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Abstract

There is a new set of variables, which from our analysis appear
naturally adapted to a Hilbert space description on the reduced phase
space for vacuum GR. In this paper we present the Hilbert space,
which features a basis of coherent-like states labelled by the algebraic
classification of the corresponding spacetime. These wavefunctions,
which satisfy the semiclassical-quantum correspondence, correspond
to the solution of the quantum Hamiltonian constraint on the space
of gauge-invariant, diffeomorphism invariant states in these variables,
and are free of field-theoretical singularities.
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1 Introduction

Metric general relativity is a totally constrained system whose action can
be written as a canonical one-form minus a linear combination of first class
constraints smeared by auxilliary fields

SEH [g] =

∫
dt

∫

Σ
d3x
(
πijḣij −NH −N iHi

)
, (1)

where the phase space variables are the 3-metric on a three dimensional
spatial hypersurface Σ and its conjugate momentum, given by (hij , π

ij). In
equation (1) Hi is the diffeomorphism constraint, given by

Hi = Djπ
j
i ∼ 0, (2)

whereN i is the shift vector and Di is the three dimensional covariant deriva-
tive with respect to Σ. H is the Hamiltonian constraint, given by

H = Gijklπ
ijπkl −

√
h

(3)
R ∼ 0. (3)

N is the lapse function and Gijkl is the metric on superspace, given by

Gijkl =
1

2
√
h

(hikhjl + hilhjk − hijhkl). (4)

Equations (2) and (3) signify the presence of 8 unphysical degrees of freedom,
which if eliminated would reduce the phase space variables (hij , π

ij) to the 4
physical degrees of freedom needed to describe GR.1 However, the constraint
(3) remains unsolved in the full theory due to its nonpolynomial structure
in the basic variables.

The constraints can be rewritten in terms of new variables (Aa
i , σ̃

i
a) at-

tributed to Abhay Ashtekar, by canonical transformation from the ADM
triad description of gravity [1],[2],[3]. In the Ashtekar variables the con-
straints in smeared form are given by

Hi[N
i] =

∫

Σ
d3xN iǫijkσ̃

j
aB

k
a (5)

1The reduced phase space description would entail factoring out the gauge orbits gen-
erated by the constraints, on the constraint surface.
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for the diffeomorphism constraint and

H[N ] =

∫

Σ
d3xN

(Λ
6
ǫijkǫ

abcσ̃i
aσ̃

j
b σ̃

k
c + ǫijkǫ

abcσ̃i
aσ̃

j
bB

k
c

)
(6)

for the Hamiltonian constraint with cosmological constant Λ, where N =
N/

√
detσ̃ is the lapse density function and the shift vector N i takes on the

same meaning as in (1).2 The Gauss’ law constraint is given by

Ga[A
a
0] =

∫

Σ
d3xAa

0Diσ̃
i
a (7)

which signifies invariance under SU(2)− rotations. Aa
0 is the SU(2) rotation

angle with covariant derivative Di ≡ (Di)ab = δab∂i + fabcA
c
i and structure

constants fabc.
Equations (5) and (6) can be regarded as the direct analogues of (2)

and (3), with the latter being simplified due to the polynomial nature of the
constraints. However, the presence of an additional constraint (7) entails the
existence of additional degrees of freedom which are unphysical. This may
in some ways be seen as a tradeoff for the simplifications in the constraints
if it is more difficult to eliminate these degrees of freedom in congruity with
the remaining constraints.3 Therefore, our first order of business will be
to eliminate the superfluous degrees of freedom in general relativity, which
entails the introduction of a new set of variables.

2 Transformation and solution to the constraints

in Soo/CDJ variables

We would like to preserve the simplicity of the original Ashtekar variables,
while at the same time reducing general relativity to its basic physical de-
grees of freedom. First make the substitution

σ̃i
a = ΨaeB

i
e (8)

2The auxilliary variables N i(x) and Aa
i (x) can be thought of as the parameters for

spatial diffeomorphisms and SU(2)− gauge transformations within Σ, and the auxilliary
variable N can be thought of as the parameter for deformations normal to Σ.

3In loop quantum gravity, the spin network states solve the Gauss’ law constraint by
construction. However, the Hamiltonian constraint remains unsolved in the full theory to
the present author’s knowledge, which leaves open the issue of dynamics. This notwith-
standing, the loop approach has led to significant physical insights at the kinematical level
of the phase space.
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in order to eliminate the densitized triad σ̃i
a as a basic variable. Equation (8),

known as the CDJ Ansatz, for the purposes of this paper will be regarded
as a mathematical identity defining vacuum GR for nondegenerate Bi

a and
nondegenerate Ψae. The CDJ matrix can further be parametrized by its
symmetric and its antisymmetric parts

Ψae = ǫaedψd + λae = ǫaedψd + λfOfaOfe, (9)

where Oae = (eθ·T )ae is a complex orthogonal matrix parametrized by three
complex angles ~θ ≡ (θ1, θ2, θ3) and T ≡ (T1, T2, T3) are the generators of the
so(3, C) algebra in the adjoint representation. Hence, the symmetric part
λae of the CDJ matrix with eigenvalues λf ≡ (λ1, λ2, λ2) can be seen as the
result of a Lorentz transformation

λae = (eθ·T )afλf (e−θ·T )fe (10)

from the frame of eigenvalues, where ~θ = 0, into an arbitrary frame parametrized
by ~θ 6= 0. Note that Im[~θ] and Re[~θ] correspond to rotations and boosts,
respectively, in SO(3, C) language.

Let us now revisit the constraints in the language of the CDJ matrix
with a view toward extracting the essential degrees of freedom at the classical
level. From (5), the smeared diffeomorphism constraint is given by

Hi[N
i] =

∫

Σ
d3xǫijkN

iBj
aB

k
e Ψae. (11)

For detB 6= 0, the inverse of the Ashtekar magnetic field (B−1)ai exists and
(11) can be written in unsmeared form as

(detB)(B−1)diψd = 0 ∀x ∈ Σ (12)

where we have used (9). The smeared Hamiltonian constraint (6) can be
written in the form

H[N ] =

∫

Σ
d3xN

√
detB

detΨ

(
V arΨ + ΛdetΨ

)
(13)

where V arΨ = (trΨ)2 − trΨ2. While (13) is nonpolynomial in these vari-
ables, we will see that it is convenient to extract the polynomial part when
quantizing the theory. Since we are restricting to nondegenerate configura-
tions detB 6= 0 and detΨ 6= 0, we can then focus on the part

3



V arΨ + ΛdetΨ = 0 ∀x ∈ Σ (14)

in solving the constraint. We now compute the ingredients of the Hamil-
tonian constraint using the parametrization (9). For the determinant we
obtain

detΨ =
1

6
ǫabcǫefg(λae + ǫaed1

ψd1
)(λbf + ǫbfd2

ψd2
)(λcg + ǫcgd3

ψd3
)

= det(λae) + det(ǫaedλd) +
1

2
ǫabcǫefg

(
ǫcgdλaeλbfψd + ǫbfdǫcgd′λaeψdψd′

)
.(15)

Using the fact that the determinant of an antisymmetric matrix of odd
rank vanishes in combination with the annihilation of antisymmetric on
symmetric indices, we end up with

detΨ = detλ+
1

2
(ǫabcǫfbd)(ǫefgǫed′g)ψdψd′λae

= detλ+
1

2
λae(δaf δcd − δadδcf )(δecδfd′ − δed′δfc)ψdψd′

= detλ+ λaeψaψe (16)

where we have made use of epsilon symbol identities. Likewise, we compute
the variance

V arΨ = (trλ)2 − (λae + ǫaedψd)(λea − ǫaed′ψd′) = V arλ− 2δaeψaψe. (17)

The polynomial part of the Hamiltonian constraint (13), which we will from
now on refer to as the Hamiltonian constraint, then is given by

H = V arλ+ Λdetλ+ (Λλae − 2δae)ψaψe = 0 ∀x ∈ Σ. (18)

Upon substitution of the parametrization (10), then (18) reduces to

H =
1

λ1
+

1

λ2
+

1

λ3
+

Λ

2
+
(
λfOfaOfe − 2δae

)
ψaψe = 0. (19)

Note that the complex orthogonal matrix Oae has cancelled out from the
first two terms of the Hamiltonian constraint, which depend only on the
invariants of λae. The last term, quadratic in ψd, depends explicitly on Oae

which in turn depends on the SO(3, C) frame through ~θ.
We would rather like to interpret the Hamiltonian constraint as being

independent of the SO(3, C) frame and consider the angles ~θ as not being
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independent physical degrees of freedom. The most direct way to do this is
to recognize that on the space of solutions to the diffeomorphism constraint
(12), we must have that ψd = 0. For ψd = 0 the last two terms of (19)
vanish, which enables one to write λ3 explicitly as a simple function of λ1

and λ2

λ3 = −
( λ1λ2

Λ
2 λ1λ2 + λ1 + λ2

)
. (20)

We will ultimately regard the two eigenvalues λ1 and λ2 as corresponding to
two physical degrees of freedom for general relativity in the new variables.

One can see that (12) and (20) constitute a general solution, for non-
degenerate Bi

a, for the constraints of GR corresponding to invariance under
spatial and timelike diffeomorphisms. Equations (12) and (20) can be seen
as the direct analogues of the solutions to (2) and (3), which would suffice to
construct a solution if not for the Gauss’ law constraint. We now argue that
the Gauss’ law constraint is superfluous as follows. Under the CDJ Ansatz,
(7) reduces to

Ga[A
a
0] =

∫

Σ
d3xwe{Ψae}, (21)

where we have defined the ‘twisted’ vector field we by

we{Ψae} = ve{Ψae} +
(
fabf δge + febgδaf

)
Ab

iB
i
eΨfg (22)

with va = Bi
a∂i. The unsmeared form of the Gauss’ law constraint is given

by we{Ψae} = 0, which in the parametrization (9) yields

ǫaedwe{ψd} + we{λfOfaOfe} = 0. (23)

On the space of solutions to the diffeomorphism constraint ψd = 0, equation
(23) reduces to

we{λf (e
~θ·T )fa(e

~θ·T )fe} = 0. (24)

Equation (24) is a set of three simultaneous first order partial differen-
tial equations in six unknowns λf and θf for f = 1, 2, 3. For each ~λ =

(λ1, λ2, λ3), one should in principle be able to find ~θ = ~θ[~λ;Ba
i ; ~β], where ~β

are the boundary data for ~θ.4 The point is that while the Gauss’ law con-
straint constitutes a genuine reduction in degrees of freedom of the CDJ

4The solution to (24) is the topic of a separate paper, which we do not display here.
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matrix Ψae, it is superfluous when one restricts oneself to the space of
eigenvalues λf , since these eigenvalues subject to (20) are freely specifi-
able. Therefore equation (20) does in fact constitute a reduction of GR to
two unconstrained degrees of freedom, the physical interpretation of which
according to (24) fixes a unique SO(3, C) frame ~θ[~λ;Ba

i ; ~β] by a nonlin-
ear Lorentz transformation. The implication is that on the gauge-invariant,
diffeomorphism-invariant subspace of GR, one still has the freedom to choose
three free functions λ1(x), λ2(x) and λ3(x). We will exploit this observation
to describe the dynamics of GR as a constrained system containing only one
constraint, namely the Hamiltonian constraint, and devote the remainder of
the paper to performing a consistency check on this dynamics.

3 Classical equations of motion

Usually in a theory of first class constrained systems one starts from a phase
space ω posessing a cotangent bundle structure and then obtains the reduced
phase space ωred upon solving the constraints and factoring out the gauge
orbits. Our approach might seem counterintuitive in that we perform the
steps in reverse, namely by first imposing the cotangent bundle structure on
the unconstrained degrees of freedom, while retaining the option to enlarge
the phase space the constrained version of full general relativity by adding
in the unphysical degrees of freedom by hand.

Associate to the eigenvalues of the CDJ matrix Ψae, a set of momen-
tum space dynamical variables Ψf ≡ (Ψ1,Ψ2,Ψ3) and define a phase space
ω ≡ (Xf ,Ψf ), where Xf ≡ (X1,X2,X3) are the set variables on the con-
figuration space Γ canonically conjugate to Ψf . The effect is to impose the
symplectic structure

Ω = (~G)−1

∫

Σ
d3xδΨf (x) ∧ δXf (x) (25)

on the theory at the level prior to imposition of the Hamiltonian constraint,
with the kinematic constraints having already being taken into account. The
symplectic two form Ω implies the following elementary Poisson bracket

{Xf (x),Ψf (y)} = iGδf
g δ

(3)(x,y) (26)

for the basic variables. We now proceed to the dynamics of the theory, by
considering its Hamiltonian evolution at the level of the gauge-invariant,
diffeomorphism invariant subspace of full GR. Starting from a theory with
Hamiltonian density
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H[N ] =

∫

Σ
d3xN(detB)1/2(Ψ1Ψ2Ψ3)

1/2
(Λ

2
+

1

Ψ1
+

1

Ψ2
+

1

Ψ3

)
(27)

we will need to obtain the Hamilton’s equations of motion, which entails
the calculation of variational derivatives of (27) with respect to the phase
space variables (Xf ,Ψf ). The variational derivative with respect to the
momentum Ψf is given by

δH[N ]

δΨf (x)
=

∫

Σ
d3yN(y)(detB(y))1/2

[(δ(detΨ(y))1/2

δΨf (x)

)(Λ

2
+ trΨ−1(y)

)

+(detΨ(y))1/2 δ

δΨf (x)
trΨ−1(y)

]

=

∫

Σ
d3yN(y)(detB(y))1/2

[1
2
(1/Ψf (y))(detΨ(y))1/2

(Λ

2
+ trΨ−1(y)

)

−(detΨ(y))1/2(1/Ψf (y))2
]
δ(3)(x,y). (28)

The quantities (1/Ψf (x)) are actually the reciprocals of the respective eigen-
values Ψf , and therefore are defined only for Ψf 6= 0 and likewise for the
reciprocals of the squares. Upon integration of the delta function, we have

δH[N ]

δΨf (x)
= N(detB)1/2

[
−
√

detΨ(Ψf )−2 +
1

2
(Ψf )−1

√
detΨ

(Λ

2
+ trΨ−1

)]
(29)

where we have used the Liebniz rule in conjuction with the nondegeneracy
of the CDJ matrix Ψae.

Moving on to the variational derivatives with respect to the configuration
variable Xf we have

δH[N ]

δXf (x)
=

∫

Σ
d3y
(δ(detB(y))1/2

δXf (x)

)
N(y)(detΨ(y))1/2

(Λ

2
+ trΨ−1(y)

)
. (30)

Assuming detB 6= 0 we can include a factor of 1 in the form (detB)−1/2(detB)1/2,
which allows us to extract the Hamiltonian constraint from the last factor
of (30). The result is

δH[N ]

δXf (x)
=

∫

Σ
d3y
(δ(detB(y))1/2

δXf (x)

)
(detB)−1/2N(y)H(y)

=
1

2

∫

Σ
d3y(B−1(y))ai

∂Bi
a(y)

∂Xf (x)
N(y)H(y)δ(3)(x,y). (31)
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The variational derivative with respect to the configuration variables Xf on
configurations of nondegenerate Ashtekar magnetic fields Bi

a reduces to

δH[N ]

δXf (x)
=

1

2
(B−1)ia

( ∂Bi
a

∂Xf

)
N
√

detB
√

detΨ
(Λ

2
+ trΨ−1

)
(32)

upon integration of the delta function in (31). Immediately enter quantities
Bi

a which have not been defined on the starting phase space (Xf ,Ψf ). In
order to explicitly evalute (32) we would need to find ∂Bi

a/∂X
f , which

requires one to be able to express Xf explicitly in terms of the Ashtekar
magnetic field Bi

a.
5 Whether it is possible to do this or not in the full theory

for our purposes is immaterial, since on configurations of nondegenerate Bi
a,

(32) is directly proportional to the Hamiltonian constraint which we will
require to vanish.6

From (29) and (32) we can write the Hamilton’s equations of motion on
the gauge-invariant, diffeomorphism-invariant subspace of general relativity.
These are given by

Ẋf =
δH[N ]

δΨf
= N

(1

2
(Ψf )−1H − (detB)1/2(detΨ)1/2(Ψf )−2

)
= 0 (33)

and

Ψ̇f = −δH[N ]

δXf
=

1

2
(B−1)ia

( ∂Bi
a

∂Xf

)
NH = 0, (34)

which can be seen as having arisen from the first order starting action

I =

∫

Σ
d3x
[
ΨfẊ

f −N
√

detB
√

detΨ
(Λ

2
+ trΨ−1

)]
. (35)

The evolution of the system must be confined to the constraint surfaceH = 0
as a requirement of consistency of the system. Therefore, all terms pro-
portional to the Hamiltonian constraint must vanish and the equations of
motion reduce to

Ẋf = −N(detB)1/2(detΨ)1/2(Ψf )−2; Ψ̇f = 0. (36)

5Since the transformation from Ashtekar variables into the new variables (Aa
i , eσi

a) →

(Xf , Ψf ) is noncanonical, then it may be nontrivial to do this in closed form in the full
theory.

6As part of the requirements of a consistent theory of constrained systems, the con-
straints surface must be preserved by Hamiltonian evolution and vice versa.

8



Note that when the Hamiltonian constraint H is satisfied, that Ψ̇f = 0,
which means that Ψf can at most be an arbitrary function of spatial position
x ∈ Σ. Hence we have that Ψf = λf are independent of time, and the
equations of motion for Xf reduce to

Ẋf = −N(detB)1/2(detλ)1/2(λf )−2. (37)

The time evolution of Xf is completely determined by the time evolution
of detB, which naively appears to be unspecified based on the starting ac-
tion (35) since the Ashtekar magnetic field Bi

a is not explictly part of the
canonical structure (25).

3.1 Algebra of constraints

Some additional variables of this type will include various quantities related
to the Ashtekar connection

δXae = Bi
eδA

a
i ; δXcg = Ocg

f δX
f . (38)

Suffice it for now to use these definitions (38) to make the result of (30)
more readable. Continuing with (30), we have

δH[N ]

δXf (x)
=

1

2

∫

Σ
d3y(B−1(y))ai

∫

Σ
d3z

∫

Σ
d3z′

(δXcg(z)

δXf (x)

)( δAb
j(z

′)

δXcg(z)

)( δBi
a(y)

δAb
j(z

′)

)
N(y)H(y)

=
1

2
Dij

ab

(
(B−1)ai (B

−1)gjO
bg
f NH

)
. (39)

The derivative in Dij
ab acts on all terms in brackets, and arises from an

integration by parts.
We now compute the Poisson bracket of two Hamiltonian constraints

using

{H[N ],H[M ]} =

∫

Σ
d3x
( δH[N ]

δΨf (x)

δH[M ]

δXf (x)
− δH[M ]

δΨf (x)

δH[N ]

δXf (x)

)

=

∫

Σ
d3x

[(1

2
(Ψf )−1NH −N(detB)1/2(detΨ)1/2(Ψf )−2

)

(1
2
Dij

ab((B
−1)ai (B

−1)gjO
bg
f MH

)
−M ↔ N

]
(40)
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(39). As one normally expects from the Hamiltonian constraint, which is
a scalar, only the terms with derivatives acting on the lapses M and N
survive, yielding

{H[N ],H[M ]} = Πk[N∂kM −M∂kN ], (41)

where we have defined Πk by

Πk =
1

2
ǫijk(B−1)ai (B

−1)gjO
ag
f

(1

2
(Ψf )−1H − (detB)1/2(detΨ)1/2(Ψf )−2

)
H.(42)

The Poisson of two Hamiltonian constraints is proportional to a Hamiltonian
constraint with structure functions, which implies a closure of the algebra
and therefore Dirac consistency. Therefore on the space of solutions to the
Gauss’ law and diffeomoeprhism constraints, the dynamics of the Hamilto-
nian is self-consistent.7 The conclusion is that in the physical Soo variables,
the algebra of the Hamiltonian constraint by itself forms a first class con-
strained system [?].8 If one were to rather attempt to interpret (41) as a
diffeomorphism, then it would imply a nonclosure of the algebra.

3.2 A toy model

It is obvious that on the configruation space Xf ∈ Γ, the magnetic field
Bi

a contains seven unphysical degrees of freedom. While this may be the
case, the possibility exists that the physical degrees of freedom inherent
in Bi

a which are of relevance to the new variables Xf may reside entirely
within detB.9 This notion can be motivated by consideration of the spatially
homogeneous sector of configuration space Γ as a toy model.10 In this case
the Ashtekar magnetic field is given by

Bi
a = ǫijk∂jA

a
k +

1

2
ǫijkfabcA

b
jA

c
k = (detA)(A−1)ia. (43)

7The algebra is still an ‘open algebra’ in the sense that there exist structure functions
dependent on the phase space variables.

8In the original Ashtekar variables, the algebra of the Hamiltonian constraint yields a
diffeomorphism constant and therefore does not close. From the vantage point of the Soo
variables, the Hamiltonian constraint would form its own subalgebra, with the diffeomor-
phisms constituting a set of second class constraints.

9The relation (X1, X2, X3) ∼ (b1, b2, b3), where ba are the eigenvalues of the Ashtekar
magnetic field Bi

a seems appealing since this would lead to the relation detB = b1b2b3. A
rigorous proof of this is beyond the scope of the present paper, therefore we will for the
time being regard it as a conjecture.

10We must emphasize that the homogeneous sector of Γ does not necessarily mean that
we are considering minisuperspace. Even if the configuration space variables are spatially
homogeneous, this dones not necessarily imply that the spatial homogeneity automatically
extends to the momentum space variables Ψf .
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In (43) we have used the fact that the structure constants fabc ≡ ǫabc are
numerically the same as the epsilon symbol ǫijk, a property unique to three
dimensional space Σ. While Xf may not have a simple expression in terms
of the Ashtekar variables, the quantity T = X1 +X2 +X3 integrated over
Σ yields

∫

Σ
d3xT (x) =

∫

Σ

∫

Γ
Bi

a(x)δA
a
i (x) =

∫

Σ
tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
= ICS[A](44)

which is the Chern–Simons functional of the Ashtekar connection Aa
i . In

the spatially homogeneous sector of configuration space, we have from (43)
that detB = (detA)2, and also from the integrand of (44) that T = detA.
Summing (37) over the index f we have

Ṫ =
3∑

f=1

Ẋf = −NηλT, (45)

where we have defined

ηλ =
1

2

√
λ1λ2λ3

[( 1

λ1

)2
+
( 1

λ2

)2
+
( 1

λ3

)2]

=
1

2
λ1λ2

( Λ2

2 + 1
λ2

1

+ 1
λ2

2

+ 1
λ1λ2

+ Λ
λ1

+ Λ
λ2

Λ
2λ1λ1 + λ1 + λ2

)
(46)

using (20). One can immediately detemine the evolution of detB in time,
which fixes the time evolution of the combination T = X1 + X2 +X3, by
integrating (45) to yield

T (t) = T0e
−ηλ

R t

0
N(t) (47)

Note from (47) that there is still freedom in the choice of the lapse function
N , which determines the manner of evolution normal to spatial hypersur-
faces Σ. For numerically constant N this leads to exponentially inflating
solutions.

4 Quantization of the unconstrained phase space

Upon quantization we must first promote the dynamical variables Xf and
Ψf to quantum operators X̂f and Ψ̂f and the Poisson brackets (26) to
equal-time commutation relations

11



[
X̂f (x, t), Ψ̂g(y, t)

]
= Gδf

g δ
(3)(x,y). (48)

In the functional Schrödinger representation, the quantum wavefunction is a
functional of the configuration variables ψ = ψ[X] and the basic operators
act respectively by multiplication and by functional differentiation

X̂f (x, t)ψ[X] = (Xf (x, t))ψ[X];

Ψ̂f (x, t)ψ[X] = (~G)
δ

δXf (x, t)
ψ[X]. (49)

4.1 Normalizability of the quantum wavefunctional

There are two main possibilities for Hilbert spaces in the Soo–CDJ variables,
depending on the signature of spacetime. For spacetimes of Euclidean sig-
nature, all variables can be regarded as real. Hence the measure in this case
can be given by

DµEucl(X) = DX ≡
3∏

f=1

⊗

x

ν−1δXf (x) (50)

Upon the rescaling λf → iλf the wavefunctions, which are now a pure phase,
become delta-functional normalizable

〈
ψ~λ

∣∣ψ~ζ

〉
Eucl

=
∏

x,f

∫

Γ
νζ(0)δXf

exp
[
i(~G)−1

∫

Σ
d3xλf (x)X

f
(x)
]
exp
[
−i(~G)−1

∫

Σ
d3xζf (x)Xf(x)

]

=
∏

x

δ
(
λf (x) − ζf (x)

)
. (51)

The interpretation is that spacetimes of Euclidean signature not globally
having the same algebraic classification are orthogonal.

For spacetimes of Lorentzian signature, it is not possible to impose or-
thogonality by delta functions using the Lebesgue measure (50). Since we
require square integrable wavefunctions as a necessary condition for a sen-
sible quantum theory, we must use a measure which falls off faster than
the wavefunctions can blow up as X → ∞. Hence, we define the physi-
cal Hilbert space for Lorentzian signature spacetimes as the set of square
integrable functions Ψλ[X] ∈HPhys with respect to the Gaussian measure
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DµLor(X) =
⊗

x

ν−1δXe−ν−1X·X

=
∏

x,f

δXf exp
[
−ν−1

∫

Σ
d3xX

f
(x)Xf (x)

]
. (52)

The inner product of two physical states for Lorentzian signature is now
given by

〈
ψ~λ

∣∣ψ~ζ

〉
Lor

=
∏

xf

∫

Γ
νζ(0)δXf exp

[
−ν−1

∫

Σ
d3xX

f
(x)Xf (x)

]

exp
[
(~G)−1

∫

Σ
d3xλ∗f (x)X

f
(x)
]
exp
[
(~G)−1

∫

Σ
d3xζf (x)Xf(x)

]

= exp
[
ν(~G)−2

∫

Σ
d3xλ∗f (x)ζf (x)

]
. (53)

The requirement of normalizability is equivalent to square integrability of
λf (x) and ζf (x). On a final note, we point out that the pure Kodama state
ΨKod exists as a member of the physical Hilbert space ψ~λ

, namely for the
choice λ1 = λ2 = λ3 = − 6

Λ . In this case, the state would label a spacetime
of Petrov type O.

5 Quantum Hamiltonian constraint: revisited

There are two main considerations when quantizing the Hamiltonian con-
straint, namely operator-ordering and regularization. Operator ordering is
not an issue in our case since all momenta occur to the right upon quantiza-
tion, which leaves regularization of products of momenta. Let us define the
quantized version of the Hamiltonian constraint as the result of averaging
the constraint with all of its transposes, so that it is Hermitian. Hence, upon
quantization we have that

Ĥ = IfgΨ̂f Ψ̂g + ΛIfghΨ̂f Ψ̂gΨ̂h

=
(
Ψ̂1Ψ̂2 + Ψ̂2Ψ̂1 + Ψ̂2Ψ̂3 + Ψ̂3Ψ̂2 + Ψ̂3Ψ̂1 + Ψ̂1Ψ̂3

)

+Λ
(
Ψ̂1Ψ̂2Ψ̂3 + Ψ̂2Ψ̂3Ψ̂1 + Ψ̂3Ψ̂1Ψ̂2 + Ψ̂2Ψ̂1Ψ̂3 + Ψ̂1Ψ̂3Ψ̂2 + Ψ̂3Ψ̂2Ψ̂1

)
, (54)

where Ifg and Ifgh are tensors which impose the desired symmetry averaging
upon contraction with the appropriate factors of Ψf .

To regularize the Hamiltonian constraint we make use of the results
of [?], which uses a point-splitting regularization procedure combined with
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smearing of each individual factor in the operator product. We make use of a
regulating function fǫ(x,y), which is a continuous function of a regularizing
parameter ǫ, such that

∫

Σ
d3xfǫ(x,y)ϕ(y) = ϕ(x) (55)

for all smooth test functions ϕ ∈ C∞(Σ). The ingredients of the quantized
Hamiltonian constraint are given by

Ĥae(x) = Ψ̂a(x)Ψ̂e(x); Ĥfae(x) = Ψ̂f (x)Ψ̂a(x)Ψ̂e(x). (56)

In order to obtain a well-defined action of the constraint of the wavefunc-
tional, it is not necessary to regularize the first operator since it already
produces a finite result upon action on the wavefunction. To regularize we
start with the quadratic term, going into the Schrödinger representation

Ĥǫ
aeψ = (~G)2

∫

Σ
d3yfǫ(x,y)

δ2

δXa(y)δXe(x)
ψ[X]. (57)

Using the general form of the wavefunction as a third-quantized Wilson line

ψ = exp
[∫

Σ
d3x

∫

Γ
λf [X(x)]δXf (x)

]
, (58)

the first functional derivative brings down a factor of λf as in

(~G)
δ

δXf (x)
ψ[X] = λf [X(x)]ψ[X]. (59)

As previously mentioned, it is not necessary to regularize this first factor
(59). Continuing from (57) and regularizing the second factor, we have

(~G)

∫

Σ
d3yfǫ(x,y)

δ

δXa(y)
(λe(x)ψ)

=

∫

Σ
d3yfǫ(x,y)

[
~G
( ∂λe

∂Xa

)
x
δ(3)(x,y) + λe(x)λa(y)

]
ψ

=
(
(~Gfǫ(0))

( ∂λe

∂Xa

)
x

+

∫

Σ
d3yfǫ(x,y)λa(x)λe(y)

)
ψ. (60)

where we have defined fǫ(0) ≡ fǫ(x,x) and we have used (59).
Moving on to the cubic term, we have
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Ĥǫ
faeψ =

∫

Σ
d3zfǫ(x,y))

∫

Σ
d3yfǫ(x,y)Ψ̂f (z)Ψ̂a(y)Ψ̂e(x)ψ

= (~G)3
∫

Σ
d3zfǫ(x,y)

∫

Σ
d3yfǫ(x,y)

δ3

δXf (z)δXa(y)δXe(x)
ψ. (61)

The first two functional derivatives in (61) have already been evaluated in
(60). Hence, continuing from (60), we have

Ĥǫ
faeψ = (~G)

∫

Σ
d3zfǫ(x, z)

δ

δXf (z)
(
(~Gfǫ(0))

( ∂λe

∂Xa

)
x

+

∫

Σ
d3yfǫ(x,y)λa(x)λe(y)

)
ψ

=

∫

Σ
d3zfǫ(x, z)

[
(~G)2fǫ(0)

( ∂2λe

∂Xf∂Xa

)
x
δ(3)(x, z)

+(~G)

∫

Σ
d3yfǫ(x,y)

(
λa(x)

( ∂λe

∂Xf

)
y
δ(3)(z,y) + λe(y)

( ∂λa

∂Xf

)
x
δ(3)(x, z)

+(~G)fǫ(0)λf (x)
( ∂λe

∂Xa

)
x

+ λf (z)

∫

Σ
d3yfǫ(x,y)λa(x)λe(y)

]
ψ.(62)

We now evalute each individual term of (62). The term of order (~G)2 is
given by

(~G)2fǫ(0)

∫

Σ
d3zfǫ(x, z)

( ∂2λe

∂Xf∂Xa

)
x
δ(3)(x, z) = (~Gfǫ(0))

2
( ∂2λe

∂Xf∂Xa

)
x
.(63)

The term of order ~G has three contributions. The first contribution is given
by

(~G
[∫

Σ
d3zfǫ(x, z)

∫

Σ
fǫ(x,y)λa(x)

( ∂λe

∂Xf

)
y
δ(3)(z,y)

]

= (~G)λa(x)

∫

Σ
d3yfǫ(x,y)fǫ(x,y)

( ∂λe

∂Xf

)

y
≡ (~G)αǫ

aef (x) (64)

where we have integrated d3z to eliminate the delta function. The second
contribution of order ~G is given by

(~G)
[∫

Σ
d3zfǫ(x, z)

∫

Σ
d3yfǫ(x,y)λe(y)

( ∂λa

∂Xf

)
x
δ(3)(x, z)

]

= (~Gfǫ(0))
( ∂λa

∂Xf

)

x

∫

Σ
d3yfǫ(x,y)λe(y) ≡ (~Gfǫ(0))β

ǫ
aef (x) (65)
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where we have integrated d3z to get rid of the delta function, in conjunction
with factorization of the x dependence. The third contribution of order ~G
is given by

(~G)
[∫

Σ
d3zfǫ(x, z)fǫ(0)λf (z)

( ∂λe

∂Xa

)
x

]

= ~Gfǫ(0)
( ∂λe

∂Xa

)
x

∫

Σ
d3zfǫ(x, z)λf (z) = (~Gfǫ(0))γ

ǫ
aef (x). (66)

The semiclassical term is given by

Sǫ
aef (x) = λa(x)

(∫

Σ
d3zfǫ(x, z)λf (z)

)(∫

Σ
d3zfǫ(x,y)λe(y)

)
. (67)

The next step of the regularization procedure is to isolate the singularities in
the constraint to poles in ǫ, in conjunction with taking the ǫ→ 0 limit. To
this end we will make use of a technique widely used in field theory, namely
that it is safe to replace quantities with their limits as long as they do not
blow up. We will repeatedly make use of (55) in the ǫ → 0 limit for all
quantities occuring under an integral sign, isolating any poles to the orders
of singularity. This is necessary only for the terms of order ~G.

limǫ→0α
ǫ
aef (x) = λa(x)limǫ→0

∫

Σ
d3yfǫ(x,y)

(
fǫ(x,y)

( ∂λa

∂Xf

)
y

)
= fǫ(0)λa(x)

( ∂λa

∂Xf

)
x
(68)

where we have identified the term in (68) in brackets with ϕ ∈ C∞(Σ).
Next, we have

limǫ→0β
ǫ
aef (x) =

( ∂λa

∂Xf

)
x
limǫ→0

∫

Σ
d3yfǫ(x,y)λ3(y) =

( ∂λa

∂Xf

)
x
λe(x) (69)

where we have identified ϕ(y) ≡ λe(y). Next, we have

limǫ→0γ
ǫ
aef (x) =

( ∂λa

∂Xe

)
x
limǫ→0

∫

Σ
d3yfǫ(x, z)λf (z) =

( ∂λa

∂Xe

)
x
λf (x) (70)

where we have identified ϕ(z) ≡ λf (z). For the semiclassical term we have

limǫ→0S
ǫ
aef (x) = λf (x)λa(x)λe(x) (71)

The coefficients of the factors of ~G and (~G)2 are finite, which enables the
isolation of the poles to powers of fǫ(0).
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Collecting all of the contributions, we contract the ingredients of the
quantized Hamiltonian constraint with symmetry tensors Iae and Ifae which
impose the required symmetry (54), obtaining a regularized Hamiltonian
constraint of

Ĥǫψ =
(
IaeĤǫ

ae + ΛIfaeĤǫ
fae

)
ψ =

[
Iaeλaλe + ΛIfaeλfλaλe

+(~Gfǫ(0))
(
Iae ∂λe

∂Xa
+ ΛIfaeλa

∂λe

∂Xf

)
+ Λ(~Gfǫ(0))

2Ifae
( ∂2λe

∂Xf∂Xa

)]
ψ.(72)

The action of the regularized Hamiltonian constraint in the small ǫ limit can
be written in the form

Ĥǫ(x)ψ =
(
q0(x) + (~Gfǫ(0))q1(x) + (~Gfǫ(0))

2q2(x)
)
ψ. (73)

5.1 Physical Hilbert space

In the usual methods of loop quantum gravity, one chooses a kinematical
Hilbert space Hkin at the level prior to implementation of the constraints.
In the Soo/CDJ variables one may choose wavefunctionals of the form

ψ[X] = ⊗xe
R

Γ
λf δXf

= exp
[∫

Σ

∫

Γ
λf [X]δXf

]
, (74)

where λf [X] are at this stage arbitrary functions of X. Equation (74) al-
ready satisfies the diffeomorphism and the Gauss’ law constraints, which
leaves remaining the quantized Hamiltonian constraint. Therefore, we will
need to apply (73) in the limit of removal of the regulator. Hence,

Ĥψ = limǫ→0Ĥ
ǫ(x)ψ

= limǫ→0

(
q0(x) + (~Gfǫ(0))q1(x) + (~Gfǫ(0))

2q2(x)
)
ψ. (75)

Note that as ǫ→ 0, we have that fǫ(0) → δ(3)(0) and (fǫ(0))
2 → (δ(3)(0))2.

In fact, these delta functions of zero are precisely what one would obtain as
the numerical coefficients of q1 and q2 if one were to formally compute the
action of the Hamiltonian constraint unregularized on ψ. Since the Hamil-
tonian constraint must be satisfied independently at each point, a sufficient
condition is that q0 = q1 = q2 = 0. We require that all wavefunctions must
be independent of the specific form of the regulating function fǫ and must
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be independent of any regulating parameters in the limit when the regulator
is removed.11 Since ǫ is arbitrary, it follows that q1 = q2 = 0 is necessary
since these terms must vanish faster than any possible regulator can blow
up, in order to satisfy the constraint. The result is a set of three equations
which must be satisfied, namely

q0 = Iaeλaλe + ΛIfaeλfλaλe = 0;

q1 = Iae ∂λe

∂Xa
+ ΛIfaeλa

∂λe

∂Xf
= 0;

q2 =
( ∂2λe

∂Xf∂Xa

)
= 0. (76)

Equation (76) is a set of three equations in three unknowns λ1[X], λ2[X]
and λ3[X], and we must construct a Hilbert space of states of the form
(74) solving these equations. The general solution involves an integration
in the functional space of fields Γ, which involves constants of functional
integration with respect to Xf at each point at which the Hamiltonian
constraint is satisfied.12 We will be content, for the purposes of making
contact with the previous sections, to consider wavefunctions for which λf

is independent of the dynamical variable Xf . In this case the second and
third equations of (76) automatically vanish, and we are left with the first
equation which is the semiclassical part of the Hamiltonian constraint

2
(
λ1λ2 + λ2λ3 + λ3λ1

)
+ Λλ1λ2λ3 = 0 ∀x. (77)

The general solution to (77) is given by

λ3 = −
( λ1λ2

Λ
2 λ1λ2 + λ1 + λ2

)
. (78)

The corresponding wavefunctional, which then acquires the labels λ1 and
λ2, is given by

ψλ[X] = exp
[
(~G)

∫

Σ
d3xλf (x)Xf (x)

]
. (79)

Since the configuration variables Xf are now conjugate configuration vari-
ables for the eigenvalues of the symmetric part of the CDJ matrix Ψae, then
there is no dependence upon the variable conjugate to ψd. Hence we have

11This is the standard required of a finite state of quantum gravity by our interpretation.
12The integration over Γ therefore introduces continuous functions with each quadrature,

which can be used to label the states.
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that ψλ ∈ Ker{Ĥ ⋂ Ĥi}, and whatever that conjugate variable is, it must
be unphysical. Additionally, ψλ ∈ Ker{Ĝa} since λ1 and λ2 fix the required
SO(3, C) frame for a given Bi

a.

ψλ[X] = exp
[∫

Σ
d3xλf (x)Xf (x)

]
. (80)

The functional (80), which satisfies the quantum Hamiltonian constraint,
also satisfies the diffeomorphism constraint. Since the configuration vari-
ables Xf are now conjugate configuration variables for the eigenvalues of
the symmetric part of the CDJ matrix Ψae, then there is no dependence
upon the variable conjugate to ψd. Hence we have that ψλ ∈ Ker{Ĥ⋂ Ĥi},
and whatever that conjugate variable is, it must be unphysical.

We will ultimately move on to the Gauss’ law constraint, but let us first
address the normalizability of the wavefunctions (80). Since in the worst case
the variables Xf may be complex, we require HKin ⊂ L2(Γ,DµLor(X)) to
be the set of square integrable functionals on the functional manifold Γ, with
Gaussian measure

DµLor(X) = DXe−Xf (x)Xf (x) =
∏

x

δX(x)exp
[
−
∫

Σ
d3xXf (x)Xf (x)

]
. (81)

6 Discussion: Hamilton–Jacobi functional

From (20) one may construct the Hamilton–Jacobi functional

S =

∫

Σ
d3x
[
λ1X

1 + λ2X
2 −

( λ1λ2
Λ
2λ1λ2 + λ1 + λ2

)
X3
]
, (82)

which exponentiated in units of ~G yields a wavefunctional

ψλ[X] = e(~G)−1S. (83)

In (83) λf ≡ (λ1, λ2, λ3) are a set of labels and the variablesXf ≡ (X1,X2,X3)
are a set of configuration space variables whose role will become clear.

To put (82) into a more physically intuitive form, let us rewrite it in
terms of the trace and the traceless parts. First make the substitution
X3 = T −X1 −X2 into (82) to eliminate X3 in favor of the trace T . The
integrand of (82) reduces to the form αX+βY −ET , where we have defined
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X = X1 and Y = X2. The following nonlinear relation ensues amongst α,
β and λ1 and λ2

β = λ2 +
λ1λ2

Λ
2 λ1λ2 + λ1 + λ2

=
(Λ

2 λ1 + 1)(λ2)
2 + 2λ1λ2

Λ
2 λ1λ2 + λ1 + λ2

(84)

and

β − α = λ2 − λ1 −→ λ2 = λ1 + β = α. (85)

Substitution of (85) into (84) yields the following cubic polynomial equation
for λ1

(
Λ

2
λ1 + 1)(λ1 + β − α)2 +

(
2λ1 − β(

Λ

2
λ1 + 1)

)
(λ1 + β − α) − βλ1 = 0, (86)

which simplifies to

(λ1)
3 +

( 6

Λ
+ β − 2α

)
(λ1)

2 −
(4β

Λ
+ α(β − α)

)
λ1 −

2

Λ
α(β − α) = 0 (87)

To solve (87) using trigonometric functions, it helps to put it into dimen-
sionless form using the rescaling λ1 = ρ

γ , where γ is a numerical constant of
dimension [γ] = 2 and ρ is dimensionless. Then (86) reduces to

ρ3 +Aρ2 +Bρ+ C = 0, (88)

where we have defined

A = γ2
( 6

Λ
+ β − 2α

)
; B = −γ2

(4β

Λ
+ α(β − α)

)
; C = −γ3

( 2

Λ
α(β − α)

)
.(89)

The general solution for the first eigenvalue λ1 is given by

λ1 = λ1(α, β) = −A
3

+

√
4

3

(
B − A3

3

)
T r

1/3

[
−4(C − AB

3 + 2A3

27 )
(

4
3

(
B − A3

3

))3/2

]
(90)

where r = nπ
3 labels the the three roots of the cubic polynomial for n =

(0,±1), and we have defined the Chebyshev polynomial

T r
a (x) = sin

[
asin−1x+ r

]
. (91)
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The solution for the second eigenvalue λ2 automatically follows

λ2 = λ2(α, β) = λ1(α, β) + β − α. (92)

Making the definition

E ≡ E(α, β) =
λ1(α, β)λ2(α, β)

Λ
2 λ1(α, β)λ2(α, β) + λ1(α, β) + λ2(α, β)

, (93)

one can construct a wavefunction by exponentiating (82) of the form

ψαβ [X,Y, T ] = exp
[
−(~G)−1

∫

σ
d3x
(
α(x)X(x) + β(x)Y (x) − Eαβ(x)T (x)

)]
.(94)

Equation (94) is a gauge-invariant, diffeomorphism invariant wavefunctional
which satsifies the classical Hamiltonian constraint by construction. As an
aside, for α = β = 0, we have that E00 = 6

Λ and (94) reduces to the pure
Kodama state

ΨKod = ψ00[X,Y, T ] = e−6(~GΛ)−1
R

Σ
T . (95)

Note that the trace T = X1 +X2 +X3 is directly related via

T =

∫

Σ

∫

Γ
Bi

aδA
a
i =

∫

Σ
tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
, (96)

which is the Chern–Simons functional for the Ashtekar connection. The
exponential of (96) yields the Kodama state ΨKod, which is the both a
semiclassical manifestation of DeSitter spacetime as well as a quantum state.
For more general case (94), the semiclassical orbits encompass more general
solutions to the Einstein’s equations.
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