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Abstract

In this paper we present a general solution to the quantum con-
straints of general relativity from the perspective of dimensional re-
duction, in continuation from Part I. First we present the constraints
in terms of the polar decomposition of the CDJ matrix, noting that
some kinematic degrees of freedom consequently become ignorable. In
the second half of the paper we perform a dimensional reduction to the
level the the dynamical subspace using a Cartesian decomposition and
write down a general solution featuring the dynamics. A main result
of Part II is to further the interpretational third-quantized analogy to
second-quantized spin network states.
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1 Introduction

The purpose of this paper is to provide a general solution to the quan-
tum constraints of general relativity in Ashtekar variables from the vantage
pooint of dimensional reduction, in continuation from Part I which covers
dimensional extension. On the one hand there are nine equations in nine
unknowns at the level of the gravitational-matter constraints themselves.
These constraints act on a nine-vector, the components of which form a nine-
dimensional vector space. On the other hand, the mixed partials condition
related the nine-dimensional vector space of CDJ deviation matrix elements
to the N dimensional space of matter fields. The mixed partials condition
should as well be taken as a part of the gravitational-matter constraints,
since it is a required consistency condition on the quantization procedure
which was applied to obtain these constraints [1]. In the present work we fur-
ther develop the concept of the third-quantized analogy to second-quantized
networks as an explicit solution to the constraints.

2 Polar decomposition of the constraints

The basic idea of dimensional reduction is to separate the unphysical from
the physical degrees of freedom by choice of a convenient parametrization of
the CDJ matrix elements. We will consider two main methods in the present
paper. First we will briefly illustrate the polar decomposition, designed to
render the shear CDJ deviation elements ǫae ignorable, then we consider
the Cartesian parametrization. At the classical level, the constraints (not
including the mixed partials condition) can be written as a system of seven
equations in nine unknowns [2],[3]

ǫdaeǫae = Gτ̃0d;(
δfg

∂

∂ta
+Cfga

)
ǫfg = −GQa;

trǫ+
Λ

6
V arǫ+

Λ2

12
detǫ =

GΛΩ

12detB
. (1)

This leaves two elements of ǫae freely specifiable at the classical level, which
translates into a two-parameter ambiguity in the solution at the semiclas-
sical level of the reduced phase space, insufficient to construct a quantum
wavefunction.

The polar decomposition of the CDJ deviation matrix is given by
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ǫae = Oaegfλgf + ǫaedψd (2)

where Oaegf = Oag(θ)Ofe(θ) is an orthogonal matrix parametrized by three
angles (θ1, θ2, θ3) and λgf = δgfλf is a diagonal matrix. The orthogonal
transformation in the tensor representation is implemented via

Ψ′
ae = Oab(θ)ΨbcO

T
ce(θ) = ObcaeΨbc (3)

The antisymmetric part of the matrix is parametrized by the 3-vector ψd.
Let us now substitute (2) into (1).

2.1 Polar decomposition of the kinematic constraints

Substitution of the polar decomposition (2) into the Gauss’ law constraint
leads to the following system

(
δfg

∂

∂ta
+ Cfga

)[
Ofgdeλde + ǫfgdψd

]
= −GQa (4)

Separating the symmetric from the antisymmetric part, we have

(
δfg

∂

∂ta
+ Cfga

)
(Ofgdeλde) = −

(
δfg

∂

∂ta
+ Cfga

)
ǫfgdψd −GQa (5)

The right hand side of (5), the source term, decomposes as

−
(
δfg

∂

∂ta
+ Cfga

)
ǫfgdψd −GQa = −

(
GQa +Cfga ǫfgdψd

)

= −G
(
Qa + Cfga ǫfgdτ̃0d

)
= −G

[
Qa + Cfga ǫfgdB̃

i
dHi

]
= −GQαaπα = −GQ′

a (6)

where we have defined

Qαa = (Taφ)α + Cfga ǫfgdB̃
i
d(Diφ)α. (7)

as well as the ‘densitized’ magnetic field

B̃i
d =

Bi
d

detB
. (8)

We have made use of the diffeomorphism constraint in the second line of (7).
The quantity Q′

a has the interpretation of a ‘generalized’ kinematic charge,
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consisting of local momentum of all the matter fields combined with their
SU(2)− charge. The main point is that the kinematic charge is directly
related to the conjugate momentum of the matter fields.1

The left hand side of (5) decomposes as

(
δfg

∂

∂ta
+ Cfga

)
(Ofgdeλde) =

∂

∂ta
(Ohhdeλde) + Cfga Ofgdeλde

= Ohhde
∂

∂ta
λde +

(∂Ohhde
∂ta

+ Cfga Ofgde

)
λde (9)

The last term of (9) can be seen as a kind of gauge transformation of the

connection C
fg
a , using the orthogonal matrix Oaebf as a gauge parameter.

We now define the following vector field and connection

Ohhde
∂

∂ta
=

∂

∂τade
;
∂Ohhde
∂ta

+ Cfga Ofgde = C ′
ade (10)

Here the primed version C ′
ade = C ′

ade(θ) has the interpretation of the gauge-

transformed version of Cfga . The Gauss’ law constraint then reduces to

( ∂

∂τade
+ C ′

ade

)
λde =

( ∂

∂τade
+ C ′

ade

)
δdeλd = −GQ′

a (11)

where we have used the fact that λde is diagonal. By the techniques de-
veloped for solving the Gauss’ law constraint [4], we decompose (11) into
diagonal and off-diagonal parts and invert the diagonal part. Making the
definitions

∂

∂τ eee
+ C ′

eee =
∂

∂τ e
+ C ′

e for e = 1, 2, 3, (12)

We then invert the diagonal part of the Gauss’ law operator,

Uaeλe = −GKae(τa, τ
′
a)Q

′
e(τ

′
e) = −G

∫ τa

0
dτ ′aexp

[∫ τa

τ ′a

dτ ′′aC
′
a(τ

′′
a )
]
Q′
a(τ

′
a)(13)

where we have defined

Uae = δae +Ka

( ∂

∂tadd
+ C ′

add

)
δde for d 6= e. (14)

The end result is that

1The concept of a generalized kinematic charge is introduced in [4].
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λa(τ) = −G(U−1)aeKe(τe, τ
′
e)Q

′
e(τ

′
e) (15)

where the quantity U−1 can be expressed as a path-ordered exponential in
SU(2)− space (see [4] for the details). The point is that the diagonal part
of the CDJ deviation matrix, the physical subspace, can be expressed as
a linear transformation of the kinematic charges. There are a few points
to note regarding the polar decomposition. First, while the diagonal CDJ
deviation matrix elements ǫae have been solved for via the kinematic con-
straints, there is implicit gauge dependence through their dependence upon
the connection C ′

ade. Secondly, this may bring into question the compat-
ibility with the Hamiltonian constraint, a separate set of conditions to be
satisfied by the diagonal elements. The answer is that the kinematic con-
straints govern propagation with respect to spatial position x in 3-space
Σ (or alternatively SU(2)− through spatial derivatives and path-ordered
integrals. However, the Hamiltonian constraint governs propagation with
respect to the functional space of Chang–Soo variables Xae ∈ Γ through
its functional divergence and functional Laplacian operators. These are two
separate modes of propagation which should not be confused. Third, note
that the left hand side of the classical Hamiltonian constraint (1) depends
only on the invariants of the CDJ matrix, therefore is indepndent of the
matrix Oaebf , not to be confused with the kinetic operators derived in Part
I. This is not in general true of the matter-dependent right hand side, since
the matter Hamiltonians can in general contain additional components of
ǫae besides just the invariants.

We will now examine another representation of the CDJ deviation matrix
ǫae for the constraints, the Cartesian representation and its attributes, which
forms the topic of the remainder of this paper.

3 Cartesian decomposition of the CDJ matrix

One normally thinks of the CDJ deviation matrix as decomposable into
orthogonal subspaces in a given irreducible basis. For the purposes of this
paper it will be convenient to adopt a decomposition into diagonal and off-
diagonal parts representing the kinematic and the dynamic subspaces δ and
κ respectively. This is given by

ǫae = Eαaeψα + efaeǫf (16)

where the off-diagonal CDJ matrix elements ψα ∼ (ǫ[ae], ǫ(ae)) consist of the
shear and rotation components combined into a 6-vector, and the diagonal
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elements ǫf ∼ (ǫ11, ǫ22, ǫ33) consist of the anisotropy elements combined into
a 3-vector. The basis vectors are given by

efae = δaf δef ; Eαae =
3∑

d=1

δαd ǫaed +
6∑

d=4

δαd |ǫaed|. (17)

with no summation convention applied to the first definition in (17). These
basis elements have the following matrix representation

ǫae1 =
1√
2




0 0 0
0 0 −1
0 1 0


 ; ǫae2 =

1√
2




0 0 −1
0 0 0
1 0 0


 ; ǫae3 =

1√
2




0 −1 0
1 0 0
0 0 0


 ,

with a normalization factor of 1√
2

put in for convenience.

|ǫae1| =
1√
2




0 0 0
0 0 1
0 1 0


 ; |ǫae1| =

1√
2




0 0 1
0 0 0
1 0 0


 ; |ǫae1| =

1√
2




0 1 0
1 0 0
0 0 0


 ,

e1ae =




1 0 0
0 0 0
0 0 0


 ; e2ae =




0 0 0
0 1 0
0 0 0


 ; e3ae =




0 0 0
0 0 0
0 0 1


 ,

We will demonstrate in this paper that these vector spaces which are oth-
erwise indepenent become interdependent when the quantization conditions
are exhaustively and consistently applied. Particularly, the mixed partials
condition upon implementation induces a certain amount of mixing between
these subspaces. The following orthogonality relations hold amongst the ba-
sis vectors prior to implementation of the constraints of general relativity

〈
ef
∣∣eg
〉

=
∑

a,e

(ef )ae(e
g)ea = δfg;

〈
Eα
∣∣Eβ

〉
=
∑

a,e

EαaeE
βea = δαβ ;

〈
Eα
∣∣ef
〉

=
∑

a,e

Eαae(e
f )ea = 0. (18)

with corresponding completeness relations

∑

f

(ef )
ae(ef )bf +

∑

α

EαaeE
bf
α = δbaδ

f
e . (19)
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The first task of this paper will be to express the constraints of general
relativity in this basis and then write down an explicit general solution,
interpreting the solution as a kind of third-quantized analogue to second
quantized spin network states.

4 Dimensional reduction of the kinematic constraints

in the Cartesian basis

For the purposes of this paper we will explicitly show all algebraic manip-
ulations and maintain all index manipulations explicit for completeness. In
order to solve the constraints it will be necessary to express the matter
conjugate momenta in terms of the basis (16), as in

πA = fA(ψ) +
1

G
Mae
A ǫae

= fA +
1

G
Mae
A E

α
aeψα +

1

G
Mae
A e

f
aeǫf . (20)

Here in (20), fA are the components of an N -vector representing the semi-
classical matter momentum in the absence of gravity, and depends entirely
on the matter configuration variables ψA for 1 ≤ A ≤ N , and Mae

A is a
9 by N operator-valued matrix designed to implement the mixed partials
condition [1]. This is given by

M
bf
A = i

∂

∂ψA

(∫

Γ
δXbf

)
(21)

The diffeomorphism constraint is given by

ǫdaeǫae = G(detB)−1Bi
d(Diψ)AπA = G(K̃1)

A
d πA (22)

where K̃A
d = K̃A

d (ψ) is a matter-dependent kinematic object.2 This can be
written, using (16), as

ǫdaeE
α
aeψα = G(K̃1)

A
d fA + (K̃1)

A
dM

ae
A ǫae (23)

Putting (16) into (23), we have

2The tilde over (K1)
A
d signifies that it is divided by a factor of the determinant of the

Ashtekar magnetic field.
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ǫdaeE
α
aeψα = G(K̃1)

A
d fA + (K̃1)

A
dM

ae
A

(
Eαaeψα + efaeǫf

)

= G(K̃1)
A
d fA + (K̃1)

A
dM

ae
A E

α
aeψα + (K̃1)

A
dM

ae
A e

f
aeǫf . (24)

Subtraction of the off-diagonal CDJ matrix terms to the left hand side yields

Eαae
(
ǫdae − (K̃1M)aed

)
ψα = G(K̃1)

A
d fA + (K̃1M)aed e

f
aeǫf (25)

which already shows imprints of the aforementioned mixing of subspaces.
Moving on to the Gauss’ law constraints,

Deǫae = Gλ(πTaψ) = G(K2)
A
d πA (26)

where (K2)
A
d = (Td)

A
Bψ

B for SU(2)− generators Td in the N dimensional
representation. Likewise, substitution of (16) into the left hand side and
(20) into the right hand side of (26) yields

De

(
Eαaeψα + efaeǫf

)
= G(K2)

A
a

(
fA +

1

G
Mae
A E

α
aeψα +

1

G
Mae
A e

f
aeǫf

)
. (27)

The factor of i from the mixed partials condition has been absorbed into
the definition of Mae

A to avoid cluttering up the notation, and can always be
reinserted when needed. Continuing with the expansion (27),

EαaeDeψα + efaeDeǫf = G(K2)
A
a fA + (K2)

A
aM

ae
A E

α
aeψα + (K2)

A
aM

ae
A e

f
aeǫf (28)

Observe that the factors of G cancel between the mixed partials matrix
and the matter kinematic matrix. Transferring all like terms in (28) to the
corresponding sides yields

Eαae
(
De − (K2M)e

)
ψα = G(K2)

A
a fA − efae

(
De − (K2M)e

)
ǫf , (29)

where we have made the definition (K2M)e = (K2)
A
aM

ae
A . Equations (25)

and (29) can be combined into one unified kinematic system corresponding
to the SU(2)− gauge transformations and diffeomorphism as an enlarged
SU(2)×Diff symmetry group in similar fashion to Part I [5]. First, writing
the equations together, we have

Eαae
(
ǫdae − (K̃1M)aed

)
ψα = G(K̃1)

A
d fA + (K̃1M)aed e

f
aeǫf ;

Eαae
(
De − (K2M)e

)
ψα = G(K2)

A
a fA − efae

(
De − (K2M)e

)
ǫf (30)
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Equation (30) can be written in the form

Lαβψα = GKA
β fA +KA

βM
bf
A e

g
bf ǫg (31)

where we have combined the three-indexed pair of indicies for the kinematic
constraints into one six-dimensional index α. So the following definitions
have been put in place. Starting with the kinematic kinetic operator Lαβ ,

Lαβ = Eαae

( 3∑

d=1

δdβ
(
ǫdae − (K̃1M)aed

)
+

6∑

d=4

δaβ
(
De − (K2M)e

))
(32)

we define the propagator in the space of kinematic constraints as the inverse
of the kinetic operator on the kinematic subspace, Uαβ = (L−1)βα. Likewise,

one can define a vielbein-type projector KA
β which projects from the matter

momentum subspace into the subspace of off-diagonal CDJ matrix elements.
This is given by

KA
β = (detB)−1

3∑

d=1

δdβB
i
d(Diψ)A + λ

6∑

d=4

δaβ(Taψ)A. (33)

Using the definition (21), we can define a matter-induced generator for an
enlarged gauge transformation-diffeomorphism group

KM ∼ (J̃β)
bf = KA

βM
bf
A (34)

Using (33) and (21), equation (34) can be written

KA
βM

bf
A = i

[
(detB)−1

3∑

d=1

δdβB
i
d(Diψ)A

∂

∂ψA

+λ

6∑

d=4

δaβ(Taψ)A
∂

∂ψA

] ∫

Γ
δXbf = J̃

bf
β . (35)

The quantity J̃
bf
β is the product of two commuting operations. There is

integration over the functional space of gravitational Chang–Soo variables
Xae followed by the action of a matter-induced kinematic vector field, which
is the generator of kinematic translations of the matter variables. See Part
I for the development of these kinematic operators in greater detail.
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4.1 Solution of the kinematic constraints

Now that we have separated the kinematic constraints into a part acting
on the off-diagonal (unphysical) and a part acting on the diagonal (physi-
cal) CDJ matrix elements, the goal of dimensional reduction is to eliminate
the six degrees of freedom contained in these off-diagonal elements ψβ in
favor of the three degrees of freedom contained in the diagonal elements
ǫf , expressing the remaining ‘physical’ variables in terms of the semiclassi-
cal matter momentum in the abscence of gravity fA = fA(ψ).3 The terms
‘physical’ and ‘unphysical’ are used in view of the fact that the off-diagonal
elements encode the kinematic effects of the constraints which refer to gauge
transformations, and the diagonal elements encode the dynamic effects and
associated quantum corrections.4 First, the constraints at the kinematic
level can be written in the form

Lαβψα = GKA
β fA + J̃

bf
β e

g
bf ǫg (36)

The solution to (36) is given by

ψα = G(L−1)βαK
A
β fA + (L−1)βαJ̃

bf
β e

g
bf ǫg. (37)

The kinetic operator for the kinematic constraints has the following matrix
representation

Lβα =




1 − iJ̃
[1]
1 −iJ̃ [2]

1 −iJ̃ [3]
1 −iJ̃ (1)

1 −iJ̃ (2)
1 −iJ̃ (3)

1

−iJ̃ [1]
2 1 − iJ̃

[2]
2 −iJ̃ [3]

2 −iJ̃ (1)
2 −iJ̃ (2)

2 −iJ̃ (3)
2

−iJ̃ [1]
3 −iJ̃ [2]

3 1 − iJ̃
[3]
3 −iJ̃ (1)

3 −iJ̃ (2)
3 −iJ̃ (3)

3

C
[1]
1 − iJ

[1]
1 C

[2]
1 − iJ

[2]
1 C

[3]
1 − iJ

[3]
1 C

(1)
1 − iJ

(1)
1 C

(2)
1 − iJ

(2)
1 C

(3)
1 − iJ

(3)
1

C
[1]
2 − iJ

[1]
2 C

[2]
2 − iJ

[2]
2 C

[3]
2 − iJ

[3]
2 C

(1)
2 − iJ

(1)
2 C

(2)
2 − iJ

(2)
2 C

(3)
2 − iJ

(3)
2

C
[1]
3 − iJ

[1]
3 C

[2]
3 − iJ

[2]
3 C

[3]
3 − iJ

[3]
3 C

(1)
3 − iJ

(1)
3 C

(2)
3 − iJ

(2)
3 C

(3)
3 − iJ

(3)
3




where we have made the definitions5

J̃
[f ]
d = (detB)−1(Bi

dDiψ)A
∂

∂ψA

(∫

Γ
δX [f ]

)
;

J̃
(f)
d = (detB)−1(Bi

dDiψ)A
∂

∂ψA

(∫

Γ
δX(f)

)
(38)

3This serves as a boundary condition from the limit of quantized special relativity
on quantized gravitational theory, which makes the connection from quantum gravity to
observational effects below the Planck scale.

4There is ‘mixing’ between these two subspaces which can be eliminated simply by
choosing a basis in which the full kinetic perator is block-diagonal on these subspace.

5In an abuse of notation, the tilded operators represent the diffeomorphism components
and the untilded operators the Gauss’ law components
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for the diffeomorphism operators with respect to the antisymmetric and the
symmetric CDJ deviation matrix elements, and

J
[f ]
d = (ψTd)

A ∂

∂ψA

(∫

Γ
δX [f ]

)
;

J
(f)
d = (ψTd)

A ∂

∂ψA

(∫

Γ
δX(f)

)
(39)

for their Gauss’ law counterparts. The Gauss’ law operators in the off-
diagonal subspace of CDJ deviation matrix elements are c-numbered-valued
matrices given by [4]

C
[f ]
d = G1 =




C22 + C33 −C12 −C13

−C21 C33 + C11 −C23

−C31 −C32 C11 + C22




C
(f)
d = G2 =




C[31] −C33 C12

C23 C[12] −C11

−C22 C31 C[23]


 .

The inversion of the kinematic matrix can be performed by the methods in
[4], in which one decomposes the matrix L = l+ρ into an invertible diagonal
part l and a remainder ρ. The diagonal part is then explicitly inverted via
functionally ordered exponentials, given by

(l−1)βα =

(
e
−i

R

Γ
δX[d]Bi

d
( eDiψ)· ∂

∂ψ 0

0 e
−iλ

R

Γ
δX(d)(ψTd)·

∂
∂ψ

)

Note that the quantities under the integral sign are independent of the vari-
able of integration, being evaluated at the upper limit which constitutes
the endpoint of the path in functional space. The diagonal terms act on
the space of antisymmetric elements of the kinematic charges (local momen-
tum) in Minkowski spacetime, and the symmetric elements (SU(2)− charge).
There is a mixing of these quantities due to the action of the off-diagonal
elements of the kinematic kinetic operator. The full-blown propagator then
is given by

L−1 = l−1 + l−1ρl−1 + l−1ρl−1ρl−1 + . . . (40)

We must then express the CDJ deviation matrix completely in terms of the
diagonal elements ǫf which represent its physical degrees of freedom, as well
as this observational input fA. Using the decomposition (16), we have

ǫae =
(
GEαae(L

−1)βαK
B
β fB + Eαae(L

−1)βαJ̃
bf
β e

g
bf ǫg

)
+ egaeǫg

= GEαae(L
−1)βαK

B
β fB +

(
δbaδef + Eαae(L

−1)βαJ̃
bf
β

)
e
g
bf ǫg (41)

10



and for the semiclassical matter momentum πA = fA + 1
G
ǫae we have

πA =
(
δAB +Mae

A E
α
ae(L

−1)βαK
B
β

)
fB +Mae

A

(
δabδef + Eαae(L

−1)βαJ̃
bf
β

)
e
g
bf ǫg (42)

which leads to the solution

ǫae = Gq′ae +Rfaeǫf ;

πA = fA +Mae
A q

′
ae +Mae

A R
f
aeǫf = RBAfB +Mae

A R
f
aeǫf (43)

where we have made the definitions Rgae = R
bf
aee

g
bf , which is a projection of

a ‘generalized’ rotation operator

Rbfae = δabδef + Eαae(L
−1)βαJ̃

bf
β (44)

into the dynamical subspace. The quantity q′ae = Eαae(L
−1)βαKB

β fB con-
structs a kinematic charge out of fB, which would correspond to a Noether
charge for gobal translational and rotational symmetry in the limit of spe-
cial relativistic field theory, below the Planck scale6 and propagates it via
the kinematics of general relativity, embedding it into the space of gravita-
tional phase space variables. This has the interpretation of a backreaction
of matter on spacetime.

These quantities can be written in the following suggestive form, incor-
porating the concepts from [5]

ǫae = Gq′ae +
(
I +

∫

Γ
ω · J

)f
ae
ǫf ;

πA =
(
I +

∫

Γ
ω ⊗ J

)B
A
fB +Mae

A

(
I +

∫

Γ
ω · J

)f
ae
ǫf (45)

where we have defined a ‘generalized’ connection ω living on the functional
space of field Γ. The connection ω can be seen as the gauge field correspond-
ing to the SU(2) ×Diff group. The representation of this connection on
the space of gravitational variables ǫae requires a trace on the matter indices
AB of J leaving the gravitational indices ae, free, while the represention of
the the space of matter momenta πA requires a contraction of the gravita-
tional indices, leaving the matter indices free. The quantities R ∼ I + ω

can be seen as a ‘generalized’ kinematic rotation. The inverse of R has the
interpretation of a path-ordered (in functional space) exponential7 as in [5]
which plays the role of a third-quantized analogue to the second-quantized
Wilson loop.

6Assuming that this is the governing law of physics in this regime.
7Since the operator J involves functional integration due to the mixed partials condi-

tion.
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5 Dimensional reduction of the quantum Hamil-

tonian constraint in the Cartesian basis

5.1 Contribution from the semiclassical matter momentum

Dimensional reduction should also include the elimination of the semiclas-
sical matter momentum πA in favor of the functions fA. This has been
demonstrated in [2], but we illustrate a few mainly to cast them into the
notation of the present paper. Let us illustrate for a contribution quadratic
in matter momenta, for simplicity. There is a contribution to the quan-
tized Hamiltonian constraint due to the matter fields of the general form,
assuming the preferred ordering using the Change–Soo variables

(1
2
πAπ

A + Ω̃Aae
(0) πAǫae

)
+ ~Gδ(3)(0)i

( 1

G

∂πA

∂ψA
+

1

G
Ω̃Aae

(0)

∂ǫae

∂ψA

)
(46)

Incorporating the mixed partials condition we have, starting with the first
part of the semiclassical term of (46),

1

2
πAπ

A =
1

2

(
fA +

1

G
Mae
A ǫae

)(
fA +

1

G
MAbf ǫabf

)

=
1

2
fAf

A +
1

G
fAMae

A ǫae +
1

2G2
Mae
A M

Abf ǫaeǫbf . (47)

Moving on to the second part of the semiclassical term,

Ω̃Aae
(0) πAǫae = Ω̃Aae

(0)

(
fA +

1

G
M

bf
A ǫbf

)
ǫae

= Ω̃Aae
(0) fAǫae +

1

G
Ω̃Aae

(0) M
bf
A ǫbf ǫae (48)

along with the contribution due to the functional divergence

∂πA

∂ψA
=

∂

∂ψA

(
fA +

1

G
MAaeǫae

)
=
∂fA

∂ψA
+

1

G
MAae ∂ǫae

∂ψA
(49)

We will assume that all such contributions have already been incorporated
into quantum Hamiltonian constraint.
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5.2 Expansion of the Hamiltonian constraint

The quantized Hamiltonian constraint is a set of three equations arising from
q0 = q1 = q2 = 0, which is necessary to cancel the ultraviolet singularities
inherent in the quantization procedure as a necessary condition for a finite
state [1]. Written in compact notation it appears in the form

Ocdabǫcd = GQab + ΛIcdefab ǫcdǫef + Λ2E
cdefgh
ab ǫcdǫef ǫgh. (50)

By solution and elimination of the diffeomorphism and the Gauss’ law con-
straints, along with the corresponding dimensional reductions, one finds that
all CDJ deviation matrix elements can be expressed in terms of the diagonal
elements ǫf via the relation

ǫcd = Gq′cd +R
f ′

cdǫf ′ . (51)

The generalized charge q′cd and projection R
f ′

cd incorporate the solutions to
the kinematic constraints as well as the mixed partials condition and an be
seen as a transformation of the diagonal CDJ devation matrix elements. We
will now substitute (51) into (50) and separate the kinematic (unphysical)
from the dynamic (physical) degrees of freedom. Starting with the linear
term,

Ocdabǫcd = Ocdab
(
Gq′cd +R

f ′

cdǫf ′
)

= GOcdabq
′
cd +OcdabR

f ′

cdǫf ′ (52)

we already see an inhomogenoeus kinematic correction to the matter charge.
Proceeding to the quadratic term,

ǫcdǫef =
(
Gq′cd +R

f ′

cdǫf ′
)(
Gq′ef +R

g′

ef ǫg′
)

= G2q′cdq
′
ef +Gq′cdR

g′

ef ǫg′ +Gq′efR
f ′

cdǫf ′ +R
f ′

cdR
g′

ef ǫf ′ǫg′ (53)

Contraction with the trivalent vertex ΛIcdefab and reshuffling indices on the
linear term yields

ΛIcdefab ǫcdǫef = G2ΛIcdefab q′cdq
′
ef +GΛ

(
I
cdef
ab + I

efcd
ab

)
q′cdR

f ′

ef ǫf ′ + ΛIcdefab R
f ′

cdR
g′

ef ǫf ′ǫg′ (54)

The terms in (54) have the following interpretation. The first term con-
stitutes a contribution to the inhomogeneous matter term, suppressed by
GΛ. The second term, also suppressed by a factor of GΛ constitutes a con-
tribution to the kinetic term of the constraints. The last term represents
the fact that the indices of the trivalent vertex must be projected from the
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generalized group into SU(2), in order that the symmetric CDJ deviation
elements can contract into it.

We are now ready to compute the cubic contribution to the quantized
Hamiltonian constraint. First we must calculate

ǫcdǫef ǫgh =
(
Gq′cd +R

f ′

cdǫf ′
)(
Gq′ef +R

f ′

ef ǫf ′
)(
Gq′gh +R

f ′

ghǫf ′
)

= G3q′cdq
′
efq

′
gh +G2

(
q′cdq

′
efR

h′

ghǫh′ +R
f ′

cdǫf ′q
′
efq

′
gh + q′cdR

g′

ef ǫg′q
′
gh

)

+G
(
q′cdR

g′

efR
h′

ghǫf ′ǫh′ +R
f ′

cdǫf ′q
′
efR

h′

ghǫh′ +R
f ′

cdǫf ′R
g′

ef ǫg′q
′
gh

)
+R

f ′

cdR
g′

efR
h′

ghǫf ′ǫg′ǫh′ (55)

Contraction of (55) with Λ2E
cdefgh
ab yields, upon reshuffling indices,

Λ2E
cdefgh
ab ǫcdǫef ǫgh

= G3Λ2E
cdefgh
ab q′cdq

′
efq

′
gh + (GΛ)2

(
E
cdefgh
ab + E

ghefcd
ab + E

cdghef
ab

)
q′efq

′
cdR

f ′

ghǫ
′
f

+GΛ2
(
E
cdefgh
ab + E

efcdgh
ab +E

ghefcd
ab

)
q′cdR

f ′

efR
h′

ghǫf ′ǫh′ + Λ2E
cdefgh
ab R

f ′

cdR
g′

efR
h′

ghǫf ′ǫg′ǫh′ .(56)

Substitution of (54) and (56) into (50) yields the dimensionally reduced
constraint

(
O
ef
ab − (GΛ)I

(cdef)
ab q′cd − (GΛ)2E

(cdghef)
ab q′cdq

′
gh

)
R
f ′

ef ǫf ′

= G
(
Qab −Ocdabq

′
cd + (GΛ)Icdefab q′cdq

′
ef + (GΛ)2Ecdefghab q′cdq

′
efq

′
gh

)

+Λ
(
I
cdef
ab R

f ′

cdR
g′

ef + (GΛ)E
[cdefgh)
ab q′cdR

f ′

efR
g′

gh

)
ǫf ′ǫg′ + Λ2E

cdefgh
ab R

f ′

cdR
g′

efR
h′

ghǫf ′ǫg′ǫh′ (57)

The reduced constraint can be seen as a transformation of the diagonal sub-
space by matter-induced kinematic effects, in the form of a Taylor expansion

Cae
(
Gq′cd +R

f
cdǫf

)
= exp

[
Gq′cd(R

−1)cdf
δ

δǫf

]
Cae(R

f
cdǫf ) = GQab. (58)

Hence we have expressed the constaints in terms of a translation. The
argument of the constraint in (58) can be seen as a generalized rotation of
the diagonal elements ǫf , which can in turn be interpreted as a rotation
of the function Cae = Cae(ǫf . It is a rotation by an amount ω, which is
the same thing as acting on the constraint with a ‘generalized’ Wilson line
carrying a representation of the kinematic gauge group. Hence we have,
upon implementation of the kinematic constraints along with the mixed
partials condition, that

exp
[
Gq′cd(e

−
R

Γ
ω·J)cdf

δ

δǫf

][
exp

∫

Γ
ω · J

]bf
ae
Cbf (e

f
cdǫf ) = GΛǫ1abΩ̃0 (59)
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for the dynamic equations due to the quantum Hamiltonian constraint, at
the linearized level. Note that the right hand side of (70) is just the matter
energy in the sub-Planckian limit, and is determined entirely by the matter
fields ψA through the functions fA. For example, in the case of a Klein–
Gordon scalar field with self-interaction potential V (φ) it would be given
by

Ω0 ∼ (Λ +GV (φ))
(f2(φ)

2
+

1

2
H ij∂iφ∂jφ

)
(60)

where H ij = Bi
aB

j
a is a metric constructed from the Ashtekar magnetic

fields. The important point is that one can ‘bootstrap’ ones way from the
sub-Planck scale limit to the full theory by starting from the constraints
written in terms of the diagonal CDJ deviation elements only, using f as
an input into the matter kinetic energy for example for a Klein–Gordon
field, then rotating the constraints by the generalized connection followed
by a translation by the semiclassical matter momentum to incorporate the
kinematic solution into the state. There is no essential distinction between
minisuperspace nad the full theory with regard to the diagonal subspace
of the equations of motion. The distinction comes into play through the
kinematic effects.

5.3 General solution to the Hamiltonian constraint on the

reduced space

Going back to the full-blown constraints we have

Ocdabǫcd = GQab + Eab(ǫcd). (61)

We need a means to reduce (61) into the dynamical subspace δ. Using
the basis elements for the diagonal part of the CDJ deviation matrix as a
projector, we have

eabf O
cd
abǫcd = Geabf Qab + eabf Eab (62)

We further eliminate all occurences of the non-diagonal elements so that we
can isolate the kinematic effects from the dynamics effects of the constraints.
This procedure leads to

eabf O
cd
ab

(
Gq′cd +R

g
cdǫg

)
= Geabf Qab + eabf Eab(ǫcd);

O
g
f ǫg = Geabf

(
Qab −Ocdabq

′
cd

)
+ eabf Eab(ǫcd). (63)
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where we have made the following definitions

O
g
f = eabf O

cd
abR

g
cd; Q′

ab = Qab −Ocdabq
′
cd. (64)

O
g
f is the kinetic operator projected onto the diagonal (dynamic) subspace

and Q′
ab, one projected into this subspace, will correspond to the matter

energy Ω0 adjusted by the kinematic charge. The constraints can then be
written on the physical subspace space, having taken into account all the
kinematic constraints,

O
g
f ǫg = GQ′

f (ψ) + T (Gq′f )
[
e−

R

Γ
ω·J
]g
f
Eg(ǫa) (65)

where T (af ) represents a translation in ǫf space by an amount af , and where
we have made the following definitions

q′f (ψ) = q′cd

(
e−

R

Γ ω·J
)cd
f

(66)

The effect of the operators on the constraint is to first rotate it by an angle
given by the generalized connection on field space8 followed by a transla-
tion the semiclassical matter momentum in the limit of quantized special
relativity. This is the analogue of a functional Euclidean transformation,
a translation and a rotation in the functional space of fields at each point
parametrized by the fA(ψ) and ω, T gf = T

g
f (q′, ω) which acts as to impose

the kinematic constraints upon the ‘corrected’ dynamical source Ω0. The
constraints can then be written in the form

O
g
f ǫg = GQ′

f + T
g
fEg(ǫa) (67)

where the error vector is of the general form

Ef = (Λ +GV (ψ))Σae
f ǫaǫe + (Λ +GV (ψ))2Eabcf ǫaǫbǫc (68)

where all contributions to the cosmological constant have been included
in V (ψ). The error vector is first evaluated on the physical space, and
then transformed by the action of the generalized kinematic transformations
which implement the kinematic constraints. The implementation of the
kinematic constraints can be seen as the functional Euclidean transformation
of the error vector, or alternatively of the matter energy Ω0. This can be
seen by the analogous transformation in (58),(70) for the error vector.

8The connection appears in a representation of the generalized SU(2)− ×Diff group.
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Eae
(
Gq′cd +R

f
cdǫf

)
= exp

[
Gq′cd(R

−1)cdf
δ

δǫf

]
Eae(R

f
cdǫf ). (69)

which upon projection into the dynamical subspace δ becomes

exp
[
GEαcd(L

−1)βαK
B
β (ψ)fB(ψ)(e−

R

Γ ω·J)cdf
δ

δǫf

][
exp

∫

Γ
ω · J

]g
ae
Eg(ǫf ) (70)

The general solution to (62) can be generated as a series expansion in the
dimensionless coupling constant GΛ′ = GΛ +G2V by inverting the kinetic
operator to express ǫf on the left hand side in terms of itself on the right.

ǫj =
1

Λ′

[
(GΛ′)(O−1)j

′

j Q
′
j′ − (GΛ′)2(O−1)j

′

j Σkl
j′ (O

−1)k
′

k (O−1)l
′

l Q
′
k′Q

′
l′

+(GΛ′)3
(
−2(O−1)j

′

j Σkl
j′ (O

−1)k
′

k (O−1)l
′

l Σ
mn
l′ (O−1)m

′

m (O−1)n
′

n Q
′
k′Q

′
m′Q

′
n′

+(O−1)j
′

j E
klm
j′ (O−1)k

′

k (O−1)l
′

l (O
−1)m

′

m Q′
k′Q

′
l′Q

′
m′

)

+(GΛ′)4(O−1)j
′

j Σkl
j′ (O

−1)k
′

k (O−1)l
′

l Σ
m1n1
k′ Σm2n2

l′

(O−1)
m′

1
m1(O

−1)
m′

2
m2(O

−1)
n′

1
n1(O

−1)
n′

2
n2Q

′
m′

1
Q′
m′

2
Q′
n′

1
Q′
n′

2
+ . . .

]
(71)

The interpretation in terms of generalized spin networks is that the
nonlinear conditions from the Hamiltonian constraint implement the quan-
tum Hamiltonian constraint at the quantum level, generating trivalent and
tetravalent nodes to form a tree network. Multiples copies of the source Q′

f ,
which originate from the sub-Planckian limit, must produce a backreaction
on spacetime through the dynamical field ǫf at each order in perturbation
theory. However, there are selection rules that constrain the allowable paths
based upon network topology. These constitute the trivalent and tetrava-
lent nodes of the network which are simply the constituents of the error
vector, which must undergo a ‘generalized’ functional Euclidean transfor-
mation from a kinematic representation into a dynamic representation such
as to accomodate the dynamics distrubance. The process generates all pos-
sible diagrams in a third-quantized analogue to the second-quantized spin
network states which should be exact solutions to the constraints.

6 Recapitulation

We have presented a method to construct the solution to the quantum con-
straints of general relativity in Ashtekar variables by inspection, by dimen-
sionally reducing the constraints from the full 9+N dimensional space down
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into the dynamical subspace. The general solution has an interpretation in
terms of Feynman-like network diagrams representable as a series similar in
structure to a second-quantized spin network state

ǫi =
∑

n

(GΛ′)n
∏

i

Σaiei
fi

∏

j

E
fj
ajbjcj

∏

k

(RO−1)akekQ
′
ek

[f ] (72)

where the sum is taken over all possible allowed terms consistent with the
nework topology. The interpretation is that Q′

a, the semiclassical energy
of the matter field below the Planck scale consistent with the observational
limit, forms an input into the process. The matrix O−1 propagates the mat-
ter input via the dynamics of the quantum Hamiltonian constraint into the
nodes Σ and E in the allowable ways. This disturbance must be rotated
into the appropriate representation of the matter fields necessary to inter-
twine with the vertex. The rotation in accomplished by the matrix R, which
contains the ingredients necessary to implement the kinematic constraints
including the ‘generalized’ third-quantized Wilson lines. The disturbance
then is rotated back into the representation necessary to propagate under
the dynamics of the Hamiltonian constraint to the next node, and so on
and so forth. The net result is the imprint of the proper semiclassical limit
at the output, for which the requirements of quantized gravity have been
implemented. The series (71) can be put into compact form in terms of an
exponential generating function

ǫf =
[
exp
(
GΛ′Q′

fT
f
)]

fg

(
δg1 + δg2 + δg3

)
(73)

The interpretation is that the generalized Wilson lines are associated with
each edge of the functional network. The allowed networks are not arbitrary
as in spin some usual second-quantized network states, but are restricted
to trivalent and tetravalent vertices which implement the model specific
Hamiltonian constraint. The structures present in the error vector, Σf

ae

and Eabcf play the analogous to intertwiners for the spin network states, the
difference being that only valences consistent with the network topology are
allowed. The network topology is determined by the structures present in
the matter Hamiltonian, which constitute the trivalent nodes of the network.
The tetravalent nodes exist entirely due to the presence of the comological
constant Λ including all matter contributions.
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