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Abstract

In this exerpt we introduce the concept of the ‘nonconventional’
calculus, outlining a prescription for making sense of the ultraviolet
singularities which occur in quantum field theories with a view to ad-
dressing quantm gravity. We first show how these singularities arise
when interpreting the canonical commutation relations for a general
quantum field theory and then discuss a new intepretation which deals
with them without using regularization procedures. We then discuss
the relative commutativity of functional with spacetime variation and
its implications for addressing the issue of time in quantum gravity in
contrast to nongravitational field theories. We end with a brief intro-
duction into how these concepts may be applied to the quantization of
gravity in Ashtekar variables coupled to matter fields.
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1 Introduction

Consider a fibre bundle whose section consists of a functional Ψ[φ] defined
on the functional space of fields φ = φ(x) in four dimensional spacetime M .
The functional Ψ might be defined with respect to a particular spacetime
history of the fields φ, and we would like to assess the dependence of the
functional Ψ on each of its variables. Let us define a fibre bundle whose base
space B constitutes a direct product of a spacetime manifold x ∈ M with
a manifold comprising the functional space of quantum fields φ(x) living on
spacetime. The notation is given by B ∼ (M ⊗ Γ), where Γ constitutes the
functional space. It seems reasonable to speculate that the dimension of this
base space is Dim(B) = ∞4 ⊗∞N , where N is the number of components,
or individual degrees of freedom, of the quantum field φ. However, the
question arises as to how one ensures that some portions of the base space
have not been overcounted. This leads to the question of the trivializability
of the base space with respect to spacetime, which ultimately leads to the
question of the problem of time in quantum gravity as we will demonstrate
in this work.

In the 3+1 decomposition of spacetime, one foliates spacetime M into a
set of spatial 3-surfaces Σ labeled by time t via the decomposition M = Σ×

R. In the process one is in a certain sense singling out time from space from
the starting point of a generally covariant description of nature. General
covariance is a powerful principle upon which Einstein’s general relativity is
based, which requires that time and space be treated on the same footing
with respect to the laws of nature. However, Einstein’s theory as originally
formulated is a classical theory. This leads one to pose the question as
to whether classical theory of general relativity, a diffeomorphism invariant
theory, can consistently be subjected to the laws and the axioms of quantum
mechanics. The rules of quantum mechanics necessitate that one solve the
Schrödinger equation, which by definition singles out the time direction from
three space Σ. For many nongravitational theories this procedure has been
successfully implemented, however in the case of general relativity one must
ponder the following questions: (i) Does the principle of general covariance,
a principle formulated within the classical realm of physics, apply to the
quantum regime or does it break down, and to what extent if any does
it break down? (ii) As a corollary to (i), was it Einstein’s intent for this
principle of covariance to be applied in this manner, given his expressed
disapproval of quantum mechanics during the time he developed general
relativity. (iii) If quantum mechanics and general covariance indeed are
mutually inconsistent principles of nature, then how close can one get to
reconciling general relativity with quantum mechanics? In other words,
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what is the miniumum that one must absolutely relax, if anything at all?
It will become clear in the course of this work, from the above intro-

duction, that the consistency of the quantization procedure for gravity is
somehow related to the problem of time. The first question one must as-
certain is the effect of the 3+1 decomposition of spacetime upon the fibre
bundle structure upon which we define our quantum theory. One may think
that the decomposition can be written as

E =
(
Σ × R ⊗ Γ,Ψ[Σ × R ⊗ Γ]

)
, (1)

where E constitutes the base space with fibre Ψ. Equation (1) assumes that
the base space of the fibre bundle is trivializable with respect to spacetime.
If this were to be the case, then one could conclude that general covariance
has been preserved by the process of quantization1 and that the dimension
of the base space is given by Dim(B) = ∞4 ⊗ ∞N . In this case, the field
φ and spatial position x and time t can be considered truly independent
variables. Note that if one restricts φ to a specific function of spacetime,
then the dimension of the base space collapes to Dim(B) = ∞4, since all
field components N are uniquely determined once the spacetime position x
is specified. The viability of a quantum theory of gravity by our interpre-
tation then amounts to evaluation of which variables within spacetime can
be considered as truly independent degrees of freedom with respect to the
field φ. If it were to be the case that the time variable could not be distin-
guished from φ, then the dimension of the basespace would then collapse to
Dim(B) = ∞3 ⊗ ∞N . The relevant question to make this determination,
as we will motivate and show in this work, is to determine which variables
within the subspace M are such that variations within the subspace Γ com-
mute with the former. It is this that determines the dimension of the base
space B, and consequently the total space E of the fibre bundle.

Does functional variation commute with spatial variation or with time
variation, with both or with neither? This is the question we will attempt
to answer in this work, which we assert should shed some light on question
(i) above. For question (iii) if one chooses not to make any consessions to
either principle- in other words, maintain general covariance and quantiza-
tion intact- then what consessions or restrictions elsewhere, if any, must be
made. It is a conjecture of the present author that one becomes restricted
in the class of allowed quantum states Ψ constituting the section of the fibre
bundle, as we will show in subsequent works. As regards the question (iii)
one can only speculate, given that Einstein in a certain sense motivated the
study of quantum mechanics with his famous paper explaining the photo-
electric effect, in which the concept of ‘quanta’ of light was invoked.

1This is the interpretation of the present author.
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2 Ultraviolet field-theoretical singularities in quan-

tum field theories

2.1 The canonical commutation relations

When one wants to quantize a classical theory via the Heisenberg prescrip-
tion, one promotes the classical fields and their canonically conjugate mo-
menta φ(x) and π(x) to quantum operators φ̂(x) and π̂(x) which act on a
quantum state

∣∣Ψ
〉
. The equal-time commutation relations are defined such

as to facilitate the manipulation of quantities involving functionals contain-
ing an infinite number of degrees of freedom. The equal-time commutation
relations for a typical theory read

[
φ(x, t), π(y, t)

]
= i~δ(3)(x − y) (2)

Although the definition (2) makes it convenient to compute quantities in the
functional formalism, the conventional thought is not to regard the Dirac-
delta function seriously as a funtion but rather as a distribution designed to
sift out a desired result. Stating (2) in words, the measurement of the field
at the spacetime point x = (x, t) cannot affect the measurement at another
spacetime point y = (y, t) if x and y are separated by a spacelike interval.
The consequence if such a measurement at x did in fact affect a measure-
ment at y is a violation of causality, an inviolable principle of quantum field
theory consistent with Lorentz invariance, among other cherished principles
of physics and intuition [1],[2].

An examination of the action for a massive Klein–Gordon scalar field in
Minkowski spacetime,

L =

∫

M

d4x
1

2

(
φ̇(x, t)2 − ∂iφ(x, t)2 −

1

2
m2φ(x, t)2

)
(3)

in relation to the commutation relations (2) indicates a potential incon-
sistency. The time derivative term, which encodes evolution of the field
orthogonal to the spatial hypersurface Σt on which the canonical commuta-
tion relations are defined, seems harmless enough. The mass squared term,
which couples the field to itself at each point x as well seems to be self-
consistent. It is the spatial derivative term where the apparent problem lies.
Imagine discretizing three-space. As the field propagates from a position xn

to a point xn+1 there is a violation of causality, no matter how close xn and
xn+1 are together. One obvious way to mitigate this violation is to take
the limit in which the points coincide, to allow propagation in infinitesimal
steps from one spatial point to another. In this way, the causality violation
is less severe, having being turned on and turned off in a continuous fashion.
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The concept of particles and antiparticles in field theory resolves the
paradox of causality since both propagate in opposite directions across the
same spacelike interval when a measurement is made. This is an example of
the introduction of an external structure, by Dirac, into a theory in order to
solve a technical problem. Dirac’s concept of particles and antiparticles is
possible due to the ability to expand the solution to the classical equations
of motion for a harmonic theory in terms of plane waves of positive and
negative frequencies [2]. These plane waves correspond, in the quantized
version of these harmonic theories, to noninteracting particles. In a usual
treatment of anharmonic theories the anharmonic terms are treated as self-
interactions which can usually be accomodated by perturbative expansion in
a renormalizable theory. However in nonperturbative quantum gravity, the
application of this particle-antiparticle concept breaks down due to pertur-
bative nonrenormalizability in the metric representation. Also, due to the
inherent nonlinearity of gravity, it is not possible to expand in plane wave
solutions in the general case. Thus the concept of particles and antiparticles
as a means for addressing causality violation in usual quantized field theo-
ries does not directly extend to quantized gravity without some additional
provision to address the infinities that result.

In the extension of the canonical commutation relations to quantum
gravity we must resist the temptation to alter them in order to avoid any
unpleasantries of theoretical physics that the latter may portend. It is pre-
cisely the viability of these canonical commutation relations against Ein-
stein’s four-dimensional general relativity that we ultimately would like to
examine. Any tampering with them is strictly forbidden in order for a
reliable test of this viability to have been carried out. The process of reg-
ularization is in some cases tantamount to tampering, in that the result
computed may leave behind traces of the regulator’s presence even after
removed. Such effects occur in various regularization prescriptions in loop
quantum gravity [3],[4]. Therefore, we shall avoid regularization whenever
possible in our approach, since the test for prescription independence for the
set of all possible regulators is unfeasible.

2.2 Dirac delta functionals in quantum gravity

During the course of our quantization programme for Einstein’s four-dimensional
gravity we will occasionally need to evaluate the derivative of a delta func-
tion δ(3)(x) at the spatial point x. Recall that the definition of the one-
dimensional delta function δ(x), as defined by the equal-time canonical com-
mutation relations is conventionally such that

∫
dx δ(x)f(x) = f(0) (4)
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for all test functions f(x). It will shed considerable light in our quantization
programme to regard the delta function, as defined by the commutation
relations, as a function or distribution in its own right independently of any
test functions. The spatial derivative of this function or distribution can be
given, just as one may intuitively define the derivative, by

δ′(x) = limǫ→0
1

2ǫ

[
δ(x + ǫ) − δ(x − ǫ)

]
. (5)

We have taken the symmetric version of the derivative in (5). This appears
suitable, since the delta function can be approximated by a sequence of even
functions. Some familiar representations of the Dirac delta function are

δǫ(x) = limǫ→0
1

4πǫ
e−

x
2

ǫ

δǫ(x) = limǫ→0
1

π

ǫ

ǫ2 + x2

δǫ(x) =
1

π
x−2sin2(x/ǫ) (6)

Nonetheless, cast as a function the Dirac delta function should be indepen-
dent of the representation. Equation (5) may appear to be not well-defined
as a function in and of itself. However, when integrated against a test func-
tion f(x) one finds

∫
dxf(x)δ′(x) = limǫ→0

1

2ǫ

[∫
dxf(x)δ(x + ǫ) −

∫
dxf(x)δ(x − ǫ)

]

= limǫ→0
1

2ǫ

[
f(−ǫ) − f(ǫ)] = −f ′(0), (7)

which is the required result. We have shown in (5) and (7) that the derivative
of a delta function can be regarded formally, insofar as the delta function
itself is formal, as a function producing the required effect by a well-defined
mathematical operation. Note that we have not imposed any requirements
on test functions such as fall-off conditions at infinity, since the Dirac delta
function by definition already has compact support. Notice also in(7) how
the Dirac delta function has sifted out the symmetric form of the derivative
of f . It is natural, for field theoretical reasons which we will explain in
more detail below, to apply the symmetric definition of the derivative when
differentiating all functions. In the discretized version with spacing ǫ, one
has

f ′(xn) = limǫ→0
1

2ǫ

[
f(xn+1) − f(xn−1)

]
. (8)

5



2.3 Use of functional derivatives in field theory

We have defined the derivative of a delta function of x, but what about
the spatial derivative of δ(3)(0)? Our interpretation will be such as to treat
δ(3)(0) as a (infinite) numerical constant, thus ∂jδ

(3)(0) = 0.2 Such quan-
tities will arise repeatedly in the analysis of the Hamiltonian constraint of
quantum gravity in the Schrödinger representation, and are due to taking
multiple functional derivatives evaluated at the same spatial point. This is a
nonconventional interpretation, as strictly speaking one typically integrates
delta functions against a test function N(x) in order to try to make sense
of such an expression as

δ

δφ(x)

∂φ(y)

∂y
≡

∂

∂y
δ3(x − y). (9)

One then writes, upon taking account of the fall-off conditions imposed upon
N(x),

δ

δφ(x)

∫
d3y N(y)

∂φ(y)

∂y
≡ −

∂N(x)

∂x
. (10)

However, when x = y in (9), the the interpretation (10) in terms of distri-
butions and test functions is not so clear. It seems more natural to conform
to the functional definition as provided, making the identification

δ

φ(x)

[ ∂

∂xj
φ(x)

]
=

∂

∂xj

[δφ(x)

δφ(x)

]
= ∂jδ

(3)(0) ≡ 0. (11)

It may appear counterintuitive to interpret (17) the way it reads, namely
that the field φ(x) and its spatial gradients ∂φ(x) at the same points can
be regarded as independent variables.3 Perhaps an analogy to motivate this
notion is in order.

Consider the Lagrangian for a general system, being a functional of the
fields and its derivatives

I = I(φ, ∂φ) =

∫

M

d4xL[φ(x), ∂φ(x)]. (12)

The Euler-Lagrange equations of motion follow from requiring the action
to be stationary against independent variations of the fields. One varies the
action with respect to the functional dependence of the Lagrangian upon
the fields of the theory, which is the same at each point. In other words,

2This is a different interpretation to that presented in [5], in which it is argued that
δ(3)(0) = 0, essentially as a consistency condition on the canonical quantization relations
of metric gravity.

3Equation (17) carries the implicit assumption that spatial derivatiation and functional
differentiation commute with one another.
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any function of x for all x can be substituted in for φ(x) and the resulting
action computed to give a number. Varying the action,

δI =

∫

M

d4x
[ ∂L

∂φ(x)
δφ(x) +

∂L

∂φ,µ(x)
δ
(∂φ(x)

∂xµ

)]
. (13)

We have maintained the position dependence of the fields in (12) explicit to
signify that the fibre bundle structure consisting of the base space x with
fibres φ(x) is in a certain sense trivializable. φ(x) can be regarded as a
function independent of x at the point x when it is varied from one function
to the next. The variable x then becomes a label.

Before one can proceed to the next step from (13), namely to integrate
by parts to obtain the classical equations of motion, one must consider a
detail often taken for granted in field theory. That is the question of com-
mutativity of functional variation with partial differentiation. It is assumed
that

[
δ, ∂
]

= 0 which allows one to progress to the next step, in precise
terms namely that functional variation in the functional space of fields at a
fixed point commutes with spatial variation in the space of positions for a
fixed function. Taking this into account one has

δI =

∫

M

d4x
[ ∂L

∂φ(x)
δφ(x) +

∂

∂xµ

( ∂L

∂φ,µ(x)
δφ(x)

)
− δφ(x)

( ∂

∂xµ

∂L

∂φ,µ

)]

=

∫

∂M

d3x nµ ∂L

∂φ,µ(x)
δφ(x) +

∫

M

d4x δφ(x)
[ ∂L

∂φ(x)
− ∂µ

∂L

∂φ,µ(x)

]
(14)

Only after these operations have been carried out4 can one solve the clas-
sical equations of motion for φ(x), explicitly as a function of x subject to
appropriate boundary conditions. In this case, one can find the gradients
∂µφ(x) as well explicitly as a function of x. If the relation Y = φ(x) is
locally inverted to find x = φ−1(Y ), then this can be substituted into the
gradient to find

φ′(x) = (∂φ)[x] = (∂φ)
[
φ−1(Y )

]
. (15)

and the quantity ∂φ is explicitly a function of φ for a particular function
φ(x) and they are no longer independent variables. However, there is no
contradiction.

The operations carried out in order to obtain this relationship linking φ
and ∂φ were successive restrictions upon the configuration space variables
such that a unique classical solution could be obtained. There are two main
differences in quantum field theory, and in particular in quantum gravity:
(i) In the quantum theory the evolution of the field is not deterministic as in
the classical equations of motion. Any arbitrary function can be substituted

4With the appropriate bounday terms set to zero.
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into the action, even funtions not satisfying the classical equations of motion,
including functions which are not differentiable. The only restriction is that
the function be continuous and have a well-defined value at each point of
manifold of positions Σ. So in the space of functions, there is no apriori
relation between φ and ∂φ. In fact, the calculus of variations formalism has
been extended to include functionals of higher derivatives, treating them
each as independent variables. Hence from a starting action of the form
S = S[φ, φx, φxx, . . . ], where the subscript x denotes derivatives with respect
to the variable x, one obtains

δS

δφ(x)
=

∂L

∂φ
−
∑

n

∂n

∂xn

( ∂L

∂φx...x

)
= 0 (16)

(ii) In quantum gravity, a constrained diffeomorphism invariant theory un-
like the usual field theories, the processes of functional and spatial variation
commute, however the processes of functional and time variation in general
do not. This property provides a method to address the problem of time,
which does not have a counterpart in ordinary field theory. These properties
will be of great utility in our approach to the quantization of gravity.

3 Relative commutativity of functional variation

and spacetime variation

3.1 Functional versus spatial variation

To make more precise the commutative relationship of spatial to functional
differentiation, we will now see the utility of the symmetric definition of
the derivative (8) when working with field theory and in particular, with
quantum gravity. Let us compute the functional derivative of the spatial
derivative of φ(x) at x. In order to visualize this procedure, which acts on
infinite dimensional spaces, it is convenient to discretize space into intervals
of length a. This can be justified by consideration, for example, of the
predictions of loop quantum gravity which indicate that spacetime on a
quantum level is discrete on the scale of the Planck length lP l, rather than
continuous. So one has, applying the field theory relations to the discretized
version of (17) at the point x ≡ xn,

8



δ

φ(x, t)

[ ∂

∂xj
φ(x, t)

]

=
δ

δφ(xn, t)
lima→0

1

2a

[
φ(xn+1, t) − φ(xn−1, t)

]

= lima→0
1

2a

[δφ(xn+1, t)

δφ(xn, t)
−

δφ(xn−1, t)

δφ(xn, t)

]

= lima→0
1

2a

[
δ(xn+1 − xn) − δ(xn − xn−1)

]
. (17)

Under the assumption that space is discrete, regardless of the spacing a,
(17) vanishes. So one is free to make the spacing arbitrarily smaller than
the Planck length scale a << lP l and one would still have the same result.
Therefore we will assume that functional and partial derivarives at the same
point commute in the continuum limit, since the partial derivative of a
function at a point depends upon the value of the function at adjacent
separated points.

One may repeat the above exercise in the continuum limit, applying the
definition of the functional derivative. Let us evaluate the functional and
spatial derivatives of a function F [φ(x)] for both sequences. First, taking
the spatial derivative of the functional derivative,

∂

∂x

[δF [φ(x)]

φ(y)

]
=

∂

∂x
limǫ→0

1

ǫ

(
F [φ(x) + ǫδ(x − y)] − F [φ(x)]

)

=
∂

∂x
limǫ→0

1

ǫ

(
F [φ(x)] + ǫδ(x − y)F ′[φ] + · · · − F [φ(x)]

)
. (18)

All terms but the first order term in ǫ vanish, yielding

∂

∂x

[δF [φ(x)]

φ(y)

]
=

∂

∂x

[
δ(x − y)F ′[φ]

]
= δ(x − y)F ′′[φ]

∂φ

∂x
+ F ′[φ]

∂

∂x
δ(x − y),(19)

where we have applied the chain rule to the first term on the right hand side
of (19). Prior to performing the differentiations in the opposite order one
notes the chain rule

δ

δφ(y)

[∂F [φ(x)]

∂x

]
=

δ

δφ(y)

[
F ′[φ]

∂φ(x)

∂x

]
(20)

as the rule for differentiating a function of a function with respect to its
position dependence. Continuing with the expansion in (20), only the terms
linear in ǫ prior to cancellation survive

9



δ

δφ(y)

[∂F [φ(x)]

∂x

]

=
1

ǫ
limǫ→0

(
F ′
[
φ(x) + ǫδ(x − y)

] ∂

∂x

(
φ(x) + ǫδ(x − y)

)
+ · · · − F ′[φ(x)]

∂φ(x)

∂x

)

= F ′[φ]
∂

∂x
δ(x − y) + F ′′[φ]δ(x − y)

∂φ(x)

∂x
,(21)

which is the same as (19). So we see that functional differentiation and
spatial differentiation, even with respect to different points, do in fact com-
mute.

One then asks the question as to whether functional and spatial inte-
gration commute as well. This follows from the algebraic properties of the
integral. Consider the integral

∫

Γ
δφ

∫

Σ
F [φ(x)]. (22)

The notation in (22) signifies that we wish to integrate a function of position
over the space of functions φ. This implies that the function F = F (x), seen
as a function of φ, is directly integrable into its antiderivative G(x) such

that F (x) = dG(x)
dx

. Let us assume that the antiderivative G exists. One can
see, by discretizing the spatial manifold Σ, that

∫

Γ
δφ

∫

Σ
d3xF [φ(x)] =

∫

Γ
δφ
∑

n

F [φ(xn)]

=
∑

n

∫ G2

G1

δφ(xn)F [φ(xn)] =
∑

n

[
G[φ(xn]

]G2(xn)

G1(xn)

=

∫

Σ
d3xG2(x) −

∫

Σ
d3xG1(x) (23)

3.2 Functional versus time variation

We have shown in (17) that spatial derivatives commute with functional
derivatives [∂i, δ] = 0. But the question arises as to whether the same is
true of time derivatives. First let us compute the result when the time
derivative is evaluated last.

∂

∂t

[δφ(y, t)

δφ(x, t)

]
=

∂

∂t

(
δ(3)(x − y)

)
= 0. (24)
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For (24) we have made use of the equal-time commutation relations as well
as the fact that spatial position x and time t are independent variables.
Now let us perform the sequence in reverse.

δ

φ(y, t)

[ ∂

∂t
φ(x, t)

]
(25)

In the square brackets in (25) we must hold spatial position fixed and dif-
ferentiate with respect to time. Discretizing the time interval,

δ

φ(y, t)

[ ∂

∂t
φ(x, t)

]
=

δ

δφ(y, t)
limǫ→0

1

2ǫ

[
φ(x, tn+1) − φ(x, tn−1)

]

= limǫ→0
1

2ǫ

[δφ(x, tn+1)

δφ(y, t)
−

δφ(x, tn−1)

δφ(y, t)

]

(26)

Immediately in (26) arises the problem of how to interpret δφ(x, tn±1)/δφ(y, tn).
We cannot use (2), since the commutation relations are defined only at equal
times. If we had a completely covariant description of nature in which space
and time were on equal footing, then the commutation relations might read

[
φ(x, t), π(y, t′)

]
= i~δ(3)(x − y)δ(t − t′). (27)

But (27) restricted to equal times would read

[
φ(x, t), π(y, t)

]
= i~δ(3)(x − y)δ(0), (28)

which is in contradiction with (2). So it would seem to imply that time and
space are not necessarily exactly the same, at least on the quantum level.5

The most direct way to take into account the difference in times in (26)
within the framework of quantum mechanics is to evolve the fields to equal
times via the Heisenberg picture.

φ(x, t) = e
i

~

R

t

t0
dt′Ĥ(t′)

φ(x, t0)e
−

i

~

R

t

t0
dt′Ĥ(t′)

. (29)

Substituting into (26) for infinitesimal times,

δ

φ(y, t)

[ ∂

∂t
φ(x, t)

]
=

δ

δφ(y, t)
limǫ→0

1

2ǫ

[
e

iǫĤ

~ φ(x, t)e−
iǫĤ

~ − e−
iǫĤ

~ φ(x, t)e
iǫĤ

~

]
.(30)

5We do not make any inferences regarding the general covariance of Einstein’s de-
cription of space-time in this exerpt, but merely point out that one by definition singles
out time as special by defining such things as equal time commutations, and also for
other things such as the 3+1 ADM decomposition and for defining quantum gravitational
wavefunctionals on spatial hypersurfaces.
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Since functional variation with respect to the fields does not commute with
the Hamiltonian, the most direct way to evaluate (30) is to expand the
commutators. Hence,

e
iǫĤ

~ φ(x, t)e−
iǫĤ

~ = φ(x, t) +
i

~
ǫ
[
Ĥ, φ(x, t)

]
+ (

i

~
ǫ)2
[
Ĥ,
[
Ĥ, φ(x, t)

]]
+ ...(31)

Substituting into (30), the zeroth order term cancels out and we have

δ

φ(y, t)

[ ∂

∂t
φ(x, t)

]
=

2i

~

δ

φ(y, t)
limǫ→0

[
Ĥ, φ(x, t)

]
+ O(ǫ) =

2

~2

[
π̂(y, t),

[
Ĥ, φ(x, t)

]]
(32)

where in (32) the O(ǫ) terms have vanished in the ǫ → 0 limit and we have
made use of the equal-time commutation relations in the last line. In order
to assess the relative commutativity of functional versus time variation, one
must then ascertain under what conditions the right hand side of (32) van-
ishes. Clearly, for Hamiltonians for which there are no ordering ambiguities
due to products of coordinates with momenta, the right hand side of (32)
is zero. This encompasses all Hamiltonians that one is typically likely to
encounter in usual nongravitational field theories on Minkowski spacetimes,
such as can be decomposed into a kinetic term involving only momenta and
potential terms involving only the fields.6 For the Klein–Gordon scalar field
in Minkowski spacetime with self-interaction potential V (φ), one has

[
π,
[π2

2
+

1

2
φ(∇2 + m2)φ + V (φ), φ

]]
= −i~[π, π] = 0. (33)

Equation (33) indicates that the results of (24) and (25) for this case are
equal to each other, or that functional variation and time variation commute
with each other, at least for the Klein–Gordon scalar field on Minkowski
spacetime.

However, let us see what happens in the case of quantum gravity, a
constrained diffeomorphism invariant, gauge invariant theory. For quantum
gravity in Ashtekar variables, taking as an example the scenario of pure
gravity alone with cosmological term the following commutation relations
amongst the components of the Ashtekar potential Aa

i and its conjugate
momentum, the densitized triad, σ̃i

a are given by

[
Aa

i (x, t),
i

G
σ̃j

b(y, t)
]

= iδj
i δ

a
b δ(3)(x − y). (34)

The Hamiltonian density is then given, omitting any matter contributions
for simplicity,

6This includes velocity-independent potentials.
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H =

∫

Σ
d3x
[Λ

6
ǫijkǫabcσ̃

i
aσ̃

j
b σ̃

k
c + ǫijkǫ

abcσ̃i
aσ̃

j
bB

k
c

]
. (35)

In evaluating (32) one has, modulo Dirac delta functions,

[[Λ
6

ǫijkǫabcσ̃
i
aσ̃

j
b σ̃

k
c + ǫijkǫ

abcσ̃i
aσ̃

j
bB

k
c , Ad′

l′

]
, σ̃n

f

]

=
[λ
2
ǫijkǫ

abcσ̃i
aσ̃

j
b + 2ǫil′kǫ

ad′cσ̃i
aB

k
c , σ̃n

f

]

= 2ǫil′kǫ
ad′cσ̃i

a

[
ǫlkm∂lA

c
m +

1

2
ǫklmf cdeAd

l A
e
m, σ̃n

f

]

= ǫil′kǫ
ad′cǫklnf cdf σ̃i

a

(
Ad

l δ
n
mδe

f + Ae
mδd

fδn
l

)
= 2ǫil′kǫ

ad′cǫklnf cdf σ̃i
aA

d
l 6= 0 (36)

So we see that although functional variation commutes with spatial varia-
tion, it in general does not commute with time variation. The interpretation
is that functional variation of fields for certain theories7 includes time evo-
lution of the fields. This effect sheds some light on the problem of time in
quantum gravity, and a possible approach to its resolution.

3.3 Coincidence limit of delta functions

In the quantization of gravity in the Schrödinger representation we will
need to take repeated functional derivatives. The functional derivative of a
functional H[η] is given, when the functional is the integral over all space

H[η] =

∫

Σ
d3x G[η(x)] (37)

for some function G(x) is given by

δ

δη(x)
H[η] = limǫ→0

1

ǫ

[∫

Σ
d3x′G

[
η(x′) + ǫδ3(x)

]
−

∫

Σ
d3x G[η(x)]

]

= limǫ→0
1

ǫ

[∫

Σ
d3x′G

[
η(x′)

]
+ ǫ

∫

Σ
d3x′G(x)δ(3)(x − x′) + ... −

∫

Σ
d3x G[η(x)]

]

= G[η(x)].(38)

So we see that the functional derivative of the integral over three-space
contains one degree of singularity less than the functional itself, having been
reduced to the value at a point. The singularity is then cancelled out by the

7Particularly quantum gravity in Ashtekar variables, an effect we anticipate to be even
more pronounced when coupled to matter fields
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process of integration of the density. However, when the functional itself is
explicitly a function of x, ultraviolet singularities result from the procedure.
The functional derivative of a function F [η(x)] evaluated at the same point
x at equal times is given by

δ

δη(x)
F [η(x)] = limǫ→0

F [η(x) + ǫδ(3)(x)] − F [η(x)]

ǫ

= limǫ→0
1

ǫ

(
F [η(x)] + ǫδ(3)(x)F ′[η] + ... − F [η(x)]

)
= F ′[η]δ(3)(x) (39)

Our interpretation of this expression is that the functional relationship be-
tween F [η(x)] and η(x) at the point x has been exposed and the quantity
F ′[η] is an exemplification of that relationship at the point x, a label which
can be suppressed. The coefficient δ(3)(x) ensures that this ‘relationship’
has compact support, valid only at the origin x = 0 but trivial (devoid of
physical content) otherwise. We invoke the notation F ′[η]δ(3)(0) to highlight
that the nontrivial physical content in this apparently ill-defined quantitity
is transported to each point in space. To illustrate that it does in fact have
physical content, let us take another functional derivative.

δ

δη(x)

(
F ′[η(x)]δ(3)(x)

)
= limǫ→0

1

ǫ

(
F ′[η(x) + ǫδ(3)(x)]δ(3)(x) − F ′[η(x)]δ(3)(x)

)

= limǫ→0
1

ǫ

(
F ′[η(x)] + ǫδ(3)(x)F ′′[η]

)(
δ(3)(x)

)
+ ... − F ′[η(x)]δ(3)(x)

)

= limǫ→0
1

ǫ

(
F ′[η]δ3(x) + ǫF ′′[η](δ(3)(x))2 + ... − F ′[η]δ(3)(x)

)

= F ′′[η](δ(3)(x))2(40)

Again, we interpret that due to the compact support of the δ(3)(x) distri-
bution, the operation contains nontrivial physical context only at the point
x = 0 while the functional relationship F [η] between F and η is maintained
irrespective of the value of x. We illustrate this by the notation

F ′′[η](δ(3)(x))2 −→ F ′′[η](δ(3)(0))2. (41)

Since this operation could have been performed at any arbitrary point x
yielding the same functional form and the origin of the coordinate system can
be arbitrarily chosen, the functional relationship between F [η] and η, which
is independent of position, can be exploited to harness the encoded physics
everywhere in Σ.8 It is this property of which we make use in the analysis
of the Hamiltonian constraint. Note due to the functional independence of

8The claim is that this subtlety can be exploited to treat the full theory of quantum
gravity in a certain sense in direct analogy to minisuperspace. The functional relationship
between F [η] and η in the space of fields Γ is the same in each case, and the dependence
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δ(3)(x) upon η(x), that functional derivatives can be taken to arbitrarily
high order, producing arbitrarily singular products of delta functions.

Having defined the commutations relations and the process of functional
differentiation, we will not perform regularization procedures in order to
get rid of any infinities that result. This is because it is not guaranteed
that we will always, or ever, be fortunate to obtain answers independent of
the particular regularization prescription, for which there are be infinitely
many to test. Granted, this in no way relieves us of the requirement to
deliver finite results in quantum gravity, but we shall not make the use of
regulators in order to do so. Regularization may have worked in ordinary
field theory, which is more tractable and for which there are complementary
regularization procedures for obtaining and double-checking the sensibility
of results. However, for quantum gravity it is not so clear and the same
luxuries are not available. In order to address quantize gravity we will
avoid regularizations to the maximum extend feasible and attempt to extract
the nontrivial physical content from the infinties themselves and from their
coefficients. We have made our quantum mechanical bed by defining the
canonical quantum relations, so we must lie in it.

4 Introduction: The Hamiltonian constraint and

the semiclassical-quantum correspondence

We would like to solve the quantized version of the classical Hamiltonian
constraint, given by

Λ

6
ǫijkǫ

abcσ̃i
aσ̃

j
b σ̃

k
c + ǫijkǫ

abcσ̃i
aσ̃

j
bB

k
c + GΩ

[
Aa

i , φ
α, πα, σ̃i

a

]
= 0. (42)

The Hamiltonian constraint arises from the classical equation of motion for
the lapse density N , given by

δIAsh

δN (x)
= (Htot) = 0 ∀x in M (43)

which holds at all points in the spacetime manifold M = Σ × R, where
IAsh is the action for general relativity in Ashtekar variables coupled to
matter fields φα(x). The diffeomorphism constraint arises from the classical
equation of motion for the shift vector N i

upon spatial position x in Σ has been ‘factored’ out. We exploit this subtlety in our
quantization programme for the full theory of quantum gravity, since it is precisely in
this theory that one must consider the effects of ‘freezing’ spatial position in order to
implement the constraints. As we have shown, one cannot ‘freeze’ time as well.
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δIAsh

δN i(x)
= (Hi)tot = 0 ∀x in M, (44)

and the Gauss’ law constraint arises from the classical equation of motion
for the SU(2)− rotation angle θa = Aa

0

δIAsh

δθa(x)
= (Ga)tot = 0 ∀x in M. (45)

First, the classical equation of motion for the densitized shift function (43),
(42) must be quantized. This equation of motion must hold at all spacetime
points (x, t) in the 4-manifold M = Σ×R. However, in order to evaluate its
quantized form one must make use of the canonical quantization relations
for the dynamical variables. By the usual rules of quantum field theory one
is restricted to the equal-time commutation relations [2], which restricts one
to a particular spatial hypersurace Σ when promoting the classical fields
into quantum operators acting on the state

∣∣Ψ
〉

via the Dirac quantization
procedure [7]. One has, upon promoting Poisson brackets to commutators,

[
Aa

i (x, t),
i

G
σ̃j

b(y, t)
]
PB

= δj
i δ

a
b δ(3)(x − y)

−→
[
Aa

i (x, t),
i

G
σ̃j

b(y, t)
]

= iδj
i δ

a
b δ(3)(x − y) (46)

for the gravitational variables and

[
φα(x, t), πβ(y, t)

]
PB

= δα
β δ(3)(x−y) −→

[
φα(x, t), πβ(y, t)

]
= iδα

β δ(3)(x−y)
(47)

for the matter variables. In order to solve the quantized Hamiltonian con-
straint one must put (46) and (47) into the Schrödinger representation.
Since one is restricted by this field-theoretical quantization property to equal
times, the quantized Hamiltonian constraint applies at all spatial points x

in a given spatial hypersurface Σt corresponding to a given time t. This
appears to be related to the problem of time in quantum gravity in that
is no inherent mechanism to evolve the quantum state

∣∣ΨGKod

〉
from the

hypersurface Σt at time t to the hypersurface Σt+δt at time t+ δt. However,
since the classical Hamiltonian constraint (42) must hold for all times t as
a classical equation of motion, the problem of time is circumvented. It is
circumvented because the classical constraint corresponding to each time t
must be quantized and solved. This implies that the classical evolution in
time corresponds to a quantum evolution in time,9 since the functional form
of the constraints is preserved on each spatial hypersurface Σt.

9This property is reminiscent of a new principle which we will make use of to construct
quantum states of gravity namely, the principle of the semiclassical-quantum correspon-
dence (SQC). Our assessment is that this principle implies the existence of special states
in constrained field theories.
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So one is free to transform the quantized Hamiltonian constraint into
the Schrödinger representation by choosing a polarization in which the wave
function is a functional of the configuration space variables via the replace-
ments, for a given spatial hypersurface,

Âa
i (x, t)

∣∣ΨGKod[A,φ]
〉

= Aa
i (x, t)

∣∣ΨGKod[A,φ]
〉
;

ˆ̃σ
i

a(x, t)
∣∣ΨGKod[A,φ]

〉
= ~G

δ

δAa
i (x, t)

∣∣ΨGKod[A,φ]
〉
;

(48)

for the gravitational dynamical variables, and

φ̂α(x, t)
∣∣ΨGKod[A,φ]

〉
= φα

∣∣ΨGKod[A,φ]
〉
;

π̂α(x, t)
∣∣ΨGKod[A,φ]

〉
= −i~

δ

δφα(x, t)

∣∣ΨGKod[A,φ]
〉

(49)

for the gravity-coupled matter dynamical variables. We have chosen the
name ΨGKod for our wavefunctions in order to signify the generalized Ko-
dama states, the significance of which we will explain in greater detail in
separate works. For now, consider the term GKod as just a label. Then
all that remains in the solution of the quantized Hamiltonian constraint
Ĥtot

∣∣ΨGKod

〉
= 0 in the Schrödinger representation is to make sense of the

singular terms δ(3)(0) which arise from quantum operator products evalu-
ated at the same spatial point x at equal times. The quantized counterpart
to (42), reads

0 = Ĥ
∣∣ΨGkod

〉
=

[
Λ

6
~

3G3ǫabcǫijk
δ

δAa
i (x)

δ

δAb
j(x)

δ

δAc
k(x)

+~
2G2ǫabcǫijkB

i
a

δ

δAb
j(x)

δ

δAc
k(x)

+ GΩ̂
[
Aa

i (x)φ(x),
δ

δφ(x)
,

δ

δAa
i (x)

]]∣∣ΨGkod

〉

=
(∑

n

(~Gδ(3)(0))nqn

)∣∣ΨGkod

〉
(50)

for some qn. Equation (50) then requires that qn = 0 for all n.

4.1 A bit of notation

We will need to make use of a few identities in dealing with the Ashtekar
variables in quantum gravity. First, we note that three dimensions is spe-
cial in that the SU(2) group has three generators with structure constants
fabc ∝ ǫabc similar to the epsilon tensor ǫijk for Cartesian space. This
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allows us to regard the Ashtekar variables as 3 by 3 matrices. We will
use interchangeably the symbols fabc and ǫabc when refering to the SU(2)
structure constants. The Ashtekar magnetic field Bi

a is given by Bk
c =

ǫklm(∂lA
c
m + (1/2)f cdeAd

l A
e
m). We have the following additional identities

δBk
c (x, t)

δAa
i (y, t)

=
δ

δAb
j(y, t)

[
ǫklmDlA

c
m(x, t)

]

= ǫklm δ

δAa
i (y, t)

[ ∂

∂xl
Ac

m(x, t) +
1

2
f cdeAd

l (x, t)Ae
m(x, t)

]

= ǫikl[δac∂l + faceA
e
l (x, t)

]
δ(3)(x − y)

≡ δ(3)(x − y)Dik
ac. (51)

Note that in evaluating functional derivatives we are restricted to per-
forming operations on quantities evaluated at the same time t, e.g. on the
same spatial 3-surface Σt in order to make use of the equal-time quantum
commutation relations. For x = y in (51), one must have δ(3)(0)Dik

ac =
ǫiklǫaceA

e
l , due to the commutativity of functional with partial differentia-

tion. Moving on to the third functional derivative,

δ

δAa
i (x, t)

δ

δAb
j(y, t)

Bk
c (z, t) = ǫijkfabcδ

(3)(z − x)δ(3)(z − y)

≡ ǫijk
abcδ

(3)(z − x)δ(3)(z − y). (52)

In the coincidence limit of (52) we have

δ

δAa
i (x, t)

δ

δAb
j(x, t)

Bk
c (x, t) = ǫijk

abc(δ
(3)(0))2. (53)

All functional derivatives higher than the second vanish, since ǫijk
abc is a

numerical constant. From now on we will suppress the position dependence
of the variables when convenient and will insert the appropriate factors of
δ(3)(0) when necessary.

5 Ramifications of spacetime versus functional vari-

ation

18



5.1 Minisuperspace toy model

We will show how a quantum mechanical wavefunction Ψ = Ψ[A(T ), φ(T )]
as determined on the final hypersurface ΣT at time T is independent of time
derivatives of the fields living within M .

This can be more clearly seen by direct analogy to a simpler example
in 0 + 1 dimensional field theory. Define a functional S = S(u, v) of two
independent variables u = u(t) and v = v(t) which are each functions of a
parameter t along a one-dimensional curve γ. The question is, under what
conditions is the integral

S =

∫ T

t0

dt
(
Uu̇ + V v̇

)
(54)

independent of the velocities u̇ and v̇ as well as the histories of u and v
along γ, where U and V are functionals of (u, v)? One obvious condition
is that for which S in (54) is the integral of a total time derivative with U
and V themselves being independent of the velocities. This is so due to the
first-order nature of the integrand (54). Taking the time derivative of (54)
yields

dS

dt
= u̇

(∂S

∂u

)∣∣∣∣
v=const.

+v̇
(∂S

∂v

)∣∣∣∣
u=const.

= U(u, v)u̇ + V (u, v)v̇ (55)

with the identifications ∂S/∂u = U at fixed v and ∂S/∂v = V at fixed u.
Clearly U and V must be related by a condition of mixed partial derivatives
in order to satisfy the conditions requested. Hence

∂2S

∂u∂v
=

∂2S

∂v∂u
=

∂U

∂v
=

∂V

∂u
. (56)

As long as (56) is satisfied, then S is the integral of a total time derivative
and (54) can be deparametrized via du = u̇dt, dv = v̇dt to yield

S =

∫ T

t0

dt
(
Uu̇ + V v̇

)
=

∫ u(T )

u(t0)
U(u, v)du +

∫ v(T )

v(t0)
V (u, v)dv

= S[u(T ), v(T )] − S[u(t0), v(t0)] ∼ S(T ) − S(t0). (57)

The relevant features of this simple example are:(i) that the final form for
S in (57) is obtained by integrating in the u direction for fixed v in the
first term, and integration in the v direction for fixed u in the second term.
Note that this integration is independent of the detailed time dependence or
history of the functions u(t), v(t) along γ and therefore the time dependence
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can be arbitrarily chosen. (ii) The final result depends entirely on the values
of the arguments u, v as defined at the endpoints of the one-dimensional
curve γ, and also manifestly independent of any velocities u̇ or v̇. (iii) In
light of the questions posed in the introduction, one may say that due to the
time reparametrization invariance on the functional S, that time variation
is indistinguishable from functional variations of the fields u and v. So
while the dimension of the base space in this case may naively start at
Dim(u, v, t) = ∞2 ⊗ ∞, the requirement that the fields u and v combine
to produce a total derivative amounts to a collapse of the dimension to
Dim(u, v, t) = ∞2. Time has been ‘absorbed’ into the definition of the
fields.

5.2 Application to the full theory

We are now ready to carry this simple minisuperspace analogy to the full
theory by making the identifications γ → M , u → Aa

i (x, t), v → φ(x, t). Let
us say that the quantum constraints of general relativity have been solved
for the CDJ matrix elements Ψab to the nine equations Cab = 0 arising from
the Dirac quantization procedure [8]. The next step then is to evaluate the
starting action for the Ashtekar variables coupled to matter on the reduced
phase space. The variable Ψab = Ψab[A

a
i , φ

α] is known as the CDJ matrix,
which can be considered as the transformation of the conjugate momentum
σ̃i

a into a new set of variables via the Ansatz

σ̃i
a(x, t) = Ψae(x, t)Bi

e(x, t) (58)

The starting action in Ashtekar variables evaluated on the solution to the
constraints is given by

iS = iS[Aa
i , φ

α] =

∫

M

[
(~G)−1ΨaeB

i
eȦ

a
i +

i

~
πφ̇
]∣∣∣∣∣

Cab(x)=0

(59)

making use of the matter momentum eigenvalue π arising from the mixed
partials condition. First we eliminate the time derivatives in (59). Note
that S is a functional of two dynamical variables living on the spacetime
manifold M . Write out the integral for the action

iS =

∫ T

t0

dt

∫

Σ
d3x
(
(~G)−1Ψae(x, t)Bi

e(x, t)Ȧa
i (x, t) +

i

~
π(x, t)φ̇(x, t)

)
(60)
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and then interchange the order of spacetime integration in (60)10

iS =

∫

Σ
d3x

∫ T

t0

dt
(
(~G)−1Ψae(x, t)Bi

e(x)Ȧa
i (x, t) +

i

~
π(x, t)φ̇(x, t)

)
(61)

Using the identities, suppressing the position dependence,

dAa
i =

∂Aa
i

∂t
dt +

∂Aa
i

∂x
dx +

∂Aa
i

∂y
dy +

∂Aa
i

∂z
dz;

dφ =
∂φ

∂t
dt +

∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz (62)

and the following identities involving differential forms

d3x = dx ∧ dy ∧ dz; dx ∧ dx = dy ∧ dy = dz ∧ dz = 0, (63)

any contribution to (61) due to spatial gradients of Aa
i (x) or of φ(x) automat-

ically vanish. This is due to the fact that the top form in four-dimensional
space M is the four form dx∧dy∧dz∧dt. See [10] for similar arguments by
Rovelli in a covariant treatment of Hamiltonian mechanics using differential
forms. The steps that follow can be seen as the projection of a covariant
description onto a spacelike hypersurface, but should hold independently of
whether the hypersurface is spacelike, timelike or null. Hence (61) can be
simplified by noting that for four dimensional spacetime M ,

dx ∧ dy ∧ dz ∧ dXa
e Ψae = dx ∧ dy ∧ dzΨae

[∂Xa
e

∂t
dt +

∂Xa
e

∂x
dx +

∂Xa
e

∂y
dy +

∂Xa
e

∂z
dz
]

= dx ∧ dy ∧ dz ∧ dt
∂Xa

e

∂t
Ψae = d3x dtȦa

i B
i
eΨae(64)

for the gravitational sector, and

dx ∧ dy ∧ dz π ∧ dφ = dx ∧ dy ∧ dzπ
[∂φ

∂t
dt +

∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz
]

= dx ∧ dy ∧ dz ∧ dt π
∂φ

∂t
= d3xdt πφ̇ (65)

for the matter sector. The left hand sides of (64) and (65) correspond to
four-forms projected into two different four-dimensional spaces, different on

10We have assumed that space and time are independent variables in a second quantized
theory, therefore any operations with respect to these variables, which take on the role
of labels, must commute. We leave open for now the question as to whether time can be
considered a dynamical variable as are the quantum fields.
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the one hand since Aa
i and φ are two dynamically independent variables,

the same space on the other hand since there is no other direction besides
the time direction to project them into in a 3+1 dimensional spacetime M .
This leads to the condition that

iS =

∫

Σ
d3x

(
(~G)−1

∫ Aa

i
(x,T )

Aa

i
(x,t0)

Ψae(x)Bi
e(x)dAa

i (x) +
i

~

∫ φ(x,T )

φ(x,t0)
π(x)dφ(x)

)
(66)

Equation (66) can be written in the following notation, supressing the x
dependence, to avoid cluttering the notation and to illustrate that the inte-
gration occurs in the functional space of fields for each fixed point x on the
initial and final spatial hypersurfaces Σ0 and ΣT

iS =

∫

Σ
d3x

(
(~G)−1

∫ Aa

i
(T )

Aa

i
(t0)

Ψae[A,φ]Bi
eδA

a
i +

i

~

∫ φ(T )

φ(t0)
π[A,φ]δφ

)
. (67)

The assumption is that the processes of functional integration over the space
of fields in (67) commutes with spatial integration over the manifold ΣT and
Σt0 . This can be seen more clearly by discretizing 3-dimensional space Σ as
is often done in Feynman path integrals [11]. Suppressing the dependence
on T and t0,

iS =
∑

xn

[
(~G)−1

∫ Aa

i
(T )

Aa

i
(t0)

Ψae[A(xn, t), φ(xn, t)]Bi
e(xn, t)δAa

i (xn, t)

+
i

~

∫ φ(T )

φ(t0)
π[A(xn, t), φ(xn, t), φ(xn, t), φ(xn, t)]δφ(xn, t), φ(xn, t)

]
. (68)

The interpretation of (68) and consequently of (67) is that for the first term,
the integration occurs with respect to the Aa

i dependence of the term ΨaeB
i
e

for a given xn, holding the φ dependence of Ψae fixed, and in the second
term the integration occurs with respect to the φ dependence of π for a given
xn, holding the Aa

i dependence of π fixed. That this is so can be seen from
the analogue of the condition of mixed partial derivatives, shown in the toy
model, as applied to the full theory

−i~
δAa

i (x)

δφ(x)
= ~G

δφ(x)

δAa
i (x)

= 0 ∀x (69)

from which it is clear that Aa
i and φ are truly dynamically independent

variables irrespective of their individual time histories within M .

22



Once this functional integration (68) is carried out over the space of fields
Γ = (Aa

i , φ), then 3-space can be ‘undiscretized’ by taking the limit in which
the lattice spacing approaches zero, giving the field-theoretical analogue (67)
whereupon the spatial integration d3x is performed. The end result is that
the action S depends upon the fields Aa

i and φ living on the initial and final
hypersurfaces ΣT and Σt0 exactly as in the 0+1 example considered earlier.
Equation (67) exhibits the same functional form as minisuperspace but is
in fact still the full theory. Note that this argument holds in the case of the
Chern–Simons action, since using (64) for Ψae = δae and writing in δ vice d
notation for the field,

∫
d3x

∫
dtBi

aȦ
a
i =

∫
d3x

∫

Γ
dAa

i B
i
a

∼

∫
d3x

∫

Γ
Bi

eδA
a
i =

∫

Γ
δ

∫

Σ
d3x
(
A ∧ dA +

2

3
A ∧ A ∧ A

)
= ICS[A]. (70)

for the connection as a one-form [9].

6 Discussion

In quantum field theory, having imposed the canonical commutation rela-
tions (2) one often tries to avoid the consequences of the resulting singular-
ities in order to make sense of the physical results. We argue that consis-
tency requires that the same rules apply in all cases. One should impose the
conditions whose coexistability one desires to test, namely that Einstein’s
four-dimensional general relativity coupled to arbitrary matter can be con-
sistently reconciled with quantum mechanics and quantum field theory, and
then examine the implications and possible manifestations of this in the
classical limit. Our appraisal of such a reconciliation is that it can be made
possible provided that one makes concessions in the form of a restriction of
the space of allowable physical states of the theory. An irreconcilable result
would imply a null space of such states.

We have also demonstrated a main difference between the usual field
theories on Minkowski spacetime and the constrained theory of gravity in
Ashtekar variables which relates to the problem of time. This follows from
the noncommutativity of functional variation with time variation in the lat-
ter theory as opposed to the former, and stems from ordering ambiguities
between products of configuration variables and their momenta. This non-
commutativity implies that a time evolution by definition includes a vari-
ation of the fields in quantum gravity and that in this sense the quantum
fields defining the theory can be utilized as a clock.
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The usual objections against the utilization of physical degrees of free-
dom as a clock stem from nonmonotonicity of the fields and from a restric-
tion to the semiclassical limit where the notion of time evolution is more
meaningful. Our proposal is that the objections can be addressed by finding
a special set of states for which the classical and the quantum regimes of
the state are one and the same. This enables the association of a classical
evolution in time by way of the classical equations of motion to a quantum
evolution in time by way of their quantum counterparts. Secondly, the issue
of lack of monotonicity would be resolved in spite of the arbitrary time de-
pendence of a particular history between two spatial hypersurfaces Σ0 and
ΣT , if such an evolution can be carried out by holographic effect. It then
suffices to define the clock by the association of a time label to the state as
defined on these hypersurfaces.

References

[1] Kazumas Nomoto and Rejiro Fukuda ‘Causality in the Schrödinger pic-
ture: Diagrammatical approach’ Phys. Rev. D46(1992)1680

[2] Peskin and Schroeder ‘An Introduction to Quantum Field Theory’
Copyright Westview Press. 1995

[3] Rodolfo Gambini and Jorge Pullin ‘Loops, Knots, Gauge Theories and
Quantum Gravity’ Cambridge University Press. 1996

[4] Roumen Borissov ‘Regularization of the Hamiltonian constraint and
the closure of the constraint algebra’ Phys. Rev.D55, 2059-2068 (1997)

[5] Bryce S. DeWitt ‘Quantum Theory of Gravity. I. The Canonical theory’
Phys. Rev. 160, 1113 (1967)

[6] John Friedman and Ian Jack ‘Formal commutators of the gravitational
constraints are not well defined: A translation of Ashtekar’s ordering
to the Schrödinger representation’ Phys. Rev. D37(1988)3495

[7] Paul Dirac ‘Lectures on quantum mechanics’ Yeshiva University Press,
New York, 1964

[8] Eyo Ita ‘Finite states in four dimensional quantized gravity’ arXiV:gr-
qc/0703052v5 (to appear)

[9] M. Nakahara ‘Differential geometry, Topology, and Physics’ Institute
of Physics Publishing, Bristol and Philadelphia, June 2003

24



[10] Carlo Rovelli ‘Covariant Hamiltonian formalism for field theory:
Hamilton–Jacobi equation on the space G’ gr-qc/0207043

[11] Laurie M. Brown ‘Feynman’s Thesis. A New Approach to Quantum
Theory’ World Scientific Publishing Co. Pte. Ltd. Copyright 2005

25


