧ dxρ ∧ dxσ = Σb ∧ Σf = −2i
√
−gδbfd4x. (34)

One recognizes (34) as the condition that the two forms thus constructed,
which are now derived quantities, be derivable from tetrads, which is the
analogue of (4). To complete the demonstration that the instanton represen-
tation yields the Einstein equations, it remains to show that the connection
Aa is compatible with the two forms Σa as constructed in (33).

The equation of motion for the connection Aa
µ from (23) can be seen as

arising from the relevant covariant part encoded in (29), which is given by

δIInst

δAa
µ

= εµσνρDσ(ΨaeF
e
νρ) −

δ

δAa
µ

∫

M
d4x

(
εmnlN

mBn
b B

l
f Ψbf

−iN
√

detB
√

detΨ
(
Λ + trΨ−1

))
= 0. (35)

Since there is no occurrence of Aa
0 in the NµHµ terms, then the equation of

motion for the temporal component is given by

δIDual

δAa
0

= ε0ijkDi(ΨaeF
e
jk) = Di(ΨaeB

i
e) = 0, (36)

which is the Gauss’ law constraint Ga upon use of the spatial restriction of
(33). The equations of motion for the spatial components Aa

i are given by

δIInst

δAa
i

= εiµνρDµ(ΨaeF
e
νρ) −

δIDual

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
f Ψbf

+
δ

δAa
i

∫

M
d4xiN

√
detB

√
detΨ

(
Λ + trΨ−1

)
= 0. (37)

Let us consider the contributions to (37) due to the Hamiltonian and diffeo-
morphism constraints Hµ = (H,Hi). Defining
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D
ji
ea(x, y) ≡

δ

δAa
i (x)

Bj
e(y) = εjki

(
−δae∂k + fedaA

d
k

)
δ(3)(x, y), (38)

the contribution due to the diffeomorphism constraint is given by

δHi[N i]
δAa

i

=
δ

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
fΨbf

= 2Dni
ba(εmnlN

mBl
fΨ[bf ]) + 2Dli

fa(εmnlN
mBn

b Ψ[bf ])

= 4Dni
ba(εmnlN

mBl
fΨ[bf ]), (39)

and the contribution due to the Hamiltonian constraint is given by

δH [N ]
δAa

i

=
δ

δAa
i

∫

M
d4xiN(detB)1/2

√
detΨ

(
Λ + trΨ−1

)

= iD
ki
da

(N
2

(detB)1/2(B−1)d
k

√
detΨ

(
Λ + trΨ−1

))

= iD
ki
ba

(N
2

(B−1)b
kH

)
. (40)

Hence the equation of motion for Aa
µ is given by

εµνρσDν(ΨaeF
e
ρσ) +

1
2
δ
µ
i D

ki
ba

(
i(B−1)b

kNH + 4εmklN
mBl

fΨ[bf ]

)
= 0, (41)

where we have used that Bi
a is nondegenerate. The first term of (41) when

zero implies the first line of (2) upon use of (33) to construct Σa
µν . The

obstruction to this equality, namely the compatability of Aa
µ with Σf

µν thus
constructed, arises due to the second and third terms of (41). These latter
terms contain spatial gradients acting on the diffeomorphism and Hamilto-
nian constraints Hµ. In order that Aa

µ be compatible with the two form
Σa

µ = ΨaeF
e
µν , we must require that these terms of the form ∂iHµ must

vanish, which can be seen from the following argument. Since Hµ = 0 when
the equations of motion are satisfied, then the spatial gradients from D

ji
ea

acting on terms proportional to Hµ in (41) must vanish.
The vanishing of the spatial gradients can be seen if one discretizes 3-

space Σ onto a lattice of spacing ε and computes the spatial gradients of the
constraints Φ as ∂Φ = 1

2ε limε→0(Φ(xn+1)−Φ(xn−1)), and uses the vanishing
of the constraints Φ(xn) = 0 ∀n at each lattice point xn. For another
argument, smear the gradient of the Hamiltonian constraint with a test
function f
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S =
∫

Σ
d3xf∂iH = −

∫

Σ
d3x(∂if)Hµ ∼ 0, (42)

where we have integrated by parts. The result is that (42) vanishes on the
constraint shell ∀f which vanish on the boundary of 3-space Σ. This is
tantamount to the condition that the spatial gradients of a constraint must
vanish when the constraint is satisfied.4 Of course, the constraintsHµ follow
from the equations of motion for Nµ = (N,N i).

This completes the demonstration of the Einstein equations. The Ein-
stein equations have arisen in the same sense as from (1) using (23) as the
starting point, which is defined on the phase space ΩInst = (Ψae, A

a
i ). These

equations are modulo the initial value constraints and their spatial gradients,
which also have arisen from (23).

5 Relation to Yang–Mills theory

The Ashtekar formulation of GR can be seen as the embedding of the phase
space of metric GR into a Yang–Mills theory. We will now show how Yang–
Mills theory can be imbedded into the instanton representation. Recall that
the action can be written as (29), requoted here for completeness

IInst =
∫

M
d4x

(1
8
ΨaeF

a
µνF

e
ρσε

µνρσ

+
(
Bi

[eȦ
a]
i − εijkN

iBj
aB

k
e

)
Ψae −

√
−g

(
Λ + trΨ−1

))
, (43)

Making the definition

Ωbf =
1
8
F b

µνF
f
ρσε

µνρσ , (44)

then the equation of motion (31) is given by

Ωbf = −iN(detB)1/2
√

detΨ(Ψ−1Ψ−1)bf . (45)

We would like to evaluate the action (43) on the solution to the initial value
constraints. When one eliminates the antisymmetric part of Ψae via the
diffeomorphism constraint, then one has

4The author is grateful to Chopin Soo for pointing out this latter argument.
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IInst =
1
2

∫

M
ΨbfF

b ∧ F f

∣∣∣∣
Hµ=0

=
∫

M
d4xΨbf Ωbf . (46)

But σ̃i
a = ΨaeB

i
e is the spatial restriction of

Σa
µν = ΨaeF

e
µν (47)

on 3-space Σ, and (46) can equivalently be written as

I =
1
2

∫

M
(Ψ−1)aeΣa ∧ Σe

∣∣∣∣
Hµ=0

. (48)

The following forms on-shell are also equivalent to (48)

I =
∫

M

Σa ∧ F a =
1
2

∫

M

(
(Ψ−1)aeΣa ∧ Σe + ΨaeF

a ∧ F e
)
. (49)

Returning to (45), the physical interpretation arises from the identification

hij = (detΨ)(Ψ−1Ψ−1)bf(B−1)b
i(B

−1)f
j (detB) (50)

with the intrinsic 3-metric of 3-space Σ. Upon use of Ψ−1
ae = Bi

e(σ̃
−1)a

i ,
equation (50) yields

hhij = σ̃i
aσ̃

j
a, (51)

which is the relation of the Ashtekar densitized triad to the 3-metric hij . In
the instanton representation the spacetime metric gµν is a derived quantity
since it does not appear in the starting action (22) except for the tempo-
ral components Nµ = (N,N i) = (g00, g0i), which are needed in order to
implement the initial value constraints. The spacetime metric is given by

ds2 = gµνdx
µdxν = −N2dt2 + hijω

i ⊗ ωj , (52)

where ωi = dxi+N idt and hij is the induced 3-metric on Σ. The prescription
for obtaining hij from the instanton representation is though (50), which
holds for nondegenerate Bi

a and Ψae satisfying the initial value constraints.
Comparison of (50) with (45) indicates that dynamically on the solution

to the equations of motion,
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Ωbf = −iNhijB
i
bB

j
f . (53)

Since the initial value constraints must be consistent with the equations of
motion, we can insert (53) into (46), which yields

1
2

∫

M
ΨaeF

a ∧ F e = −i
∫

M
NhijΨaeB

i
aB

j
ed

4x. (54)

Upon use of the CDJ Ansatz σ̃i
a = ΨaeB

i
e, the spatial part of (47) in (54),

one also has

1
2

∫

M
ΨaeF

a ∧ F e = −i
∫

M
Nhij(Ψ−1)eaσ̃i

aσ̃
j
ed

4x. (55)

Using (54) and (55), one sees that the action for GR in the instanton repre-
sentation evaluated on a classical solution is given by

I = −i
∫

M
d4xNhijT

ij , (56)

where T ij is given by

T ij =
1
2
(
(Ψ−1)aeσ̃i

aσ̃
j
e + ΨaeB

i
aB

j
e

)
= σ̃i

aB
i
a. (57)

Equation (57) admits a physical interpretation of the spatial energy momen-
tum tensor for a SO(3, C) Yang–Mills theory, where Ψae plays the role of
the coupling constant.

The 3+1 decomposition of the Einstein–Hilbert action can be written as

IEH =
∫

M
d4x

√
−g(4)R =

∫

M
N
√
h
(
g00R00 + 2g0iR0i + hijR

ij
)
. (58)

Using hijR
ij = −2hijG

ij , where Gij is the three dimensional spatial Einstein
tensor, we can make the identification

Gij ≡ iN

2h
T ij . (59)

The implication is that on the constraint shell, the first two terms of (58)
vanish and (59) essentially becomes 3 dimensional GR coupled to Yang–Mills
theory, which is a self-coupling. Considering the following split

12



σ̃i
aB

j
a = σ̃[i

aB
j]
a + σ̃(i

aB
j)
a = εijkεkmn σ̃

m
a B

n
a + σ̃(i

a B
j)
a , (60)

we see that the antisymmetric part is the diffeomorphism constraint in the
Ashtekar variables, which takes on the physical interpretation as the Poynt-
ing vector for the Yang–Mills theory. This couples to the shift vector N i.
Since the symmetric part of (60), which couples to hij as in (56) has been
identified with the spatial stress-energy tensor, then this implies that the
energy density is also given by σ̃i

aB
i
a. This is precisely İCS = ~E · ~B upon the

identification of σ̃i
a with the Yang–Mills electric field.

Another intertesting relation arises from the following identification.
Write the Einstein–Hilbert action (58) on the constraint shell in terms of
the three dimensional Einstein tensor. Hence R00 = R0i = 0 and we are left
with

IEH = −2
∫
dt

∫

Σ
d3xN

√
hH ijGij = −2

∫
dt

∫

Σ
d3xN

√
hhijGmnh

mihnj .(61)

Transforming the contravariant 3-metrics into Ashtekar variables, we have

IEH = −2
∫
dt

∫

Σ

d3xhijGmn
(σ̃m

a σ̃
i
a)(σ̃

n
e σ̃

j
e)

(detσ̃)2

= −2
∫
dt

∫

Σ
d3xNhijGmnσ̃

m
a σ̃

n
e

( σ̃i
aσ̃

j
e

(detσ̃)

)
. (62)

Comparison of (62) with (55) implies the following relation

Gij = Ψ−1
ae (σ̃−1)a

i (σ̃
−1)e

j(detσ̃), (63)

whence the inverse CDJ matrix is essentially Gij projected from spatial into
internal indices. One of the future directions of research is to examine the
properties of the three dimensional space that defines Gij .

Another result which can be obtained is to substitute
√
−g = iN(detB)1/2

√
detΨ

into (45, which yields

F b
µνF

f
ρσε

µνρσ = −
√
−g(Ψ−1Ψ−1)bf . (64)

Contraction of (64) with Ψfb yields

I =
∫

M
d4xΨbfF

b
µνF

f
ρσε

µνρσ = −
∫

M
d3x

√
−gtrΨ−1. (65)
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Using the Hamiltonian constraint trΨ−1 = −Λ on the right hand side, we
obtain

I = ΛV ol(M), (66)

which is the volume of spacetime.
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6 Conclusion

This paper is a self-contained summary of some developments which have
led to a new action which we have called the instanton representation of
Plebanski gravity. This action results from applying the simplicity con-
straint to the starting Plebanski action and eliminating the spatial part of
the self-dual two forms in the time gauge, in favor of the antiself-dual Weyl
curvature (CDJ matrix). The instanton representation action implies the
Einstein equations of motion subject to the initial value constraints of GR.
This implies that in order to solve the Einstein equations in this represen-
tation, a necessary condition is that one solve the initial value constraints.
The initial value constraints in the instanton representation constrain only
the momentum part of the phase space, which leaves considerable freedom
in the means for reducing the configuration space. Additionally, we have
shown some interesting relations of the instanton representation to Yang–
Mills theory.
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