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Abstract

In this presentation we show that starting from the Plebanski the-

ory of gravity, one can obtain two theories of gravity. The first theory is

the Ashtekar theory and the second is dual to Ashtekar’s theory, where

the antiself-dual Weyl curvature is the fundamental momentum space

variable. We have called this dual theory the instanton representation.

We show how the instanton representation leads to the Einstein equa-

tions in the same sense as does the original Plebanski theory, modulo

the initial value constraints of GR. Additionally, we provide a prescrip-

tion for constructing a general solution for spacetimes of Petrov Types

I, D and O, starting from the two physical degrees of freedom of GR.
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1 Introduction: Plebanski theory of gravity

The starting Plebanski action [1] writes GR using self-dual two forms in lieu
of the spacetime metric gµν as the basic variables. We adapt the starting

action to the language of the SO(3, C) gauge algebra as

I =
i

G

∫

M
δaeΣ

a ∧ F e − 1

2
(δaeϕ+ ψae)Σ

a ∧ Σe, (1)

where Σa = 1
2Σa

µνdx
µ ∧ dxν are a triplet of SO(3, C) two forms and F a =

1
2F

a
µνdx

µ ∧ dxν is the field-strength two form for gauge connection Aa =

Aa
µdx

µ. Also ψae is symmetric and traceless and ϕ is a numerical constant.
The field strength is written in component form as F a

µν = ∂µA
a
ν − ∂νA

a
µ +

fabcAb
µA

c
ν, with SO(3, C) structure constants fabc = εabc. The equations of

motion resulting from (1) are (See e.g. [2] and [3])

δI

δAg
= DΣg = dΣg + ε

g
fhA

f ∧ Σh = 0;

δI

δψae
= Σa ∧ Σe − 1

3
δaeΣg ∧ Σg = 0;

δI

δΣa
= F a − Ψ−1

ae Σe = 0 −→ F a
µν = Ψ−1

ae Σe
µν . (2)

The first equation of (2) states that Ag is the self-dual part of the spin con-
nection compatible with the two forms Σa, where D is the exterior covariant

derivative with respect to Aa. The second equation implies that the two
forms Σa can be constructed from tetrad one-forms eI = eIµdx

µ in the form

Σa = ie0 ∧ ea − 1

2
εafge

f ∧ eg. (3)

Equation (3) is a self-dual combination, which enforces the equivalence of

(1) to general relativity. Note that (3) implies [3]

i

2
Σa ∧ Σe = δae√−gd4x. (4)

The third equation of motion in (2) states that the curvature of Aa is self-
dual as a two form, which implies that the metric gµν derived from the tetrad

one-forms eI satisfies the vacuum Einstein equations. The starting action
(1) in component form is given by
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I [Σa, Aa,Ψ] =
1

4

∫

M
d4x

(
Σa

µνF
a
ρσ − 1

2
Ψ−1

ae Σa
µνΣ

e
ρσ

)
εµνρσ (5)

where ε0123 = 1 and we have defined Ψ−1
ae = δaeϕ+ ψae.

For ϕ = −Λ
3 , where Λ is the cosmological constant, then we have that

Ψ−1
ae = −Λ

3
δae + ϕae. (6)

The matrix ψae, presented in [4] is the self-dual part of the Weyl curvature

tensor in SO(3, C) language. The eigenvalues of ψae determine the algebraic
classification of spacetime which is independent of coordinates and of tetrad

frames.1 Ψ−1
ae is the matrix inverse of Ψae which we will refer to as the CDJ

matrix, and is the result of appending to ψae a trace part.
The starting action (5) presently contains two auxilliary fields Ψae and

Σa
µν ,2 each of which may be eliminated by their respective equations of

motion in (2). For example, elimination of both Ψae and Σa leads to the

metric-free Jacobson action (see e.g. [4], [5]), which can be written almost
completely in terms of the connection Aa. In this presentation we will show

that by eliminating one rather than both auxilliary fields from the starting
Plebanski action, that there are two possible actions that can result. One

action is the Ashtekar theory of gravity which we derive in section 2. This
action follows from elimination of the CDJ matrix Ψae from (1), and has

been well-studied in the literature. The second action, which we derive in
section 3, follows from elimination of the Ashtekar densitized triad (spatial
part of the self-dual two forms Σa

µν in favor of Ψae. We have called this

latter action the instanton representation of Plebanski gravity, which to the
best of the present author’s knowledge appears to be new. In section 4 we

will show that the instanton representation implies the Einstein equations,
and in section 5 we provide a prescription for explicitly constructing their

metric solution.

2 Ashtekar theory of gravity

We will now perform a 3+1 decomposition of (5). Defining σ̃i
a ≡ 1

2ε
ijkΣa

jk

and Bi
a ≡ 1

2ε
ijkF a

jk for the spatial parts of the self-dual and curvature two
forms, this is given by

1This includes principal null directions and propoerties of gravitational radiation.
2For the purpose of the present paper we will assume that Ψae is nondegenerate, so

that its inverse exists. This limits consideration to spacetimes of Petrov Type I , D and
O where Ψae has three linearly independent eigenvectors.
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I =

∫
dt

∫

Σ
d3xσ̃a

i Ȧ
a
i + Aa

0Diσ̃
i
a + Σa

0i

(
Bi

a − Ψ−1
ae σ̃

i
e

)
, (7)

where we have integrated by parts, using F a
0i = Ȧa

i −DiA
a
0 from the temporal

component of the curvature.3 We will use (2) and (3) to redefine the two
form components in (7). Define eai as the spatial part of the tetrads eIµ and

make the identification

eai =
1

2
εijkε

abcσ̃
j
b σ̃

k
c (detσ̃)−1/2 =

√
detσ̃(σ̃−1)a

i . (8)

For a special case e0i = 0, known as the time gauge, then the temporal

components of the two forms (3) are given by

Σa
0i =

i

2
Nεijkε

abcσ̃
j
b σ̃

k
c + εijkN

jσ̃k
a , (9)

where N = N (detσ̃)−1/2 with N and N i being a set of four nondynamical
fields (See e.g. [6],[7]).

Substituting (9) into (7), we obtain the action

I =

∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Ga −N iHi −NH. (10)

The fields (Aa
0, N, N

i) are auxilliary fields whose variations yield respectively

the following constraints

Ga = Diσ̃
i
a; Hi = εijkσ̃

j
aB

k
a + εijkσ̃

j
aσ̃

k
e Ψ−1

ae ;

H = (detσ̃)−1/2
(1

2
εijkε

abcσ̃i
aσ̃

j
bB

k
c − 1

6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

)
. (11)

To obtain the Ashtekar theory of gravity let us impose the following condi-
tions on Ψ−1

ae

εbaeΨ−1
ae = 0; trΨ−1 = −Λ (12)

where Λ is the cosmological constant. Equation (12) eliminates the antisym-
metric part of Ψae and fixes its trace. When (12) holds, then Ψ−1

ae becomes

3As with the convention of this paper, lowercase symbols from the Latin alphabet
a, b, c, . . . will denote internal SO(3, C) indices, and those from the middle i, j, k, . . . will
denote spatial indices.
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eliminated and equation (10) reduces to the action for general relativity in
the Ashtekar variables ([8],[9],[10])

IAsh =
1

G

∫
dt

∫

Σ
d3xσ̃i

aȦ
a
i +Aa

0Diσ̃
i
a

−εijkN iσ̃j
aB

k
a +

i

2
Nεijkεabcσ̃

i
aσ̃

j
b

(
Bk

c +
Λ

3
σ̃k

c

)
, (13)

where N = N (detσ̃)−1/2 is the lapse density function. The action (13)
is written on the phase space ΩAsh = (σ̃i

a, A
a
i ) and the variable Ψ−1

ae has

been eliminated. The auxilliary fields Aa
0, N and N i respectively are the

SO(3, C) rotation angle, the lapse function and the shift vector. The aux-
illiary fields are Lagrange multipliers smearing their corresponding initial

value constraints Ga, H and Hi, respectively the Gauss’ law , Hamiltonian
and diffeomorphism constraints. Note that σ̃i

a in the original Plebanski ac-

tion was part of an auxilliary field Σa
µν , but now in (13) it has been promoted

to the status of a momentum space dynamical variable.

3 The instanton representation

We will now show that there exists a theory of gravity based on the field

Ψae, which is dual to the Ashtekar formulation of gravity, which can also be
derived directly from (5). Let us, instead of eliminating Ψ−1

ae , eliminate σ̃i
a

from (10) by enforcing the initial value constraints in the Ashtekar variables.
The constraints on the initial Plebanski action are given by (11). We will

impose the Hamiltonian and diffeomorphism constraints from the theory
based on the Ashtekar variables (read off from (13))

εijkεabcσ̃
i
aσ̃

j
bB

k
c = −Λ

3
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c ; εijkσ̃

j
aB

k
a = 0. (14)

Substitution of (14) into (11) yields

Hi = εijkσ̃
j
aσ̃

k
e Ψ−1

ae ;

H = (detσ̃)−1/2
(
−Λ

6
εijkεabcσ̃

i
aσ̃

j
b σ̃

k
c

−1

6
(trΨ−1)εijkεabcσ̃

i
aσ̃

j
bσ̃

k
c

)
= −

√
detσ̃

(
Λ + trΨ−1

)
. (15)

Hence substituting (15) into (10), we obtain an action given by
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I =

∫
dt

∫

Σ

d3xσ̃i
aȦ

a
i +Aa

0Diσ̃
i
a

+εijkN
iσ̃j

aσ̃
k
e Ψ−1

ae − iN
√

detσ̃
(
Λ + trΨ−1

)
. (16)

But (16) still contains σ̃i
a, therefore we will completely eliminate σ̃i

a by sub-

stituting the spatial restriction of the third equation of motion of (2)

σ̃i
a = ΨaeB

i
e, (17)

into (16). This substitution, known as the CDJ Ansatz, yields the action4

IInst =

∫
dt

∫

Σ
d3xΨaeB

i
aȦ

a
i +Aa

0B
i
eDiΨae

+εijkN
iBj

aB
k
e Ψae − iN (detB)1/2

√
detΨ

(
Λ + trΨ−1

)
, (18)

which depends on the CDJ matrix Ψae and the Ashtekar connection Aa
i , with

no appearance of σ̃i
a. In the original Plebanski theory Ψae was an auxilliary

field which could be eliminated. But in (18) Ψae is now a momentum space
dynamical variable, analogously to the case for σ̃i

a in the Ashtekar theory.

There are a few items of note regarding (18). Note that it contains the
same auxilliary fields (Aa

0, N, N
i) as in the Ashtekar theory. Since we have

imposed the constraints Hµ = (H,Hi) on the Ashtekar phase space within
the starting Plebanski theory in order to obtain IInst, then this implies

that the initial value constraints (Ga, H,Hi) must play the same role in
(18) as their counterparts in (13). This relation holds only where Ψae is

nondegenerate, which limits one to spacetimes of Petrov Type I, D and O
where Ψae has three linearly independent eigenvectors.

4 Einstein equations of motion

We will now show that (18) produces the Einstein equations. The starting

action of the dual theory is

IInst =

∫
dt

∫

Σ

d3xΨaeB
i
eF

a
0i + εijkN

iBj
aB

k
e Ψae

−iN (detB)
√

detΨ
(
Λ + trΨ−1

)
. (19)

4The CDJ Ansatz is valid when Bi

a and Ψae are nondegenerate as three by three
matrices. Hence all results of this note will be confined to configurations where this is the
case.
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Variation of (19) with respect to N i implies that Ψae = Ψ(ae) is symmetric.
Variation with respect to N implies

(detB)1/2
√

detΨ
(
Λ + trΨ−1

)
= 0. (20)

In what follows we will make use of the relation

√
−g = N

√
h = N

√
detσ̃ = (detB)1/2

√
detΨ, (21)

which writes the determinant of gµν in terms of its 3+1 decomposition and
uses the determinant of (17). Since Ψae is symmetric, then (19) reduces to

IInst =

∫

M

d4x
(1

8
ΨaeF

a
µνF

e
ρσε

µνρσ −
√
−g

(
Λ + trΨ−1

))
, (22)

where we have absorbed the Gauss’ law constraint Ga into the definition
of the covariant curvature. We will now show that (19) implies the same

Einstein equations of motion arising from the original Plebanski action (1).
More precisely, we will verify consistency with equations (2) and (3). The

equation of motion for the CDJ matrix is given by

δIInst

δΨ(bf)
=

1

8
F b

µνF
f
ρσε

µνρσ + i
√
−g(Ψ−1Ψ−1)bf = 0. (23)

Left and right multiplying (23) by Ψ, we obtain

1

4
(Ψbb′F b′

µν)(Ψff ′

F f ′

ρσ)εµνρσ = −2i
√
−gδbf . (24)

Note that this step and the steps that follow require that Ψae be nondegen-
erate as a 3 by 3 matrix. Let us make the definition

Σa
µν = (Ψ−1)aeF e

µν = Σa
µν [Ψ, A], (25)

which retains Ψae and Aa
µ as fundamental, with the two form Σa

µν being

derived quantities. Upon using the third line of (2) as a re-definition of
variables, which amounts to using the curvature and the CDJ matrix to
construct a two form, (24) reduces to

1

4
Σb

µνΣ
f
ρσε

µνρσdxµ ∧ dxν ∧ dxρ ∧ dxσ = Σb ∧ Σf = −2i
√
−gδbfd4x. (26)
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One recognizes (26) as the condition that the two forms thus constructed,
which are now derived quantities, be derivable from tetrads, which is the

analogue of (4). To complete the demonstration that the instanton represen-
tation yields the Einstein equations, it remains to show that the connection

Aa is compatible with the two forms Σa as constructed in (25).
The equation of motion for the connection Aa

µ from (19) can be seen as

arising from the relevant covariant part encoded in (22), which is given by

δIInst

δAa
µ

= εµσνρDσ(ΨaeF
e
νρ) −

δ

δAa
µ

∫

M

d4x
(
εmnlN

mBn
b B

l
f Ψbf

−iN
√

detB
√

detΨ
(
Λ + trΨ−1

))
= 0. (27)

Since there is no occurrence of Aa
0 in the NµHµ terms, then the equation of

motion for the temporal component is given by

δIDual

δAa
0

= ε0ijkDi(ΨaeF
e
jk) = Di(ΨaeB

i
e) = 0, (28)

which is the Gauss’ law constraint Ga upon use of the spatial restriction of
(25). The equations of motion for the spatial components Aa

i are given by

δIInst

δAa
i

= εiµνρDµ(ΨaeF
e
νρ) −

δ

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
fΨbf

+
δ

δAa
i

∫

M

d4xiN
√

detB
√

detΨ
(
Λ + trΨ−1

)
= 0. (29)

Let us consider the contributions to (29) due to the Hamiltonian and diffeo-
morphism constraints Hµ = (H,Hi). Defining

D
ji
ea(x, y) ≡

δ

δAa
i (x)

Bj
e(y) = εjki

(
−δae∂k + fedaA

d
k

)
δ(3)(x, y), (30)

the contribution due to the diffeomorphism constraint is given by

δHi[N
i]

δAa
i

=
δ

δAa
i

∫

M
d4xεmnlN

mBn
b B

l
fΨbf

= 2D
ni
ba(εmnlN

mBl
fΨ[bf ]) + 2D

li
fa(εmnlN

mBn
b Ψ[bf ])

= 4D
ni
ba(εmnlN

mBl
fΨ[bf ]), (31)

and the contribution due to the Hamiltonian constraint is given by
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δH [N ]

δAa
i

=
δ

δAa
i

∫

M
d4xiN (detB)1/2

√
detΨ

(
Λ + trΨ−1

)

= iD
ki
da

(N
2

(detB)1/2(B−1)d
k

√
detΨ

(
Λ + trΨ−1

))

= iD
ki
ba

(N
2

(B−1)b
kH

)
. (32)

Hence the equation of motion for Aa
µ is given by

εµνρσDν(ΨaeF
e
ρσ) +

1

2
δ
µ
i D

ki
ba

(
i(B−1)b

kNH + 4εmklN
mBl

fΨ[bf ]

)
= 0, (33)

where we have used that Bi
a is nondegenerate. The first term of (33) when

zero implies the first line of (2) upon use of (25) to construct Σa
µν . The

obstruction to this equality, namely the compatability of Aa
µ with Σf

µν thus

constructed, arises due to the second and third terms of (33). These latter
terms contain spatial gradients acting on the diffeomorphism and Hamilto-

nian constraints Hµ. In order that Aa
µ be compatible with the two form

Σa
µ = ΨaeF

e
µν , we must require that these terms of the form ∂iHµ must

vanish, which can be seen from the following argument. Since Hµ = 0 when

the equations of motion are satisfied, then the spatial gradients from D
ji
ea

acting on terms proportional to Hµ in (33) must vanish.
The vanishing of the spatial gradients can be seen if one discretizes 3-

space Σ onto a lattice of spacing ε and computes the spatial gradients of the

constraints Φ as ∂Φ = 1
2εlimε→0(Φ(xn+1)−Φ(xn−1)), and uses the vanishing

of the constraints Φ(xn) = 0 ∀n at each lattice point xn. For another

argument, smear the gradient of the Hamiltonian constraint with a test
function f

S =

∫

Σ
d3xf∂iH = −

∫

Σ
d3x(∂if)Hµ ∼ 0, (34)

where we have integrated by parts. The result is that (34) vanishes on the
constraint shell ∀f which vanish on the boundary of 3-space Σ. This is

tantamount to the condition that the spatial gradients of a constraint must
vanish when the constraint is satisfied.5 Of course, the constraintsHµ follow
from the equations of motion for Nµ = (N,N i).

This completes the demonstration of the Einstein equations. The Ein-
stein equations have arisen in the same sense as from (1) using (19) as the

starting point, which is defined on the phase space ΩInst = (Ψae, A
a
i ). These

equations are modulo the initial value constraints and their spatial gradients,

which also have arisen from (19).

5The author is grateful to Chopin Soo for pointing out this latter argument.
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5 Discussion: Solving the Einstein equations

This presentation is a self-contained summary of the instanton representa-

tion of Plebanski gravity. This action results from applying the simplicity
constraint to the starting Plebanski action and eliminating the spatial part

of the self-dual two forms in the time gauge. The fundamental phase space
variables of the instanton representation are a self-dual SU(2)− connec-

tion Aa
i and the CDJ matrix Ψae. Using the instanton representation as

the starting point we have shown that one obtains the Einstein equations.

These equations have been derived in the same sense as the starting Ple-
banski theory using self-dual two forms Σa

µν , where the two forms are now

derived quantities from the instanton representation phase space variables
ΩInst = (Aa

i ,Ψae).
But the original Einstein theory involves only the spacetime metric gµν ,

therefore we will provide a prescription for constructing this metric as fol-
lows. Perform a 3+1 decomposition of spacetime M = Σ×R, where Σ is a

3-dimensional spatial hypersurface. The line element is given by

ds2 = gµνdx
µdxν = −N 2dt2 + hijω

i ⊗ ωj , (35)

where hij is the induced 3-metric on Σ, and we have defined the one form

ωi = dxi +N idt. (36)

The lapse-shift combination (N,N i) can be chosen freely, the latter corre-

sponding to gauge degrees of freedom. The 3-metric hij can be written on
the phase space ΩInst by

hij = (detΨ)(Ψ−1Ψ−1)bf(B−1)b
i(B

−1)f
j (detB). (37)

Note, when one uses the CDJ Ansatz σ̃i
a = ΨaeB

i
e that (37) implies

hhij = σ̃i
aσ̃

j
a, (38)

which is the relation of the Ashtekar densitized triad to the contravariant
3-metric hij . When Ψae satisfies the initial value constraints

Di(ΨaeB
i
e) = 0; εdaeΨae = 0; Λ + trΨ−1 = 0, (39)

then the metric given by (35) satisfies the Einstein equations by construction.
Upon implementation of (39) on ΩInst, then one is left with the two degrees
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of freedom per point of GR, and hij is expressed explicitly in terms of these
degrees of freedom.

From (39) one can write, on account of the symmetry of Ψae, the follow-
ing polar decomposition

Ψ(ae) = (eθ·T )afλf (e−θ·T )fe. (40)

In (40) ~θ = (θ1, θ2, θ3 are a triple of complex rotation parameters and
(λ1, λ2, λ3) are the eigenvalues. Equation (40) solves the diffeomorphism

constraint by construction. Then using the cyclic property of the trace, the
Hamiltonian constraint can be written as

Λ +
1

λ1
+

1

λ2
+

1

λ3
= 0, (41)

whence only two eigenvalues λ1 and λ2 constitute the independent physical

degrees of freedom. Subject to (41), one then has the Gauss’ law constraint

Bi
eDi

(
λf(e−θ·T )fa(e

−θ·T )fa

)
= 0. (42)

The procedure for solving (42) is covered in [11] and [12].
To construct a solution to the Einstein equations one must first solve the

initial value constraints. By this we mean that one must choose a connec-

tion Aa
i as well as a triple of eigenvalues λf satisfying (41). The resulting

combination substituted into (42) yields three differential equations for the

three unknown angles ~θ. When a solution to (42) exists, then one uses ~θ to
reconstruct the CDJ matrix via (40), and then constructions the 3-metric

hij and the spacetime metric gµν.
Given that Ψae and Aa

i are in general complex, the question then arises

as to how one obtains a spacetime metric gµν which is real-valued. One
obvious special case is when one takes all quantities on ΩInst to be real. In

the most general case one must require that the following conditions: (i)
The shift vector N i must be real, (ii) the lapse function N must be either
real (for Lorentzian signature) or pure imaginary (for Euclidean signature),

(iii) and finally, the densitized triad σ̃i
a = ΨaeB

i
e must be real. The claim is

then that the prescription outlined in this presentation provides a general

solution for spacetimes of Petrov types I, D and O.
A future direction of research includes quantization and the construction

of a Hilbert space for GR in the instanton representation. A summary
of the addressal of these two goals can be found in [13] and [14]. These

two references can be seen as delineating the physical Hilbert space for the
instanton representation of Plebanski gravity.
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