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Abstract

In this paper we implement reality conditions on the instanton rep-
resentation of Plebanski gravity using adjointness relations in the quan-
tum theory. The result is an explicit parametrization for the Ashtekar
connection by three degrees of freedom which guarantee the reality of
the Ashtekar densitized triad. The results of this paper are limited to
the diagonal sector of the full theory.
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1 Introduction

In the Ashtekar formalism of general relativity (see e.g. [1],[2],[3]), the basic
phase space variables are the densitized triad σ̃ia and the Ashtekar connection
Aa

i . The indices i and a take on the values 1, 2, 3 and respectively are
spatial and internal indices. In the real formulation of the theory Aa

i is
a real-valued SO(3) connection [4], and has been used extensively in loop
quantum gravity. In the complex version of the theory Aa

i is a left-handed
SU(2)− connection, and one has to implement reality conditions in order
to obtain real general relativity. The main advantage of having complex
variables is that the Hamiltonian constraint takes on a polynomial form in
the basic variables, with the disadvantage being that the reality conditions
appear extremely difficult to implement in the quantum theory. A main
part of the algebraic program [5] is the implementation of reality conditions
using adjointness relations from the inner product of the theory. In the real
version this step can be circumvented, with the disadvantage that one must
now work with a nonpolynomial Hamiltonian constraint.

The Ashtekar theory of gravity can be derived from the action for Ple-
banski gravity [6]. In [7] we have shown that also from Plebanski gravity
can be derived a dual theory to the Ashtekar theory, called the instanton
representation of Plebanski gravity. This dual theory is also complex, and
the initial value constraints are considerably simplified in that they expose
the physical degrees of freedom. In the present paper we will show that the
implementation of reality conditions at the quantum level for the instan-
ton representation is relatively straightforward. The format of this paper
approaches issue of reality conditions and physical Hilbert spaces from a bot-
tom up rather than the conventional top-down approach. In section 2 we
start from an unconstrained Hilbert space containing two degrees of freedom
per point. We call this the physical Hilbert space HPhys, and we establish
the adjointness relations on HPhys. We augment the corresponding phase
space to obtain the kinematic phase space ΩKin, and impose a constraint to
obtain the physical phase space ΩPhys. We then establish a map from ΩKin

to the diagonal subspace of the Ashtekar variables. In the next few sections
we implement reality conditions on the HKin which guarantee the reality
of the 3-metric hij . Section 3 first imposes the reality conditions on the
Ashtekar densitized triad directly from the instanton representation phase
space. Sections 4 and 5 uses the adjointness relations and the Hamiltonian
constraint to determine the conditions required for the (diagonal) densi-
tized triad. The final result is an explicit parametrization of the (diagonal)
Ashtekar connection by three complex degrees of freedom ~z = (z1, z2, z3),
which enforces the reality conditions.
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2 The physical Hilbert space

Let us start with an unconstrained phase space ΩPhys = (ΓPhys, PPhys) ≡
(config.,momentum), for the instanton representation, which will each have
two complex degrees of freedom per point. Let (Π1,Π2) ∈ PPhys be momen-
tum space variables. If ΩPhys posseses a cotangent bundle structure, then
there must exist two configuration space D.O.F. (X,Y ) ∈ ΓPhys, such that
the following Poisson brackets hold

{X(x, t),Π1(y, t)} = δ(3)(x,y); {Y (x, t),Π2(y, t)} = δ(3)(x,y), (1)

whereX and Y are holomorphic functions, with all other brackets vanishing.
The symplectic two form ΩPhys on ΩPhys is given by

ΩPhys = µ−1

∫

Σ
d3x

(
δΠ1 ∧ δX + δΠ2 ∧ δY

)
(2)

for some numerical constant µ.
Upon quantization of ΩPhys one promotes the dynamical variables to

operators satisfying the equal-time commutation relations

[
X̂(x, t), Π̂1(y, t)

]
= µδ(3)(x,y);

[
Ŷ (x, t), Π̂2(y, t)

]
= µδ(3)(x,y), (3)

with vanishing relations amongst coordinates

[
X̂(x, t), X̂(y, t)

]
=

[
X̂(x, t), Ŷ (y, t)

]
=

[
Ŷ (x, t), Ŷ (y, t)

]
= 0, (4)

vanishing relations amongst momenta

[
Π̂1(x, t), Π̂1(y, t)

]
=

[
Π̂1(x, t), Π̂2(y, t)

]
=

[
Π̂2(x, t), Π̂2(y, t)

]
= 0, (5)

and vanishing mixed relations

[
X̂(x, t), Π̂2(y, t)

]
=

[
Ŷ (x, t), Π̂1(y, t)

]
= 0. (6)

Next, we apply the construction of [8] to infinite dimensional spaces. De-
fine a physical Hilbert space H of entire analytic functionals f [X] in the
holomorphic representation, based upon the resolution of the identity
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I =

∫
Dµ

∣∣X,Y
〉〈
X,Y

∣∣. (7)

Defining D(X,Y ) = δXδXδY δY , the measure Dµ is given by

Dµ =
∏

x

D(X,Y )exp
[
−ν−1

∫

Σ
d3x

(
|X(x)|2 + |Y (x)|2

)]
(8)

with ν a numerical constant of mass dimension [ν] = −3 necessary to make
the argument of the exponential dimensionless. Using (8), an arbitrary state∣∣f
〉
can be expanded in the basis states

〈
X,Y

∣∣ to produce a wavefunctional
f [X,Y ] =

〈
X,Y

∣∣f
〉
. Then

∣∣f
〉
belongs to H if it is square integrable with

respect to the measure (8). The inner product of two functionals f [X] and
f ′[X] is given by

〈
f
∣∣f ′

〉
=

∫

Γ
f [X]f ′[X]Dµ, (9)

which is an infinite product of functional integrals on the functional space
of fields (X,Y ) ∈ ΓPhys, one integral for each spatial point x ∈ Σ.

Using the holomorphic representation, one can expand an arbitrary state∣∣ψ
〉
in terms of basis states

〈
X,Y

∣∣ =
〈
X
∣∣⊗

〈
Y
∣∣, to obtain

ψ[X,Y ] =
〈
ψ
∣∣X,Y

〉
. (10)

We have chosen the holomorphic representation since the instanton rep-
resentation of Plebanski gravity is a complex theory. In the functional
Schrödinger representation of (10) the operators act on a state respectively
by multiplication

X̂(x, t)ψ = X(x, t)ψ; Ŷ (x, t)ψ = Y (x, t)ψ (11)

and by functional differentiation

Π̂1(x, t)ψ = µ
δ

δX(x, t)
ψ; Π̂2(x, t)ψ = µ

δ

δY (x, t)
ψ. (12)

The mass dimensions of all quantities have been chosen to be

[µ] = −2; [ν] = −3; [X] = [Y ] = 0; [Π1] = [Π2] = 1, (13)

so that all relations are dimensionally consistent.

3



2.1 Adjointness relations and kinematical phase space

Define at each point x in 3-space Σ a two dimensional complex space C2 =
C1 ⊗ C1. C2 is a complex manifold coordinatized by a pair of complex
numbers (α, β). In correspondence with points (α, β) there exists a natural
basis of states of the form

∣∣α, β
〉
=

∣∣α
〉
⊗

∣∣β
〉
, (14)

which are eigenstates of the momentum operators Π̂1 and Π̂2 with eigenval-
ues α and β. These states are the field-theoretic analogue of plane waves,
which in the functional Schrödinger representation may be given by

ψα,β =
〈
X,Y

∣∣α, β
〉
= N(α, β)eµ

−1α·Xeµ
−1β·Y ∈ L2(ΓPhys;Dµ) (15)

where N(α, β) is a normalization factor given by

N(α, β) = e−νµ−2(α∗·α+β∗·β). (16)

The dot in (15) and (16) is a shorthand for integration over 3-space Σ, as in

α ·X =

∫

Σ
d3xα(x)X(x, t). (17)

The states (15) are eigenstates of the momentum operators Π̂1 and Π̂2, and
the overlap of two normalized states in the measure (8) is given by

∣∣〈α, β
∣∣α′, β′

〉∣∣2 = e−νµ−2|α−α′|2e−νµ−2|β−β′|2 . (18)

Whatever physical property of the instanton representation the labels α and
β describe, the overlap of two states is smaller the farther apart the labels
are with respect to Euclidean distance in C2.

Having defined a basis of states and a measure for normalization, we can
now determine the adjointness relations for HPhys. The expectation value
of the momentum operator with respect to a state (16) is given by

〈
α, β

∣∣Π̂1

∣∣α, β
〉
=

∫
D(X,Y )e−ν(X ·X+Y ·Y )ψ∗

α,β

(
µ
δ

δX
ψα,β

)
= α. (19)

Since ψα,β is holomorphic in X and Y , then ψ∗
α,β must be anti-holomorphic.

Then upon integration by parts and discarding boundary terms, we can
transfer the functional derivative in (19) to the measure, yielding
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〈
α, β

∣∣Π̂1

∣∣α, β
〉
= −

∫
D(X,Y )ψ∗

α,βψα,βe
−ν−1Y ·Y

(
µ
δ

δX
e−ν−1X·X

)

=
(µ
ν

) ∫
Dµψ∗

α,βXψα,β = c
〈
α, β

∣∣X
∣∣α, β

〉
(20)

where c = µ
ν . Applying the analogous procedure for Π̂2 we obtain the

adjointness relations

〈
Π̂1

〉
= c

〈
X̂†

〉
= α;

〈
Π̂2

〉
= c

〈
Ŷ †

〉
= β. (21)

Later in the paper we will use the relations (19) to implement reality condi-
tions on the instanton representation, which will justify our use of the term
‘Physical Hilbert space’.

Having started with a basis of eigenstates of the momentum operators
(Π̂1, Π̂2) labelled by two free functions α and β, let us define a kinematic
momentum space PKin = (Π1,Π2,Π), obtained by augmenting the physical
momentum space PPhys with an additional variable Π. Let us now arrange
these variables into a three by three matrix

Ψ̃ae =




Π+Π1 0 0
0 Π +Π2 0
0 0 Π


 .

If one associates the indices a and e to the special complex orthogonal group
SO(3, C), then Ψ̃ae is a diagonal SO(3, C)⊗ SO(3, C) valued matrix. Cor-
responding to the augmentation (Π1,Π2) → (Π1,Π2,Π) of PPhys, augment
the configuration space ΓPhys by a variable T conjugate to Π satisfying the
Poisson bracket

{T (x, t),Π(y, t)} = µδ(3)(x,y). (22)

Then (22) in conjunction (1) define a kinematic phase space ΩKin with a
cotangent bundle structure and a symplectic two form

ΩKin = µ−1

∫

Σ
d3x

(
δΠ1 ∧ δX + δΠ2 ∧ δY + δΠ ∧ δT

)
. (23)

We will now define a constraint which implements a reduction PKin → PPhys

from the kinematic to the physical momentum space, given by

H =
(
Π2 +

2

3
(Π1 +Π2)Π +

1

3
Π1Π2

)
eT +

Λ

3a30
Π(Π + Π1)(Π + Π2) (24)
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where Λ and a0 are numerical constants with [Λ] = 2 and [a0] = 1. Dividing
(24) by Π(Π + Π1)(Π + Π2), we obtain

a30

( 1

Π + Π1
+

1

Π+ Π2
+

1

Π

)
eT + Λ = a30e

T trΨ̃−1 + Λ = 0. (25)

Let us assume that (25) is SO(3, C) invariant due to contraction of in-
ternal indices a, e by the trace, and coordinate-free due to absence of spatial
indices i, j, k. Now, introduce two objects Bi

a and σ̃ia containing SO(3, C)
and spatial indices, and split the trace of Ψ̃−1 into the following form

trΨ̃−1 = δaeΨ̃
−1
ae = a30e

TBi
a(σ̃

−1)ai . (26)

The physical interpretation of Bi
a and σ̃ia will be provided later, but for

present we will regard Ψ̃ae as the fundamental object.
The constraint (25) can be imposed by variation of the following Hamil-

tonian with respect to the auxilliary field N

H[N ] =

∫

Σ
d3xNa

−3/2
0 e−3T/2(detB)1/2

√
detΨ̃

(
Λ+ a30e

T trΨ̃−1
)
, (27)

when detB and detΨ̃ are nonvanishing.

2.2 Transformation to the Ashtekar variables

We will now provide a map from ΩKin to ΩAsh, the diagonal subspace of
the phase space of the Ashtekar variables. Making the the following identi-
fication of the uncontracted form of (26)

Ψ̃−1
ae = a30e

TBi
e(σ̃

−1)ai (28)

where (26) is the trace, then the integrand of (27) becomes

N
√
detσ̃

(
Λ +Bi

a(σ̃
−1)ai

)

= N
√
detσ̃

(
Λ +

1

2
ǫijkǫ

abcσ̃jb σ̃
k
cB

i
a(detσ̃)

−1
)
. (29)

Further simplification of (29), upon using properties of the determinant of
nondegenerate 3 by 3 matrices, leads to

N
(Λ
3
ǫijkǫ

abcσ̃iaσ̃
j
b σ̃

k
c + ǫijkǫ

abcBi
aσ̃

j
b σ̃

k
c

)
. (30)
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With the interpretation of N = N(detσ̃)−1/2 as a lapse density function, Bi
a

as the Ashtekar magnetic field and σ̃ia as a densitized triad, (30) is merely
the Hamiltonian constraint of GR in the Ashtekar variables where Λ is the
cosmological constant.1 Next we will show that the canonical one form θKin

maps to a restricted subspace of θAsh. Equation (28) implies

a−3
0

∫

Σ
d3xe−T Ψ̃aeB

i
eδA

a
i =

∫

Σ
d3xσ̃iaδA

a
i = θAsh, (31)

which is the canonical one form for the Ashtekar variables. The variation of
right hand side of (31) yields a symplectic two form on ΩAsh, the Ashtekar
phase space

δ
(∫

Σ
d3xσ̃iaδA

a
i

)
=

∫

Σ
d3xδσ̃ia ∧ δAa

i = δθAsh, (32)

however the variation of the left hand side does not produce a symplectic
two form except for restricted configurations. We will for the purposes of
this paper limit ouselves to a diagonal connection Aa

i = δai A
a
a and make the

following change of variables

A1
1 = a0e

X ; A2
2 = a0e

Y ; (A1
1A

2
2A

3
3) = a30e

T . (33)

Then under (33), if we restrict ourselves to diagonal Ψ̃ae = δaeΨ̃ee, then the
left hand side of (31) reduces to

δ
(∫

Σ
d3xΨ̃11δX + Ψ̃22δY + Ψ̃33δ(T −X − Y )

)

=

∫

Σ
d3x

(
δΠ1 ∧ δX + δΠ2 ∧ δY + δΠ ∧ δT

)
= δθKin, (34)

which does produce a symplectic two form. The result is the the kinematic
phase space ΩKin of our theory is canonically related to the Ashtekar the-
ory on the suspace of diagonal variables. We will restrict attention for the
remainder of this paper to the diagonal case.2

The Ashtekar self-dual connection is given by

Aa
i = Γa

i − iKa
i (35)

1We will identify the appropriate restrictions of σ̃
i
a B

i
a necessary to guarantee the

existence of the map ΩAsh ↔ ΩKin.
2This is one of the six quantizable configurations of the full theory for the instanton

representation identified in [9].
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where Γa
i is the triad-compatible spin connection and Ka

i is the extrinsic
curvature of a spatial slice of 3-space Σ. The densitized triad is given by

σ̃ia = ΨaeB
i
e, (36)

where we will assume that Ψae = Ψea is symmetric and nondegenerate.
Perform a polar decomposition of Ψae

σ̃ia = Oaf (~θ)λgO
−1
ge (

~θ)Bi
e, (37)

where Oae(~θ) ∈ SO(3, C). Defining P̃ i
a ≡ O−1

af σ̃
i
f and big ≡ O−1

ge (
~θ)Bi

e and
transfering one factor of O to the left hand side, then (37) reduces to

P̃ i
g = λgb

i
g. (38)

Note that σ̃ia and Bi
a are SO(3, C)-rotated versions of P̃ i

a and big, the latter
of which we will associate with an instrinsic SO(3, C) frame. Making the
identification Ψae = δaeλe as a diagonal matrix and densitizing it via the
relation Ψ̃ae = Ψaea

3
0e

T , we obtain

P̃ i
g = Ψ̃gga

−3
0 e−T big. (39)

Recall that Ψ̃ae = Diag(Π,Π + Π1,Π + Π2) is a dynamical variable in our
theory with three degrees of freedom per point, which is canonically con-
jugate to (T,X, Y ), which by (33) maps directly to the diagonal Ashtekar

connection Af
f . Since Af

f is canonically conjugate to σ̃ff , then we can re-
strict attention to the diagonal subspace of the Ashtekar variables in what
follows. Hence we can set i = g in (39) where a canonical relationship ex-
ists to ΩKin. Note that the diagonal Ashtekar variables satisfy canonical
commutation relations

[
σ̃ff (x, t), A

g
g(y, t)

]
= δfg δ

(3)(x, y). (40)

2.3 Verification of the physical Hilbert space

Along with the augmentation of the phase space ΩPhys → ΩKin by the
pair (T,Π), we should also augment the commutation relations (41) with
relations

8



[
T̂ (x, t), Π̂(y, t)

]
= µδ(3)(x, y). (41)

This induces an augmentation of the Hilbert space HPhys → HKin, where
HKin is the Hilbert space at the level prior to imposition of the constraint
(25).3 Conforming to a basis of eigenstates of the momentum operators we
choose

∣∣α, β, λ
〉
=

∣∣α
〉
⊗

∣∣β
〉
⊗

∣∣λ
〉
, (42)

which correspond to plane wave states

〈
X,Y, T

∣∣, α, β, λ
〉
= eµ

−1(α·X+β·Y eµ
−1λ·T ). (43)

For quantization, it is convenient to use a polynomial form of (25),

eT

Π(Π + Π1)(Π +Π2)

[
Π(Π1 +Π) + (Π1 +Π)(Π2 +Π)

+(Π2 +Π)Π + Λa−3
0 e−TΠ(Π + Π1)(Π + Π2)

]
= 0. (44)

Assuming that the pre-factor is nonvanishing, then the constraint is satisfied
when the term in square brackets of (44) vanishes. The quantization of (44)
in the functional Schrödinger representation for Λ = 0 yields

µ2
[
3

δ2

δT (x)δT (x)
+ 2

( δ

δX(x)
+

δ

δY (x)

) δ

δT (x)
+

δ2

δX(x)δY (x)

]
ψ

=
(
3λ2 + 2(α + β)λ+ αβ

)
ψ = 0 ∀x. (45)

Note that the action of the quantum Hamiltonian constraint ψ is free of
ultraviolet singularities without regularization in spite of the multiple func-
tional derivatives acting at the same point, since the labels (α, β, λ) are
functionally independent of (X,Y, T ) ∈ ΓKin. Equation (45) leads to an
infinite number of dispersion relations

λ ≡ λα,β = −1

3

(
α+ β ±

√
α2 − αβ + β2

)
∀x, (46)

one dispersion relation for each point x ∈ Σ. The wavefunctional can then
be written in the form

3We will not be defining a measure for T , since we will regard T as a time variable on
ΓKin.
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∣∣λα,β
〉
= N(α, β)eµ

−1(α·X+β·Y+λα,β ·T ), (47)

with N(α, β) given by (16). For normalization of (47) we use the meaure
(8), not performing an integration over the variable T since its conjugate
variable λ(x) is not an independent physical degree of freedom.4 Hence the
overlap of two states is still given by (18), namely

∣∣〈λα,β
∣∣λα′,β′

〉∣∣2 =
∣∣〈α, β

∣∣α′, β′
〉∣∣2. (48)

It is clear that the momenta Π̂1, Π̂2 and Π̂ form a complete set of commuting
observables (CSCO) on the kinematic Hilbert spaceHKin, while Π̂1 and Π̂2

form a CSCO on the physical Hilbert space HPhys.

3 Reality conditions on densitized triad

We have shown that our theory admits a Hilbert space structure on ΓPhys,
and is also canonically related to the Ashtekar theory on the subspace of
diagonal variables. We have also worked out the adjointness relations (21)
implied by the theory. To make contact with real general relativity, the
next task is to determine whether the adjointness are sufficient to guarantee
that the Ashtekar densitized triad σ̃ia is real. The diagonal restriction of the
Ashtekar connection is

Af
f = a0(γf − ikf ); σ̃

f
f = λfB

f
f ; f = 1, 2, 3, (49)

where Γf
f ≡ a0γf and Kf

f ≡ a0kf are respectively the spin connection and

the extrinsic curvature. The only nonvanishing contribution to σ̃ff comes
from the diagonal components of the Ashtekar magnetic field. For example,
the first component is given by

σ̃11 = λ1B
1
1 = λ1A

2
2A

3
3 = λ1(γ2 − ik2)(γ3 − ik3), (50)

with the remaining components determined through cyclic permutation of
indices. We must require the imaginary part of (50) to vanish, but in a
way that makes use of the adjointness relations on the fundamental vari-
ables which have been quantized. The momentum space variables are the
densitized eigenvalues of Ψ(ae), given by

4We will ultimately interpret T as a time variable on the kinematic configuration space
ΓKin. Hence by the usual interpretation of quantum mechanics, one does not normalize
a wavefunction in time.
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Πf = λf (detA). (51)

The determinant of the Ashtekar connection is given by

(detA) = a30(γ1 − ik1)(γ2 − ik2)(γ3 − ik3) = U + iV =
√
U2 + V 2exp

[
i
(V
U

)]
,(52)

where we have defined

U = γ1γ2γ3 − γ1k2k3 − γ2k3k1 − γ3k1k2;

V = k1k2k3 − k1γ2γ3 − k2γ3γ1 − k3γ1γ2. (53)

Making the definitions

r = γ1γ2 − k1k2; s = γ2k1 + k2γ1, (54)

then (53) is given by

U = rγ3 − sk3; V = −(rk3 + sγ3), (55)

and

r2 + s2 = (γ1γ2)
2 + (k1k2)

2 + (γ1k2)
2 + (k1γ2)

2. (56)

We will refer to relations (54), (55) and (56) later in this paper.
Define the following decomposition of Πf into real and imaginary parts

Π1 = p1 + iq1; Π2 = p2 + iq2; Π3 = p3 + iq3. (57)

In what follows we will focus on the 1 component, and the corresponding
results for the 2 and the 3 components follow by cycling of indices. The
following relations ensue from (51)

Π1 = λ1(detA) =
√
p21 + q21exp

[
itan−1

( q1
p1

)]
, (58)

and from (49) for the connection we have

A1
1 = Γ1 − iK1 = a0

√
γ21 + k21exp

[
−itan−1

(k1
γ1

)]
. (59)

11



The diagonal component of the magnetic field is given by

B1
1 = a20

(
γ2γ3 − k2k3 − i(γ2k3 + k2γ3)

)

= a20
√

(γ2γ3)2 + (k2k3)2 + (γ2k3)2 + (γ3k2)2exp
[
−itan−1

(γ2k3 + k2γ3
γ2γ3 − k2k3

)]
.(60)

So the corresponding component of the densitized triad is given by

σ̃11 = λ1B
1
1 = Π1(detA)B

1
1

= a20

√
p21 + q21

√
U2 + V 2

√
(γ2γ3)2 + (k2k3)2 + (γ2k3)2 + (γ3k2)2

exp
[
i
(
tan−1

( q1
p1

)
− tan−1

(V
U

)
− tan−1

(γ2k3 + k2γ3
γ2γ3 − k2k3

)]
. (61)

The requirement that σ̃11 be real requires that the argument of the exponen-
tial vanishes,5 which implies that

tan−1
( q1
p1

)
= tan−1

(V
U

)
+ tan−1

(γ2k3 + k2γ3
γ2γ3 − k2k3

)
. (62)

Taking the tangent of both sides of (62), we have

q1
p1

=
V (γ2γ3 − k2k3) + U(γ2k3 + k2γ3)

U(γ2γ3 − k2k3)− V (γ2k3 + k2γ3)
, (63)

with U and V from (52) and (53) written in the form

U = γ1(γ2γ3 − k2k3)− k1(γ2k3 + k2γ3);

V = −γ1(k2γ3 + γ2k3)− k1(γ2γ3 − k2k3). (64)

By cyclic permutation of indices, the analogue of (63) and (64) for q2/p2 is
given by

q2
p2

=
V (γ3γ1 − k3k1) + U(γ3k1 + k3γ1)

U(γ3γ1 − k3k1)− V (γ3k1 + k3γ1)
, (65)

with U and V from (52) and (53) written in the form

5There is no loss of generality in this. While the argument of the exponential may be
any integer multiple of 2π, we will still take the tangent of the final expression which is
transparent to this multivaluedness.
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U = γ2(γ3γ1 − k2k3)− k2(γ3k1 + k3γ1);

V = −γ2(k3γ1 + γ3k1)− k2(γ3γ1 − k3k1). (66)

Likewise, the analogue for q3/p3 is given by

q3
p3

=
V (γ1γ2 − k1k2) + U(γ1k2 + k1γ2)

U(γ1γ2 − k1k2)− V (γ1k2 + k1γ2)
, (67)

with U and V from (52) and (53) written in the form

U = γ3(γ1γ2 − k1k2)− k3(γ1k2 + k1γ2);

V = −γ3(k1γ2 + γ1k2)− k3(γ1γ2 − k1k2). (68)

Evaluation of (63) using (64), after some algebra, leads to a remarkable
simplification due to cancellations of various terms in the ratio q1

p1
. The

numerator is given by

−γ1(k2γ3 + γ2k3)(γ2γ3 − k2k3)− k1(γ2γ3 − k2k3)
2

+γ1(γ2γ3 − k2k3)(γ2k3 + k2γ3)− k1(γ2k3 + k2γ3)
2

= −k1
(
(γ2γ3)

2 + (k2k3)
2 + (γ2k3)

3 + (k2γ3)
2
)
, (69)

and the denominator is given by

γ1(γ2γ3 − k2k3)
2 − k1(γ2k3 + k3γ3)(γ2γ3 − k2k3)

+γ1(γ2k3 + k2γ3)
2 + k1(γ2k3 + k2γ3)(γ2γ3 − k2k3)

= γ1
(
(γ2γ3)

2 + (k2k3)
2 + (γ2k3)

3 + (k2γ3)
2
)
. (70)

In computing the ratio of q1 to p1, which is the same as the ratio of (69) to
(70), the terms in round brackets cancel which implies that q1/p1 = −k1/γ1.
Hence we see that the requirement of reality of the diagonal components of
the densitized triad σ̃ff = (σ̃11 , σ̃

2
2 , σ̃

3
3) in the intrinsic SO(3, C) frame implies

that

q1
p1

= −k1
γ1

;
q2
p2

= −k2
γ2

;
q3
p3

= −k3
γ3
. (71)
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4 Reality conditions from adjointness relations

To make use of the adjointness relations, we must first relate the Ashtekar
variables to the variables which have been quantized. The components of
the (diagonal) Ashtekar connection are given by

A1
1 = a0e

X ; A2
2 = a0e

Y ; (detA) = a30e
T . (72)

Let us now decomponse the physical configuration space variables ΓPhys into
real and imaginary parts

X = ρ1 + iχ1; Y = ρ2 + iχ2. (73)

Substituting (73) into (72) and using (59) we obtain the relation

ρ1 = ln
√
k21 + γ21 ; χ1 = −tan−1

(k1
γ1

)
(74)

and similarly for ρ2 and χ2. The adjointess relations from the inner product
are given by

Π1 = X ; Π2 = Y . (75)

Equating the real and imaginary parts of (57) with the corresponding parts
from (72), then (75) reduces to

p1 = ρ1; q1 = χ1; p2 = ρ2; q2 = −χ2. (76)

Next, we must incorporate (71) into the adjointess relations from the inner
product. We are allowed only to use such relations arising from integration
with respect to X and Y and not T , since we normalize the wavefunctions
with respect to the former and not the latter, being a time variable on the
kinematic configuration space ΓKin. The adjointness relations imply that

q1
p1

= −
(χ1

ρ1

)
= −

tan−1
(
k1
γ1

)

ln
√
k21 + γ21

= −k1
γ1
. (77)

The first equality of (77) comes from the adjointness relation and the second
equality expresses the configuration variables ΓPhys in terms of the real and
imaginary parts of the Ashtekar connection. The third equality makes use
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of (71), which comes from the imposition of reality of the densitized triad.
In similar fashion we have that

q2
p2

= −
(χ2

ρ2

)
= −

tan−1
(
k2
γ2

)

ln
√
k22 + γ22

= −k2
γ2
. (78)

Note that we do not write an analogous relation for q3
p3
, since these variables

are not part of the adjointess relations. Making the change of variables

γ1
k1

= z1;
γ2
k2

= z2;
γ3
k3

= z3, (79)

we have the following result based upon reality of the triad and implemen-
tation of the adjointness relations from the inner product

1

z1
=

tan−1
(

1
z1

)

lnk1 + ln
√

1 + z21
−→ k1 = (1 + z21)

−1/2exp
[
z1tan

−1
( 1

z1

)]
, (80)

and likewise

1

z2
=

tan−1
(

1
z2

)

lnk2 + ln
√

1 + z22
−→ k2 = (1 + z22)

−1/2exp
[
z2tan

−1
( 1

z2

)]
. (81)

The result is that given z1 and z2, equations (80) and (81) fix k1 and k2,
and consequently γ1 and γ2.

5 Reality conditions based on the Hamiltonian con-

straint

We have implemented the reality conditions in equations (80) and (81) based
on adjointness relations and reality of the densitized triad, which leaves
remaining the relation

q3
p3

= −k3
γ3

= − 1

z3
. (82)

We have exhausted the adjointness relations, since we do not normalize the
wavefunction with respect to T , therefore to make progress we must revert
to the Hamiltonian constraint. The Hamiltonian constraint is given by
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Λ +
1

λ1
+

1

λ2
+

1

λ3
= 0. (83)

In terms of the variables that we have quantized, this is given by

Λ +
( 1

p1 + iq1
+

1

p2 + iq2
+

1

p3 + iq3

)
(detA) = 0. (84)

Using (detA) = U + iV ) from (52) and (53) and splitting (84) into its real
and imaginary parts, we will now separate out the parts that depend on p3
and q3

u+
Up3 + V q3
p23 + q23

+ i
(
v +

V p3 − Uq3
p23 + q23

)
= 0, (85)

where we have defined

u =
Λ

a30
+
Up1 + V q1
p21 + q21

+
Up2 + V q2
p22 + q22

;

v =
V p1 − Uq1
p21 + q21

+
V p2 − Uq2
p22 + q22

. (86)

For the Hamiltonian constraint to be identically satisfied we must require
that the real and the imaginary parts of (85) vanish. This yields the condi-
tions

Up3 + V q3
p23 + q23

+ u = 0;
V p3 − Uq3
p23 + q23

+ v = 0, (87)

which upon elimination of p23 + q23 imply that

q3
p3

=
uV − vU

vV + uU
. (88)

It is convenient to write (86) as a linear combination of U and V as in

u =
Λ

a30
+ Um+ V n; v = −Un+ V m; (89)

where

m =
p1

p21 + q21
+

p2
p22 + q22

; n =
q1

p21 + q21
+

q2
p22 + q22

. (90)
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Substituting (90) into (88) we have

q3
p3

=

(
Λ
a3
0

)
V + (V 2 + U2)n

(
Λ
a3
0

)
U + (V 2 + U2)m

. (91)

Note that (55) can also be written as

U = k3(rz3 − s); V = −k3(sz3 + r). (92)

Substitution of (92) into (91) yields

q3
p3

= −k3
γ3

= − 1

z3

=
−
(

Λ
a3
0

)
k3(sz3 + r) + k23(r

2 + s2)(z23 + 1)n
(

Λ
a3
0

)
k3(rz3 − s) + k23(r

2 + s2)(z23 + 1)m
, (93)

which is an algebraic equation for k3 with two solutions, either k3 = 0 or

k3 =
Λ

a30

( s

r2 + s2

)( 1

m+ z3n

)
. (94)

Note that z23 + 1 has cancelled from the numerator and the denominator of
(94). Using the relation

s

r2 + s2
=

γ1k2 + k1γ2
(γ1γ2)2 + (k1k2)2 + (γ1k2)2 + (k1γ2)2

=
1

γ1γ2

( 1
z1

+ 1
z2

(1 + z−2
1 )(1 + z−2

2 )

)
, (95)

obtained by dividing the numerator and the denominator by γ1γ2, and in-
cluding the results from (80) and (81) and using (90) we have

k1 = (1 + z21)
−1/2exp

[
z1tan

−1
( 1

z1

)]
;

k2 = (1 + z22)
−1/2exp

[
z2tan

−1
( 1

z2

)]
;

k3 =
Λ

a30

( 1

γ1γ2

)( 1
z1

+ 1
z2

(1 + z−2
1 )(1 + z−2

2 )

)(p1 + z3q1
p21 + q21

+
p2 + z3q2
p22 + q22

)−1
. (96)
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Equation (96) is the result of applying all of the reality conditions. One
then reconstructs the Ashtekar connection

A1
1 = a0k1(z1 − i) = a0

( z1 − i√
1 + z21

)
exp

[
z1tan

−1
( 1

z1

)]
;

A2
2 = a0k2(z2 − i) = a0

( z2 − i√
1 + z22

)
exp

[
z2tan

−1
( 1

z2

)]
;

A3
3 = a0γ3(1− iz−1

3 )

=
Λ

a20

(z3 − i

z1z2

)
(1 + z21)

1/2(1 + z22)
1/2exp

[
−z1tan−1

( 1

z1

)]
exp

[
−z2tan−1

( 1

z2

)]

( 1
z1

+ 1
z2

(1 + z−2
1 )(1 + z−2

2 )

)(p1 + z3q1
p21 + q21

+
p2 + z3q2
p22 + q22

)−1
.(97)

Hence given any ~z = (z1, z2, z3), the ‘non-temporal components A1
1 and A2

2

are uniquely determined and are independent of the state labels α and β.
The component detA = A1

1A
2
2A

3
3), which pays the role of the configuration

space time variable depends on the aformentioned parameters and also on
(α, β) through (p1, p2) and (q1, q2). For Λ = 0 one must revert back to (93),
whence

k3 = −γ3
( n
m

)
= −γ3

(
q1(p

2
2 + q22) + q2(p

2
1 + q21)

p1(p22 + q22) + p2(p21 + q21)

)
. (98)

So having applied all of the reality conditions, the Ashtekar connection
must be parameterized by (97). This guarantees that the densitized triad

σ̃ff = λfB
f
f = σ̃ff [~z,~γ;α, β] (99)

is real.
Then from the third line of (96), this fixes k3, which in turn fixes γ3

through the relation γ3 = k3z3. Likewise, k1 and k2 are fixed via the first
and second lines of (96) by z1 and z2, which in turn fixes γ1 and γ2 via the
relations γ2 = k2z2 and γ3 = k3z3.

6 Summary

This paper has provided a prescription for implementation of the reality
conditions at the kinematical level of the quantized instanton representa-
tion of Plebanski gravity. This corresponds to the diagonal subspace of
the Ashtekar variables, where the densitized triad is real. The reality condi-
tions have been implemented as adjointness relations in the quantum theory,
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leading to an explicit parametrization of the Ashtekar connection in terms
of three degrees of freedom ~z = (z1, z2, z3). The results of this paper are
limited to the degrees of freedom of the Ashtekar variables which map to
the kinematic phase space of the instanton representation, the degrees of
freedom which have been quantized. The next step is to apply these reality
conditions to the full Ashtekar phase space via the prescription outlined in
[10].
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