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Abstract

The purpose of Part I of this paper is to compute the ingredients
necessary to invert the kinetic operator for the system of equations
determining the generalized Kodama states. We perform this com-
putation from the dimensionally extended viewpoint which treats the
kinematic and the dynamic components as individual subspaces of a
larger total space. The kinematic subspace provides a new structure
having the interpretation as the analogue in infinite dimensional func-
tional spaces as the edge of a generalized spin network state carrying
a representation of the kinematic gauge group of gauge transforma-
tions and diffeomorphisms. We illustrate a technique to compute the
‘dressed’ third-quantized propagator on the dynamics subspace, rele-
gating its interpretation in analogy to spin network states as well as a
more thorough analysis of the dimensionally reduced case to Part II.
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1 Introduction

In this paper we present a general solution for the constraints quantum
gravity coupled to non-gauge fields in the Ashtekar/Chang–Soo variables.
We adopt the interpretation that the dynamics due the the Hamiltonian
constraint arise from a third-quantized theory of the CDJ deviation matrix
ǫae which encodes quantum statistical fluctuations from DeSitter spacetime.
In order to solve this third-quantized theory we must extract and invert
the kinetic operator for its functional Green’s function. Since the kinetic
operator is in general not diagonal, then either one must choose a basis
of ǫae which diagonalizes it, or one must find a convenient decomposition
which allows it to to be explicitly inverted. For the purposes of the present
work, we decompose this operator into a part which acts on the kinematic
subspace κ and a part which acts on the dynamic subspace δ. In this way
we retain a physically intuitive interpretation while being able to write down
the general solution by inspection.

Spin networks states have been shown to explicitly solve the the Gauss’
law constraint in the usual loop space approach to quantum gravity by con-
struction. Furthermore, they have led to many developments in loop quan-
tum gravity including the spectrum of area and volume operators, as well as
as discrete description of spacetime at the Planck scale. The states can be
seen as Wilson lines corresponding to a set of curves in three dimensional
space Σ, which represent edges of the network carrying representations of
SU(2). The vertices of the network are intertwiners for the edges which
impose certain selection rules for the combinations of edges consistent with
gauge invariance. However, the spin network states are not diffeomorphism
invariant,1 nor has it yet to the author’s knowledge been shown to solve
the quantum Hamiltonian constraint in the general case. In the present
work we find that a third-quantized generalization of the Wilson line arises
as a solution to the gauge and diffeomorphism subspace of the constraints.
This generalization corresponds to curves not in position space x ∈ Σ, but
rather in the functional space of fields Aai (x, t) ∈ Γ.2 These curves carry a
representation of the SU(2)− ×Diff group of any dimension necessary to
incorporate the matter fields ψA coupled to gravity. The Hamiltonian sub-
space of the constraints introduces an additional label to the ‘edges’ of the
generalized Wilson line, namely the spatial part of the energy momentum
tensor of the matter fields.

1This condition must be imposed by hand, by associating the state to equivalence or
knot classes of diffeomorphisms.

2Since the Ashtekar variables are complex, the well-definedness of a curve or a path in
connection space requires analyticity of the functions.
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In usual spin network states, it is theoretically possible to construct an
arbitrary graph embedded in the network. The direct generalization of spin
network states to the third-quantized theory as we present is that the al-
lowed networks are constrained by the requirement to satisfy the quantum
constraints of general relativity. The generalized Wilson lines originate from
sources corresponding to the proper limit of the quantized theory of mat-
ter fields below the Planck scale when gravity is turned off. Through the
dynamics of the constraint of general relativity, these generalized Wilson
lines are connected to trivalent and tetravalent nodes in all possible ways to
produce a tree network, carrying the imprints of the sub-Planck scale limit
into the network. These nodes serve as the analogue of the intertwiners in
the usual spin networks, except that they impose diffeomorphism and gauge
invariance as well as the solution to the Hamiltonian constraint in a model-
specific manner. We perform the dimensional reduction of the constraints
which illuminates this interpretation in Part II of this work. Some recom-
mended references which provide a good review of spin network states and
their applications to quantum gravity, are [1],[2] and references contained
therein.

2 Dimensionally extended form of the constraints

The full-blown set of equations arising from the constraints for four dimen-
sional quantied gravity in Ashtekar variables can be put into the following
block matrix form [3],[4].




I3 0 K1 0
G1 G2 K2 G3

M1 M2 IN M3

H1 H2 D H3







ǫ[d]
ǫ(d)
πA
ǫd


 =




0
0
fA
λτ̃00


+




0
0
0
E


 ,

where the block matrices act within their respective subspaces of the gravi-
tational and matter momentum variables. We will explicitly write these out
in the following sections, explaining the meaning of each component. But
first, we must explain the meaning of the various subspaces acted upon by
the matrix elements of the kinetic operator. The unknown variables corre-
spond to the semiclassical matter and gravitational conjugate momentum
variables, expressed in an irreducible basis under SO(3). The antisymmetric
(or rotation) CDJ deviation matrix elements ǫae are given by ǫ[d], the off-
diagonal symmetric (or shear) elements are given by ǫ(d) and the diagonal (or
anisotropy) elements are given by ǫd, where we have made the identifications
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ǫ[1] = ǫ[23]; ǫ[2] = ǫ[31]; ǫ[3] = ǫ[12]

ǫ(1) = ǫ(23); ǫ(2) = ǫ(31); ǫ(3) = ǫ(12)

ǫ11 = ǫ1; ǫ22 = ǫ2; ǫ33 = ǫ3. (1)

and πA correspond to the momenta of all the matter fields being coupled to
gravity combined into a column N -vector. For book-keeping purposes, the
following form is convenient

ǫI =

3∑

i=1

δidǫ[d] +

6∑

i=4

δidǫ(d) +

6+N∑

i=7

δidπd +

9+N∑

i=7+N

δidǫd (2)

The quantity τ̃00 refers to the semiclassical energy of the matter fields in
the limit below the Planck scale, with λ ∝ GΛ being a dimensionless coupling
constant. The matricesK1 andK2 are each 3 by N matrices refered to as the
matter kinematic matrices. These matrices are designed to implement the
diffeomorphism and the Gauss’ law constraints by taking the semiclassical
matter momenta of–shell. The matrices M1, M2 and M3 are known as
the mixed partials matrices. These are each N by 3 matrices designed to
implement to mixed partials conditions within the respective subspaces of
the rotation, shear and anisotropy CDJ deviation matrix elements.

The equations can be written in the following compact form with cor-
responding solution in terms of an exponential generating function for tree
networks, given by

Oǫ = f + E(ǫ); 1 + ǫ ∼ e(λO
−1f ·T ) (3)

where T is a generator of the terms of the expansion in terms of network ver-
tices defined by the error vector E.3 The error vector vector encodes all the
nonlinearities of the quantized constraints and contains contributions from
the quantized graviational4 and from the quantized matter Hamiltonians.

2.1 Inversion of the kinetic operator on the extended space

To invert the kinetic operator on the full 9 +N dimensional space one can
make use of the Schur decomposition of a block matrix, given by

3Note that in order for this expansion to be defined, the kinetic operator matrix O

must be invertible.
4In the form of a receptacle designed to absorb quantum statistical fluctuations induced

due to the presence of the matter fields.

3



Σ
2 =

(
O L

W H3

)−1

=

(
I6+N O−1L

0 I3

)(
O 0
0 H3 −WO−1L

)−1(
I6+N 0

−WO−1 I3

)

where the following identifications have been made for the full kinetic oper-
ator

L =




0
G3

M3

0


 ; W =

(
H1 H2 D 0

)
.

The matrix O is the kinetic operator on the 6 + N dimensional subspace
comprising the Gauss’ law and diffeomorphism constraints and the mixed
partials condition. This matrix is given by

O =




I3 0 K1

G1 G2 K2

M1 M2 IN


 ≡

(
Gγ K

M IN

)

where the further identifications

Gγ =

(
I3 0
G1 G2

)
; K =

(
K1

K2

)
; M =

(
M1 M2

)

have been made. So, for the given decomposition we see that inversion of
the kinetic operator requires invertibility only of the operator matrix O and
also of the matrix H3 −WO−1L.5 The matrix O can in turn be inverted as
well by the Schur decomposition

O =

(
Gγ K

M IN

)−1

=

(
IN G−1

γ K

0 I6

)(
G−1
γ 0

0 Gγ −MG−1
γ K

)−1(
IN 0

−MG−1
γ IN

)

which requires the matrix Gγ to be invertible.6

As far as inversion of the Schur complement submatrix of Σ
2, one may

attempt the expansion

(H3 −WO−1L)−1 =
[
1 +H−1

3 WO−1L+ (H−1
3 WO−1L)2 + . . .

]
H−1

3 (4)

which in turn requires that H3 be invertible. Hence, the inversion of the full-
blown kinetic operator can be reduced to the inversion of just two operators,

5This matrix is known as the Schur complement of the matrix H3.
6Since Gγ is just a matrix of c-numbers of components of the connection Cae = Bi

eA
a
i ,

defined as the matrix product of the Ashtekar connection and magnetic field on spatial
indices [5], this invertibility is relatively straightforward to enforce.
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O and H3. The main remaining question then becomes the conditions, if
any, for which must be imposed upon the operators and the acted-upon
vector space to ensure either convergence or termination of the resulting
infinite series expansion (4).7

3 Preview into solution by dimensional reduction

It will be convenient to divide the kinetic matrix into subsets of four block
matrices, relabeling the indices, so that the constraints can be put into the
following form

(
O
β
α Obα

O
β
a Oba

)(
ǫβ
ǫb

)
=

(
fα
fa

)
+

(
Eα
Ea

)
.

The double Greek indices 1 ≤ α, β ≤ N + 6 denote the ‘kinematic’ sub-
space κ consisting of the constraints linear in momenta, which includes the
Gauss’ law and diffeomorphism constraints. Here, N is the dimension of the
representation of the gauge group, which corresponds to the number of com-
ponents of the matter fields. The double lowercase Latin indices 1 ≤ a, b ≤ 3
refer to ‘dynamic’ subspace δ, consisting of the conditions arising from the
Hamiltonian constraint. The mixed indices refer to constraints which im-
plement the mixed partials or other condition transforming between the
gravitational and the matter sectors. The full set of constraints can then be
expanded into the form

Oβαǫβ +Obαǫb = fα

Oβa ǫβ +Obaǫb = fa + Ea (5)

where the error vector Ea = Ea(ǫα, ǫa) exists only within the subspace
spanned by the Hamiltonian constraint, containing all nonlinearities and
the imprints of all quantum effects. Hence, in the dimensionally expanded
form, the error vector Eα = Eα(ǫβ, ǫb) = 0 within the kinematic subspace.8

The functions fα = fα(ψ) and fa = fa(ψ) correspond to the semiclassical
matter momenta in the absence of gravity. These are functions completely
of the matter fields devoid of any gravitational dependence.

The method explained in this paper will be to first solve the kinematic
part of the constraints on the 6 + N dimensional subspace of ǫβ, which
includes the mixed partials condition. Hence from the first equation of (5)
we can write

7We relegate this treatment with respect to the bare part of H3 to [4], and allude to a
technique to incorporate matter-induced corrections later in the present work.

8This is because the kinematic portion of the constraints is linear in all momenta, and
therefore does not have any error vector.
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ǫβ = (O−1)αβfα − (O−1)αβO
b
αǫb. (6)

Equation (6) requires that the kinetic operator must be invertible on the
6 +N dimensional kinematic subspace. Substitution of (6) into the second
equation of (5) leads to

(
Oba −Oβa (O−1)αβO

b
α

)
ǫb = fa −Oβa (O−1)αβfα + Ea (7)

There exists a natural metric Oαβ on κ and a natural metric Oba on δ, which
is a space of of different dimension. In this context, equation (7) can be
seen as a measure of deviation from isometry under the map κ → δ, using
the mixed matrices Oaα and Oaα as ‘vielbeins’.9 Assuming that the kinetic
operator on the dynamic subspace δ is invertible, we can further write the
constraints in the form

Rab ǫa = (O−1)ab
(
fa −Oβa (O−1)αβfα + Ea

)
(8)

where we have define a special rotation matrix Rab on the three-dimensional
dynamic subspace10

Rab = δab − (O−1)fbO
β
f (O−1)αβO

a
α (9)

Hence, in order to invert the kinetic operator we must have as a necessary
condition that the operator matrices Oβα and Oba are invertible. Equation (8)
and (9) define the linearized solution to the theory obtained by dimensional
reduction. While dimensional reduction might provide some intuitive inter-
pretations of the various terms that can occur, the dimensionally extended
version of the constraints might be more expedient for practical use in cal-
culations, and can easily be programmed as an algorithm into computing
machines to write down explicit solutions for the more complicated models.

4 Kinematic subspace of the constraints

The constraints which are linear in matter momenta and linear in CDJ ma-
trix elements can be solved at the classical level.11 We will now invert the

9The interpretation is that the transformation, also seen as the embedding κ × δ → δ

cannot be an isometry, otherwise the kinetic operator would not be invertible.
10We will explicitly compute the elements of this matrix later in this work.
11As a result of the semiclassical-quantum correspondence, this is the same as solving

the constraints at the quantum level [6].
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part of the kinetic operator with acts on κ, the off-diagonal CDJ matrix ele-
ments and the matter momenta. The kinematic constraints can be written,
along with the mixed partials condition, as the following system [3]

(detB)ǫ[a] +G
(∂ψA
∂ta

+ CAaBψ
B
)
πA = 0;

(
δfg

∂

∂ta
+ Cfga

)
ǫfg −G(ψTa)

AπA = 0;

−
i

G

(∫

Γ
δXae ∂

∂ψA

)
ǫae + πA = fA,

(10)

where we have combined all the matter fields into one representation (ψA;πA)
of the kinematic symmetry group.12 Separation into the respective off-
diagonal subspaces yields

(detB)ǫ[a] +G
(∂ψA
∂ta

+ CAaBψ
B
)
πA = 0

C [d]
a ǫ[d] + C(d)

a ǫ(d) +
( ∂

∂ta
+ Cdda

)
ǫd −G(ψTa)

AπA = 0

−
i

G

(∫

Γ
δX [d] ∂

∂ψA

)
ǫ[d] −

i

G

(∫

Γ
δX(d) ∂

∂ψA

)
ǫ(d) −

i

G

(∫

Γ
δXd ∂

∂ψA

)
ǫd + πA = fA

(11)

The following identifications can then be made

Oαβ =




I3 0 K1

G1 G2 K2

M1 M2 IN




where I3 = δab for a, b = 1, 2, 3 is the identity three by three matrix, which
acts on the three dimensional subspace of antisymmetric CDJ deviation
matrix elements ǫ[d], and IN = δAB for A,B = 1, 2, . . . N is the identity N by
N matrix, which acts on the N dimensional subspace of matter conjugate
momenta πA. The component matrices are given explicitly by

K1 = (K1)
A
a = G(det−1B)




(D1ψ)1 (D1ψ)2 . . . (D1ψ)N

(D2ψ)1 (D2ψ)2 . . . (D2ψ)N

(D3ψ)1 (D3ψ)2 . . . (D3ψ)N




for a = 1, 2, 3, where Da corresponds to the covariant derivative in the
fundamental representation of the matter fields, given by

12Hence, in the case of a Klein-Gordon scalar and Dirac fermionic field, the matter
contribution to the phase space is given by (ψA;πA) → (ψA, φ;πA, π), with the scalar
field transforming non-trivially only under the diffeomorphism part of the gauge group.
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(Daψ)A =
(
δAB

∂

∂ta
+ (Ca)

A
B

)
ψA (12)

and Ca is the connection in this representation, given by (Ca)
A
B = Cae(Te)

A
B

where (Te)
A
B is the SU(2)− gauge generator in the N dimensional represen-

tation designed to incorporate all of the matter fields. It is instructive to
compare the form of (12) to the covariant derivative of the Gauss’ law con-
straint, which acts in the SU(2) ⊗ SU(2) representation of the CDJ matrix

Ga = Deǫae =
(
δfg

∂

∂ta
+ Cfga

)
ǫfg (13)

where the connection in this case acts on the tensor representation of the
CDJ deviation matrix elements [5]

(Ca)
fg = Cbe(fabf δge + febgδaf ). (14)

One can then discern a certain symmetry or duality between gauge trans-
formations and diffeomorphisms from the form of the constraints (10) in re-
lation to a symmetry between the gravitational and the matter semiclassical
conjugate momenta.13

The matrix K2 is given by

K2 = (K2)
A
a = G(det−1B)




(ψT1)
1 (ψT1)

2 . . . (ψT1)
N

(ψT2)
1 (ψT2)

2 . . . (ψT2)
N

(ψT3)
1 (ψT3)

2 . . . (ψT3)
N




where a = 4, 5, 6 and the generators are defined by

(ψTa)
A = ψB(Ta)

A
B (15)

and Ta are the same generators which appear in the diffeomorphism con-
straint. The mixed partials matrices are given by

M1 = (M1)
a
A = −

i

G




∫
Γ δX

[1] ∂
∂ψ1

∫
Γ δX

[2] ∂
∂ψ1

∫
Γ δX

[3] ∂
∂ψ1∫

Γ δX
[1] ∂
∂ψ2

∫
Γ δX

[2] ∂
∂ψ2

∫
Γ δX

[3] ∂
∂ψ2

...
...

...∫
Γ δX

[1] ∂
∂ψN

∫
Γ δX

[2] ∂
∂ψN

∫
Γ δX

[3] ∂
∂ψN




13The notion of gauge-diffeomorphism equivalence and its implications has been briefly
examined, not taking into account the mixed partials condition, in [7].
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where a = 1, 2, 3. This matrix is designed to implement the mixed partials
condition on antisymmetric subspace of CDJ deviation matrix elements, and

M2 = (M2)
a
A = −

i

G




∫
Γ δX

(1) ∂
∂ψ1

∫
Γ δX

(2) ∂
∂ψ1

∫
Γ δX

(3) ∂
∂ψ1∫

Γ δX
(1) ∂

∂ψ2

∫
Γ δX

(2) ∂
∂ψ2

∫
Γ δX

(3) ∂
∂ψ2

...
...

...∫
Γ δX

(1) ∂
∂ψN

∫
Γ δX

(2) ∂
∂ψN

∫
Γ δX

(3) ∂
∂ψN




for a = 4, 5, 6, which implements the mixed partials condition on the sym-
metric subspace of CDJ deviation matrix elements. Incidentally, the corre-
sponding matrix on the subspace of diagonal CDJ matrix elements is given,
for a = 7, 8, 9, by

M3 = (M3)
a
A = −

i

G




∫
Γ δX

1 ∂
∂ψ1

∫
Γ δX

2 ∂
∂ψ1

∫
Γ δX

3 ∂
∂ψ1∫

Γ δX
1 ∂
∂ψ2

∫
Γ δX

2 ∂
∂ψ2

∫
Γ δX

3 ∂
∂ψ2

...
...

...∫
Γ δX

1 ∂
∂ψN

∫
Γ δX

2 ∂
∂ψN

∫
Γ δX

3 ∂
∂ψN




The mixed partials matrix acts by integration along a path in the functional
space of gravitational variables14 followed by a differentiation with respect
to the functional space of matter fields of whatever it is acting on. This
is given, in its action on a functional Φ of the gravitational and matter
variables, by

M̂ae
A Φ[ ~X, ~ψ] =

∫ Xae

−∞

δX ′ae∂Φ[ ~X ′, ~ψ]

∂ψA
(16)

where the integration occurs with respect to a particular component Xae.
Here −∞ is the initial value, in functional space, of the gravitational vari-
able, and can be chosen arbitrarily such that Φ[ ~X0, ~ψ] = 0 for ~X0 → ∞.15

4.1 Inversion of the kinematic part

Rather than use the Schur decomposition shown in the earlier section, we will
adopt a different decomposition for solving the constraints on the kinematic

14Specifically, the off-diagonal Chang–Soo variables Xae(x) at fixed spatial position x.
15Since the variables Xae are complex, a necessary condition to be able to perform the

integral (16) is that the function Φ have an antiderivative, which by the Cauchy-Goursat
theorem in the theory of complex variables requires that the function be analytic in the
variable Xae. Then as a definite integral, the final result is path independent and depends
only on the endpoints.
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subspace due to an interesting physical interpretation which presents itself.
Let us separate the corresponding kinetic operator into a part which can be
inverted and a remainder O + ρ

Oαβ =

(
Gγ 0
0 IN

)
+

(
0 Kγ

Mγ 0

)

where we have made the identifications

Kγ =

(
K1

K2

)
; Mγ =

(
M1 M2

)
; Gγ =

(
I3 0
G1 G2

)

The idea is to expand the inverse in powers of Kγ and Mγ about a matrix
Gγ which can explicitly be inverted. The expansion is in general given by

(O + ρ)−1 = O−1
αβ0

∞∑

n=0

(−1)n(ρO−1)β0β1
(ρO−1)β1β2

. . . (ρO−1)βn−1βnδnα (17)

which has the interpretation of a ‘dressed’ propagator if one views the cor-
rection ρ as the analogue of the mass squared term of a ‘bare’ propagator
as seen in usual quantum field theory. The inverse of Gγ is given by

U = G−1
γ =

(
I3 0

−G−1
2 G1 G−1

2

)

which requires that G2, a matrix of c-number valued connections Cae, be
invertible.16 Here, Uγ is a six by six matrix of operators on the kinematic
subspace. In order to compute the inverse we must define the following sums

r =
∞∑

n=0

(−1)n(KγMγU)n; s =
∞∑

n=0

(−1)n(MγUKγ)
n (18)

Note that KγMγU is a 6 by 6 matrix, and MγUKγ is a N by N matrix.
The matrices Kγ and Mγ can be written in the following notation

KA
α = Gdet−1B

[ 3∑

i=1

δαi (ψTα)A +G

6∑

i=4

δαi (Dαψ)A
]
∼ (ψJα)A (19)

which splits the kinematic operator into a diffeomorphism part and a gauge
part,17 and

16Since this matrix depends upon the configuration of change–Soo variables Xae chosen
to evaluate the state ΨGKod upon, then one can restrict ones-self to field configurations
which guarantee this invertibility.

17We have combined the Gauss’ and diffeomorphism parts into one generator Jα. The
ordering of ψA to the right or to the left of Jα is implied as appropriate. Note that the
generators Jα satisfy the kinematic SU(2)×Diff subalgebra of the algebra of constraints
for general relativity [Jα, Jβ ] = h

γ
αβJγ , which is a Lie algebra since the structure functions

h
γ
αβ are numerical constants.
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M
β
B = −

i

G

[ 3∑

i=1

δiβ

∫

Γ
δX [β] +

6∑

i=4

δi(β)

∫

Γ
δXβ

] ∂

∂ψB
(20)

which splits the mixed partials operator into a symmetric part and an anti-
symmetric part. The Greek indices signify that we are still working in the
subspace spanned by the kinematic constraints.

The matrices appearing in (18) are given, making the identification
([β], (β)) ∼ β by

(KMU)βα = −i(det−1B)(ψJα)A
∫

Γ
δXγUβγ

∂

∂ψA

= −i(det−1B)
(
ψJα

∂

∂ψ

)∫

Γ
δXγUβγ (21)

Since the gravitational and the matter configuration space variables are
independent, the derivative can be commuted to the left of the functional
integral sign in (21). Note that the kinematic operator (ψJα)A can also
be commuted inside the functional integral, since it depends only upon the
upper limit of integration and not upon the dummy variable of integration.
The reversed matrix product is given by

(MUK)BA = Mα
AU

β
αK

B
β = −i

∫

Γ
(det−1B)δXαUβα

∂

∂ψA
(Jβψ)B

= −i

∫

Γ
(det−1B)δXαUβα

[
(ψJβ)

B ∂

∂ψA
+ (Jβ)

B
A

]
(22)

Of note, in (21) and (22), the factor of Newton’s gravitational constant
G has cancelled out. The inverse of the kinematic kinetic operator in the
chosen decomposition then is given by

U = (O−1)αβ =

(
U 0
0 IN

)(
rI6 rKγ

sMγU sIN

)
=

(
UrI6 UrKγ

sMγU sIN

)

4.2 Interpretation for ‘third-quantized’ spin network

We will now put the operators r and s into a different form, which illus-
trates the analogy to Wilson lines, hence the particular form of the inverse
decomposition chosen. It will be helpful to visualize the action of these op-
erators on a function living within the respective spaces. First let us make
the definitions for the matter kinematic operators,

11



Ĵα(X) =
(
ψJα

∂

∂ψ

)
; ĴABα(X) =

∂

∂ψB
(Jαψ)A. (23)

where the dependence upon X ∼ Xβ occurs in Jα only through the covari-
ant derivative appearing in the matter contribution to the diffeomorphism
constraint. The action of the operator r = rαβ on a vector Φα = Φα(X,ψ),
where we have used the shorthand notation X ∼ Xα, is given by

(KMU)Φα0
(X0, ψ) =

[
β(X1)Ĵα1

(X1)

∫ X1

−∞

δX
γ0
0 Uα0

γ0
(X0)

]
Φα0

(X0, ψ) (24)

where we have defined β(X) = det−1B as the reciprocal of the determinant
of the magnetic field. The integration occurs in the functional space of fields
Xα. Since the variable of integration X0 is a dummy variable independent
of the upper limit of integration X, the X-dependent factors to the right in
(24) can be brought into the integral to yield

(KMU)Φα1
(X1, ψ) =

[∫ X1

−∞

δX
γ0
0 J̃α1

(X1)U
α0

γ0
(X0)

]
Φα0

(X0, ψ)

(25)

The transformed vector in (25) is now a function of the variableX1 = Xα
1 (x).

Also note that we have defined a densitized version of the operator Jα(X)
via J̃α(X) = β(X)Jα(X), which is convenient since both quantities are
evaluated on the same field configuration X. Acting again, we have

(KMU)2Φα2
(X2, ψ) =

[∫ X2

−∞

δX
γ1
1 J̃α2

(X2)U
α1

γ1
(X1)

][∫ X1

−∞

δX
γ0
0 J̃α1

(X1)U
α0

γ0
(X0)

]
Φα0

(X0, ψ).(26)

Iterating this n times, we have

(KMU)nΦ(Xn, ψ) =
[ n∏

k=1

∫ Xk

−∞

δX
γk−1

k−1 U
γk−1

γk−1
(Xk−1)J̃αk

(Xk)
]
Φα0

(X0, ψ)(27)

Since the upper limit of integration for a given term constitutes the variable
of integration for the next term in sequence, the integrals are path-ordered.18

18This is reminiscent of time-ordering in the Dyson expansion of field theory, or path-
ordering for Wilson lines. In the present case the the ordering is a ‘functional’-ordering.
This is a ordering within the functional space of fields X(x) for fixed spatial position
x. Since the variables are complex, path–ordering is well defined for functions satisfying
the Cauchy–Goursat theorm. This requires the functions being integrated in the complex
plane to be analytic, which is achieved by appropriate choice of the field configuration.
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If the functions satisfy the Cauchy–Goursat theorem then the integrals in
the complex plane are path independent, depending only on the endpoints.
Hence there is a well-defined notion of path-ordering of points in the complex
plane. Under this condition, the upper limits of integration for each term
can be extended just as for real variables to Xn while introducing a factor
of 1

n! to compensate for the overcounting, as in

∫ Xn

−∞

δXn−1
γn−1

∫ Xn−1

−∞

δXn−2
γn−2 . . .

∫ X2

−∞

δX1
γ1

∫ X1

−∞

δX0
γ0 =

1

n!

(∫ Xn

−∞

dξ
)n

(28)

Hence (18) leads to the path-ordered exponential, path-ordered with respect
to a path along a curve in the functional space Γ of off-diagonal gravitational
Chang–Soo variables Xae

r ∼ rαβ = exp
[
−

∫ X

−∞

δξγUαγ (ξ)J̃β(X)
]

=
[
exp
(
−

∫ X

−∞

δξγUγ(ξ) ⊗ J̃(X)
)]α

β
(29)

The notation in (29) signifies that r is the exponential of a six by six matrix
Mα
β =

∫
(δξU(ξ)αJ̃β(X), which is a tensor product. This tensor product

is nonlocal in field space, since it is defined by two configurations (ξ,X),
which correspond respectively to an arbitrary point along the path ξae and
the endpoint Xae. Note that all indices involving the matter fields ψA have
been contracted. Equation (29) bears a resemblance to the Wilson line in
loop quantum gravity,

W [A] = P̂ exp
[∫

γ

dxiAai (x)τa

]
, (30)

but also a subtle difference. One would like to make the following suggestive
associations to generalize from coordinate space to field space

dxi ∼ δξα(x) = (δX [α], δX(β)); Aai (x)dx
i
∼ Uβα (ξ(x))δξα(x); τa ∼ Jα (31)

wherein one integrates along a path in field space Γ in direct analogy to how
one integrates along a curve in position space Σ defining a Wilson line. The
association for the connection U is also suggestive, with Jα being the SU(2)×
Diff generator, which is a direct generalization of the SU(2) generators τa
in loop quantum gravity. However the difference is that whereas in the loop
representation, the connection is contracted with the generator in (30), in
the infinite dimensional analogy (29), the connection is tensored with the
generator into a bi-local tensor product. Hence the ‘generalized’ Wilson line
of (29) is designed to act upon the six dimensional space of off-diagonal CDJ
devation matrix elements which we think of as the kinematic subspace.
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One may then ask whether there exists a direct analogue in the ‘gener-
alized’ case for which the corresponding indices between the connection and
the generators of the algebra are contracted as in (30). The answer is yes.
One simply considers the operator s contructed from MUK in (18), which
is a N by N matrix. By proceeding with the analogous steps, we obtain

s ∼ sBA = exp
[
−

∫ X

−∞

δξγUβγ (ξ)J̃BβA(X)
]

=
[
exp
(
−

∫ X

−∞

δξγUγ(ξ) · J̃(X)
)]B

A
(32)

While the indices on the generator in (32) are contracted with those of the
associated ‘generalized’ connection, the indices on the matter fields remain
uncontracted. Hence, this can be seen as the direct analogue of the Wilson
line in the N dimensional representation of the kinematic SU(2)− ×Diff

group, along a curve in the functional space of the gravitational variables.
Since the matter fields constitute an N dimensional vector space, then (23)
corresponds to the generalized Wilson line which acts on the subspace in
the representation spanned by the matter fields.

Keeping this interpretation in mind, the inverse of the kinematic sub-
space of the constraint can be written via the following intuitive decompo-
sition (where Gγ = U−1)

O−1 =

(
Gγ K

M IN

)−1

=

(
U 0
0 IN

)(
e−

R

ω⊗J 0

0 e−
R

ω·J

)(
I6 Kγ

MγU IN

)

where we have defined a ‘generalized’ bilocal connection functional one form
ω for the enlarged gauge group

ωβ = δXαUβα (X) (33)

where β is a kinematic gauge group index. The action of the generalized
Wilson lines can be seen as a kind of path-ordered translation within the base
space Γ of the fibre-bundle, since the operator Jα is a differential operator.
The effect can be seen as to translate the matter dependence of whatever it
is acting upon, by an amount dependent upon the gravitational variables.19

Also, one can envision the analogue of spin network states in which the
edges are paths in field space labelled by the representation of the enlarged
SU2)− ×Diff gauge algebra.

Now the the analogy with the Wilson lines, or the ‘third-quantized’ loop
representation has been presented, the only remaining question is whether
the ‘generalized’ third-quantized description just presented bears any anal-
ogy to the spin network states [2]. The answer is yes, which leads to the

19This is a simplistic and mathematically nonrigorous way to think of it, but nonetheless
should aid in the visualization.
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question of constraints determining the allowable spin network state. This
is a question we deal with later in this paper and in Part II. The general-
ized Wilson line act as operators on their represective subspaces and result
from the exact solution to the kinematic constraints, as determined not by
hand but by the constraints themselves. We will see that it is the quantized
Hamiltonian constraint that determines the arrangement of these general-
ized Wilson lines into the form of a network.

5 Dynamic subspace of the constraints

Now that we have taken into consideration the constraints which are lin-
ear in conjugate momenta, including the mixed partials condition, we must
now incorporate the model-specific dynamics into the theory. The dynamic
subspace of the constraints can be written in the general form [8]

(
δae −

G

2
Ω̃ae

(0)

)
ǫae −

G

2
Ω̃A

(0)πA =
GΛ

12detB
Ω(0)

+
GΛ

12detB

[
Ωaebf

(0) ǫaeǫbf + ΩaeA
(0) ǫaeπA + ΩAB

(0) πAπB

]

−
Λ

6
Iaebf ǫaeǫbf −

Λ2

72
Eaebfcgǫaeǫbf ǫcg (34)

where the subscript 0 signifies the semiclassical level. The inhomogeneous
term Ω(0) signifies the 00 component of the energy momentum tensor, which
is the semiclassical energy in the limit that gravity is turned off, coupled to
a DeSitter background. It should generally be of the form, not including
Yang–Mills contributions,

Ω(0) = H̃ ijTij + h̃iaT
i
a. (35)

Here, there is a natural Riemannian structure implied by the Ashtekar mag-
netic field, which forms a natural metric and dreibein which couples to
matter fields, given by

H̃ ij =
(BB)ij

detB
; h̃ia =

Bi
a

detB
(36)

In direct analogy to [9], which defines new gauge invariant variables
in the Hilbert space of Yang–Mills theory which manifestly implement the
Gauss’ law constraint on physical states, one can associate the Ashtekar
connection Aai with the ‘spin’ connection corresponding to (36) and then
compute the Levi–Civita analogue as well as the Riemann curvature tensor
for this metric.
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The functional divergence contribution, which eliminates first-order quan-
tum gravitational singularities ~Gδ(3)(0) in order to produce a finite state
ΨGKod, is given by20

[
δae∂ − ∂ae −

G

4
Ω̃ge

(1)∂ag

]
ǫae

+
[ i
4
gAB

∂

∂ψB
+
G

2
Ω̃Aae∂ae

]
πA = −

Λ

8
∂aebf ǫaeǫbf (37)

where the cosmological constant Λ includes any contributions due to a mat-
ter, in the form Λ → Λ +GV (ψ). Note that all tilded quantities have been
densitized by dividing by detB. The metric gAB is numerically constant,
vanishing for all matter Hamiltonians linear in momenta but nonvanishing
for matter Hamiltonians quadratic in momenta.21

The functional Laplacian term, which eliminates second-order singular-
ities (~Gδ(3)(0))2 in favor of a finite state is given by

∆aeǫae = 0, (38)

which in the dimensionally extended form for judicious operator orderings,
does not have a contribution due to the matter fields. It is of note is that
(37) and (38) do not contain any inhomogeneous terms.

In order to invert the kinetic operator it is necessary only to invert the
matrix H3 = Oef + σef , which forms the subspace of (34), (37) and (38)
comprising the diagonal CDJ deviation matrix elements ǫae at the linearized
level of the equations. Here O is the part that can be inverted exactly and
σ is the correction. In matrix notation this is given by

Oef + σef =




1 1 1
∇11 ∇22 ∇33

∆11 ∆22 ∆33


+G




1
2Ω̃11 1

2Ω̃22 1
2Ω̃33

1
4Ω̃g1∂1g

1
4Ω̃g2∂2g

1
4Ω̃g3∂3g

0 0 0




where summation over the index g is implied. In index notation for the ease
of computing machines, the exactly invertible matrix operator is given by

Oba = δa1δbeδ
ee + δa2δbe∇

ee + δa3δbe∆
ee (39)

and the correction is given by

20We have absorbed various numerical factors into the definition of the Ω terms, which
can always be re-inserted when needed.

21One may allow general field dependence in this metric if one wants to consider nonlin-
ear sigma models which we do not do here. It is relatively straightforward to incorporate
the effect of this dependence into the associated orders of singularity in analogy to [3].
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σab = G
(1
2
δa1δbeΩ̃

ee +
1

4
δa2δbeΩ̃

ge∂eg
)

(40)

We chose for the purposes of illustration, a method for inversion of the full
dressed kinetic operator will be to do so in stages. First we will invert the
bare kinetic operator Oae, which consists purely of gravitational degrees of
freedom. Then we will incorporate the top row of the full correction matrix
to create

Σ1
ab =

(
Oab +

G

2
δa1δbeΩ̃

ee
)−1

(41)

After obtaining the expansion for Σ1
ab to all orders, then we continue the

inversion, treating Σ1
ab as the bare propagator and the middle row of the full

correction matrix as the correction. Hence

Σ2
ab =

(
Σ1
ab +

G

4
δa2δbeΩ̃

ge∂eg
)−1

(42)

In this way we can systematically correct for increasing degrees of complexity
induced by the presence of the matter fields.

5.1 First stage of inversion

We now define U = O−1 as the ‘bare’ Green’s function, and we make the
identifications22 Ω11 = Ω1, Ω22 = Ω2, Ω33 = Ω3. We will omit any su-
perfluous numerical factors in what follows, re-inserting them later when
needed.23 The full propagator at this stage is given by

Σ1
af = (O + σ)−1

af = Uae0

∞∑

n=0

(−1)n(σU)e0e1(σU)e1e2 . . . (σU)en−1enδnf (43)

The matter correction matrix is given by σae = Gδa1δbeΩ̃
e, where summation

over e is implied. We have that

(σU)af = Gδa1δbeΩ̃
eUbf = Gδa1Ω̃

eUef (44)

22This is the only contribution to the propagator in the dimensionally extended version
of the constraints, namely contributions that produce a part linear in the CDJ deviation
matrix ǫae.

23The details associated with the inversion of O are treated in [4].
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The product is limited to the first row of the full Green’s function. Carrying
out the product n times, we have

(σUσU . . . σU)ab = Gn(δa1Ω̃
e1Ue1f1)(δf11Ω̃

e2Ue2f2) . . .

(δfn−11Ω̃
en−1Uenfn)(δfn1Ω̃

enUenb)

= Gnδa1(Ω̃
eUe1)

n−1Ω̃fUfb (45)

The Kronecker delta of any given term has the effect of setting the second
index of the previous term equal to 1.24 The full propagator for the first
stage then is given by

Σ1
af = Ua1

∞∑

n=0

(−G)n(Ω̃eUe1)
n−1Ω̃gUgf (46)

We impose as a necessary condition for the finiteness of the generalized
Kodama state ΨGKod that the series (46) must either converge or must
terminate at finite order.25 It helps to isolate the part of the dressed propa-
gator that depends upon the matter fields from the gravitational variables.
Making the definition

H̃ ij
e =

Bi
eB

j
e

detB
; H̃ ij =

3∑

e=1

H̃ ij
e (47)

we have that Ω̃e = H̃
ij
e Tij. The dressed propagator is given by

Σ1
af = Ua1

∞∑

n=0

(−G)n

n!
Ti1j1Ti2j2 . . . Tin−1jn−1

TinjnH
i1j1i2j2...in−1jn−1injn
f (48)

where we have defined, maintaining the specified ordering of the factors,

H
i1j1i2j2...in−1jn−1injn
f = n!

n−1∏

k=1

H̃ ikjk
ek

Uek1 (49)

The convergence of the dressed Green’s function will depend on the numer-
ical coefficients due to the generalized metric operator. This will depend on

24Note that the ordering of the factors must be strictly maintained, since the bare
propagator can act on eΩe through its dependence upon det−1B.

25The essence of the limitations placed by quantum gravity upon the limit below the
Planck scale is that the requirement of termination in exchange for the possibility of a
finite state of quantum gravity constricts the allowed form of the starting functions fA(ψ),
which perhaps might have some observational effects.
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whether one chooses the symmetric or the asymmetric Green’s functions.
The symmetric Green’s functions usually result in a higher than factorial
growth in the coefficients, characteristic of divergent hypergeometric series
due to repeated action of derivatives on the densitization factors det−1B.
Hence, one is either restricted in the allowable semiclassical energy to yield
simple generalized Kodama states, or one can restrict oneself to asymmetric
Green’s functions.26

5.2 Second stage of inversion

Moving on to the second stage of inversion, treating the first dressed Green’s
function as the bare Green’s function corresponding to the second level of
iteration, we have

Σ2
af = (Σ1 + σ)−1

af = Σ1
ae0

∞∑

n=0

(−1)n(σΣ1)e0e1(σΣ1)e1e2 . . . (σΣ1)en−1enδnf (50)

The matter correction matrix is given by σae = Gδa2δbeΩ̃
ge∂eg, where

summation over e and g is implied. We have that

(σΣ1)af = Gδa2δbeΩ̃
ge∂egΣ

1
bf = Gδa2Ω̃

ge∂egΣ
1
ef (51)

The product is limited to the first row of the full Green’s function. Carrying
out the product n times, we have

(σΣ1σΣ1 . . . σΣ1)ab = Gn(δa2Ω̃
g1e1∂e1g1Σ

1
e1f1

)(δf12Ω̃
g2e2∂e2g2Σ

1
e2f2

) . . .

(δfn−12Ω̃
gnen∂engnΣ1

enfn
)(δfn2Ω̃

gnen∂engnΣ1
enb

)

= Gnδa2(Ω̃
eg∂geΣ

1
e2)

n−1Ω̃hf∂fhΣ
1
fb (52)

The full propagator then is given by

Σ2
ab = Σ1

a2

∞∑

n=0

(−G)n(Ω̃eg∂geΣ
1
e2)

n−1Ω̃hf∂fhΣ
1
fb (53)

A necessary condition for the finiteness of the generalized Kodama state
ΨGKod is that the series (53) converges. It helps to isolate the part of the

26These are expected to produce coefficients which result in a convergent series. A
reasonably thorough treatment of functional Green’s functions for the generalized Kodama
states is provided in [10] for anisotropic minisuperspace and in [4] for the full theory.
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dressed propagator that depends upon the matter fields from the gravita-
tional variables. First we note from (46) the following

Σ1
a2 = Ua1

∞∑

n=0

(−GΩ̃eUe1)
n−1Ω̃fUf2 (54)

Making the definition

D̃ij =
Bi
eB

j
g

detB
∂ge (55)

we have that Ω̃eg∂ge = D̃ijTij. The dressed propagator is given schemati-
cally, in terms of exponential generating functions, by

Σ2
ab ∼ Ua1e

−GT · eH
(
exp
[
−GT · D̃Ue−GT ·

eH
])
T · D̃(Ue−GT ·

eH) (56)

The convergence of the dressed Green’s function will depend on the numer-
ical coefficients due to the H̃ ij and D̃ij operators. This will in turn depend
on whether one chooses the symmetric or the asymmetric Green’s functions.
The symmetric Green’s functions results in a higher than factorial growth
in the coefficients, which in general diverges. Hence, one is either restricted
in the allowable semiclassical energy to yield simple generalized Kodama
states, or one can restrict oneself to asymmetric Green’s functions.27 Once
the dressed Green’s functions are determined, to be finite, it is still required
that the expansion of the Schur decomposition be convergent in order to
produce a finite state at the linearized level of the constraints. Hence

(H3 −WO−1L)−1 =
[
1 + Σ2WO−1L+ (Σ2WO−1L)2 + . . .

]
Σ2 (57)

must either be shown to be finite or alternatively, the choice of functions that
this operator acts on (namely the inhomogeneous terms in the constraints
that correspond to the proper limit in the absence of gravity), must be
restricted in order to ensure convergence.28

27It appears from [10], which treats minisuperspace, that asymmetric Green’s functions
can produce numerical coefficients which result in a convergent series. A more detailed
analysis must be carried out in order for a conclusive determination to be made for the
full theory.

28The is the mechanism by which finite quantum gravity can place restrictions upon
observations below the Planck scale.
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6 Discussion

The main result of this work has been to present a general solution to the
equations resulting from the quantum constraints of general relativity in
the Chang–Soo variables by treatment of the kinematic and the dynamic
subspaces. We have demonstrated that the constraints can be explicitly
solved at the kinematical level taking into consideration the mixed partials
condition, a requirement based on the new princple of the semiclassical-
quantum correspondence [6], in conjunction with the kinematic constraints.
The result of this combination is a new structure which resembles the Wil-
son line of a second-quantized spin network state, however bears the inter-
pretation of a third-quantized analogue to the Wilson line which carries a
representation of the kinematic gauge group (gauge transformations and dif-
feomorphisms) along a curve in the functional manifold defining the second
quantized Chang–Soo configuration variables. The virtue of this structure
is that gauge-diffeomorphism invariance results from explicit solution of the
constraints rather than by imposition by hand. The solution to the dy-
namic component of the constraints has been reduced to the computation
of a dressed Green’s function which has the interpretation of a self energy
correction to the bare propagator due to the presence of matter fields. The
finiteness of the generalized Kodama state for the full theory, barring regu-
larization procedures, depends upon the convergence of the series expansion
for the dressed propagator, which in turn depends upon the finiteness of
the bare Green’s function. The bare Green’s function for the full theory
is treated in a separate work. In Part II we dimensionally reduce the con-
straints, which narrows down their solution to the dynamic subspace which
furthers the third-quantized analogy to second quantized spin network states
[11].
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