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Abstract

In this paper we address the major criticism of the pure Kodama
state, namely its normalizability and its existence within a genuine
Hilbert space of states, by recasting Ashtekar’s general relativity into
set of new variables attributed to Chang–Soo/CDJ. While our results
have been shown for anisotropic minisuperspace, we reserve a treat-
ment of the full theory for a following paper which it is hoped should
finally bring this issue to a close. We have performed a canonical treat-
ment of these new variables from the level of the classical/quantum
algebra of constraints, all the way to the construction of the Hilbert
space of states, and have demonstrated their relevance to the principle
of the semiclassical-quantum correspondence. It is hoped that these
new variables and their physical interpretation should provide a new
starting point for investigations in classical and quantum GR and in
the construction of a consistent quantum theory.
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1 Introduction

The main focus of the present paper to establish a new Hilbert space struc-
ture for quantum gravity by recasting general relativity in terms of a set of
new variables. The traditional approach in loop variables utilizes the spin
network states, which have been rigorously shown to meet the requirements
of a Hilbert space [1]. While the spin network states have been constructed
to solve the kinematic constraints of general relativity and to diagonalize
geometric operators, the implementation of the Hamiltonian constraint on
these states and its resulting dynamics remains an open issue. In the present
paper and series of papers we propose a new approach to resolve the issue of
dynamics corresponding to the set of physical states. The primary motiva-
tion for our work is to address once and for all the existing criticisms of the
Kodama state and its relativives as a genuine physical and rigorous state of
quantum gravity.

Two of the common objections to the pure Kodama state ΨKod relate to
its normalizability and its existence within a well-defined Hilbert space. The
issue of normalizability has been raised in various works including [2],[3].
One attempt to address this has been made in [4], which found the lin-
earization of ΨKod to be delta function normalizable for spaces of Euclidean
signature. It is hoped that the present paper will address these objections,
starting from within the realm of anisotropic minisuperspace with the full
theory to follow in a subsequent paper. The means toward this end necessi-
tate an interpretation of general relativity most suited to the construction of
a Hilbert space consistently implementing its dynamics. This brings in the
Chang–Soo/CDJ variables. We will show that when cast in terms of these
new variables, the route to resolution of the aformentioned issues is clear.

In line with the development of any new model we will perform the
standard procedures for the Chang–Soo/CDJ variables, starting with the
verification of consistency of the Dirac algebra of constraints and culmi-
nating with the construction of a Hilbert space of states. In section 2 we
transform from the Ashtekar into Chang–Soo variables and perform a reduc-
tion into anisotropic minisuperspace. In section 3 we compute the classical
algebra of constraints, moving on to the quantum algebra in section 4. In
section 5 we rigorously define and construct the Hilbert space using a kind
of Bargmann representation and apply it to the Chang–Soo variables in sec-
tion 6, devoted to the solution to the constraints. Section 6 culminates with
a demonstration of role of the pure Kodama state ΨKod within this Hilbert
space structure, which it is hoped addresses the main issues. In section 7,
we provide some additional arguments in support of the Hilbert structure
by arguments from geometric and from path integral quantization. Section
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8 includes our conclusions and directions for in-progress and future research.

2 Transformation into Chang–Soo variables

Our starting point for the transformation into the new variables will be the
Ashtekar variables (Aa

i , σ̃
i
a) where Aa

i is the left-handed SU(2)− Ashtekar
connection with densitized triad σ̃i

a.
1 The 3+1 decomposition of the action

for vacuum general relativity in the Ashtekar variables is given by [5],[6],[7]

IAsh =

∫ T

0
dt

∫

Σ
d3xσ̃i

aȦ
a
i − iNH −N iHi +Aa

0Ga, (1)

where N is the lapse function with lapse density N = N/
√

detσ̃, and N i

and Aa
0 are respectively the shift vector and SU(2)− rotation angles. Here

Bi
a is the Ashtekar curvature given by Bi

a = ǫijk
(
∂jA

a
k + 1

2fabcA
b
jA

c
k

)
, with

structure constants fabc. The action (1) represents a totally constrained first
class constrained system. The Gauss’ law and diffeomorphism constraints,
the kinematic constraints, are given by

Hi = ǫijkσ̃
j
aB

k
a ; Ga = Diσ̃

i
a (2)

with SU(2)− covariant derivative Di = (Di)
ab = δab∂i + fabcAc

i and the
Hamiltonian constraint is given by

H = ǫijkǫ
abc

(Λ

6
σ̃i

aσ̃
j
b σ̃

k
c + σ̃i

aσ̃
j
bB

k
c

)
(3)

where Λ is the cosmological constant.
We would like to make a change of variables from (1) into a new set of

variables, whose ultimate purpose will be to illuminate the Hilbert space
structure of quantum gravity as it applies to the pure and the generalized
Kodama states. To this end, we lay the groundwork for the quantization
of gravity in the new variables, applying the concepts of [8],[9],[10]. In the
present paper we will start with anisotropic minisuperspace, reserving the
full theory for following works.

To transform into the new variables we introduce the CDJ Ansatz,

σ̃i
a = ΨaeB

i
e. (4)

1By convention, lowercase Latin indices from the beginning of the alphabet a, b, c, . . .
denote internal SU(2)− indices, while those from the middle i, j, k, . . . denote spatial
indices in three space Σ.
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Here Ψae is known as the CDJ matrix, named after Capovilla, Dell and
Jacobson. The CDJ matrix Ψae is normally used as a Lagrange multiplier
designed to enforce the metricity, which allows the spacetime metric gµν

to be derivable from tetrads. However, we will utilize the CDJ matrix in a
different way whose purpose in the present paper and toward our programme
will soon become abundantly clear. First, we substitute (4) into (1). The
kinematic constraints (2) then transform into

Hi = ǫijkσ̃
j
aB

k
a = ǫijkB

j
aB

k
e Ψae; Ga = Diσ̃

i
a = Bi

aDiΨae, (5)

where we have used the Bianchi identity DiB
i
a = 0. The Hamiltonian con-

straint (3) under the substitution (4) transforms into

H = (detB)
(
ΛdetΨ + V arΨ

)
(6)

where we have defined V arΨ = (trΨ)2 − trΨ2. Substitution of (4) into the
canonical structure of (1) yields

σ̃i
aȦ

a
i = ΨaeB

i
eȦ

a
i . (7)

The canonical structure of (7) suggests that the CDJ matrix Ψae can be
viewed as a dynamical variable canonically conjugate to a variable whose
time derivative is given by Bi

eȦ
a
i . It is at this point that we introduce a new

conjecture or principle.
Let us regard the CDJ matrix Ψae as a fully dynamical variable, and no

longer part of an Ansatz. Equation (4) can then rather be seen, under the
assumption of a nondegenerate Ashtekar curvature, as

Ψae = σ̃i
a(B

−1)ei . (8)

From this perspective we regard the Ashtekar curvature Bi
a as freely specifi-

able with the densitized triad being a derived quantity from the CDJ matrix
Ψae, seen as more fundamental.

Next, we define a new set of variables Xae, such that

ΨaeB
i
eȦ

a
i = Ẋae. (9)

Hence, as implied by the canonical structure ΨaeẊ
ae, the variable Xae then

takes on the interpretation of the set of ‘coordinates’ canonically conjugate
to the ‘momenta’ Ψae.

We can now rewrite the Lagrangian (1), regarding Xae and Ψae as the
fundamental dynamical variables, obtaining
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LSoo =

∫ T

0
dt

∫

Σ
d3x

[
ΨaeẊ

ae − iN
√

detB
√

detΨ
(
Λ + trΨ−1

)

+N iǫijkB
j
aB

k
e Ψae +Aa

0we(Ψae), (10)

where we ≡ Bi
eDi is the Gauss’ law operator which acts on the CDJ ma-

trix. The Hamiltonian constraint in the Chang–Soo variables arises from
the manipulations

NH =
N√
detσ̃

ǫijkǫ
abc

(Λ

6
σ̃i

aσ̃
j
b σ̃

k
c + σ̃i

aσ̃
j
bB

k
c

)

=
N√

detB
√

detΨ
(detB)

(
ΛdetΨ + V arΨ

)

= N
√

detB
detΨ√
detΨ

(
Λ +

V arΨ

detΨ

)
= N

√
detB

√
detΨ

(
Λ + tr−1Ψ

)
. (11)

There are some differences in the action (10) as compared to (1). One
main difference is that the lapse function N is no longer densitized. Hence,
using the right hand side of (10) as a starting point, one sees that the
Hamiltonian constraint in the new variables is nonpolynomial unlike in the
Ashtekar variables.2

The variables Xae are known as the Chang–Soo variables, attributed
to Chopin Soo [11],[12], and arise on connection superspace from a set of
connection one forms δXae = Bi

eδA
a
i . We will focus in the present paper

upon the spatially homogeneous and anisotropic sector of the full theory for
pure gravity in the Chang–Soo variables, using (10) as a starting point. In
this regard we will lay down the basic framework for the Hilbert space in the
Chang–Soo variables.3 Toward this end we will first reduce the equations
of motion and the constraints into the spatially homogeneous sector. After
this we will compute the Dirac algebra of classical and quantum constraints
and then construct a Hilbert space. We will then illuminate the relation of
the Hilbert space to the canonical procedure by showing that they satisfy
the quantum constraints, and how the pure Kodama state ΨKod fits into
this overall scheme.

2This difference among others, as we will ultimately show, will have important impli-
cations for the quantum theory and for the resulting Hilbert space of states.

3Hence we will take (10) through the standard analysis of in anisotropic minisuperspace,
with a view toward establishing a Hilbert space of quantum states for the full theory. These
states will ultimately generalise the pure Kodama state ΨKod for vacuum GR.
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2.1 A few useful identities

Let us now collect a few useful identities and relations regarding the Chang–
Soo/CDJ variables in anisotropic minisuperspace. By the terminology ‘anisotropic
minisuperspace’ is meant the full theory reduced to the spatially homoge-
neous sector, with no symmetry reductions of the variables. Hence, in the
case of the Ashtekar variables, all nine components of the connection Aa

i

are to be regarded as independent dynamical variables. The set of Chang–
Soo one forms and corresponding vector fields then are given, in anisotropic
minisuperspace, by

dXae = (detA)(A−1)iedA
a
i ;

∂

∂Xae
= (detA)−1Ae

i

∂

∂Aa
i

. (12)

where we have used Bi
a = (detA)(A−1)ia in minisuperspace, for which the

Ashtekar curvature retains all nine components as independent variables.
Some other recurring quantities are4

Bi
a = (detA)(A−1)ia; Cae = Bi

eA
a
i = (detA)δae. (13)

We have defined the Xae coordinates by integrating along a direction in the
space of connections Γ, by

Xae =
∑

i

∫ Aa
i

0
(detα)(α−1)iedα

a
i . (14)

Lastly, note that the vector fields and corresponding one forms (12) are
invariant under SO(3) transformations on the spatial indices.

Next, we must rewrite the constraints in terms of the Chang–Soo/CDJ
variables in anisotropic minisuperspace. For the kinematic constraints (2)
we have for the Gauss’ law constraint that

wa = fabcA
b
iΨceB

i
e = fabcCbeΨbe = fabcδbe(detA)Ψce = −(detA)faceΨce (15)

and for the diffeomorphism constraint generator we have5

vi = ǫijkB
j
aB

k
e Ψae = (detA)2ǫijk(A

−1)ja(A
−1)keΨae

= (detA)2ǫijk(detA)−1ǫaedA
d
i Ψae = (detA)Ad

i ǫdaeΨae. (16)

4Note the position of the indices in (12) and (13) for Xae such as to implement the
required operation relative to the SU(2)− index of the connection Aa

i .
5Another convention is to arrange indices such that the contractions occur in the same

sequence as the indices appear, hence the negative sign on the Gauss’ generator in (15).
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It will also be useful to have expressions for the vector fields in the original
Ashtekar connection variables. Hence for the Gauss’ law generators we have

wa = −(detA)face
∂

∂Xce
= −(detA)(detA)−1faceA

e
i
∂

∂Ac
i

= faecA
e
i
∂

∂Ac
i

. (17)

Likewise, for the diffeomorphism generators we obtain

vi = (detA)Ad
i ǫdae

∂

∂Xae
= (detA)Ad

i ǫdae(detA)−1Ae
j

∂

∂Aa
j

= −ǫdeaA
d
iA

e
j

∂

∂Aa
j

.(18)

Observe the shift in sign in accordance with the convention in (18) and well
as (17), when switching between the Ashtekar and the Chang–Soo variables.
A few other useful identities include6

∂

∂Xbf
Ae

i = (detA)−1Af
j

∂

∂Ab
j

Ae
i = (detA)−1Af

j δ
e
bδ

j
i = (detA)−1δbeA

f
i ;

∂(detA)

∂Xbf
= (detA)−1Af

j

∂

∂Ab
j

(detA) = (detA)−1Af
j (detA)(A−1)jb = δbf . (19)

The Hamiltonian constraint generator is given in the Chang–Soo variables
in the homogeneous sector by (11)

H = (detA)
√

detΨ
(
Λ + trΨ−1

)
, (20)

where we have used the minisupespace relation detB = (detA)2.
To recapitulate, the constraint generators are given by

wa = −(detA)faceΨce = faecA
e
i

∂

∂Ac
i

;

vi = (detA)Ad
i ǫdaeΨae = −Ad

iA
e
jǫdea

∂

∂Aa
j

;

H = (detA)
√

detΨ
(
Λ + trΨ−1

)
. (21)

It will sometimes be convenient to represent the constraints as generating
transformations by contracting them on the corresponding gauge parame-
ters. Hence we have that

6A handy mnemonic device in understanding the algebra of constraints is to balance
mass dimensions [Xae] = [detA] = 3 when evaluating variational derivatives of the various
terms.
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~G[~θ] = wa(θ
a) = −(detA)θafaceΨce ≡ wce(~θ)Ψce;

~H[ ~N ] = vi(N
i) = (detA)N iAd

i ǫdaeΨae ≡ vae( ~N)Ψae;

H[N ] = N(detA)
√

detΨ
(
Λ + trΨ−1

)
. (22)

Lastly, let us redisplay the useful identities (19) for completeness.

∂

∂Xbf
Ae

i = (detA)−1δbeA
f
i ;

∂(detA)

∂Xbf
= δbf . (23)

2.2 Hamilton’s equations of motion

We now derive the equations of motion for the homogeneous sector of the
starting Lagrangian (10) for Lorentzian signature. The starting action is,
given by

ISoo =

∫ T

0
dt

(
− i

G
ΨaeẊ

ae

+(detA)
[
−iN

√
detΨ

(
Λ + trΨ−1

)
+ (N iAd

i − θd)fdaeΨae

])
. (24)

The symplectic structure from (24) provides the following Poisson brackets

{Xae,Ψbf} = iGδa
e δ

e
f . (25)

Let us now put into place the machinery thus far developed in the compu-
tation of the necessary Poisson brackets. Starting with the diffeomorphism
constraint, the variational derivative with respect to the conjugate momen-
tum is given by

δ ~H [ ~N ]

δΨbf
=

∂

∂Ψbf
(detA)(Ad

iN
i)ǫdaeΨae

= (detA)(N iAd
i )ǫdae

∂Ψae

∂Ψbf
= (detA)(N iAd

i )ǫdaeδ
b
aδ

f
e = (detA)N iAd

i fdbf (26)

Note in (26) the antisymmetry in the indices bf . Next we compute the
variational derivative with respect to the configuration variables

δ ~H [ ~N ]

δXbf
=

∂

∂Xbf
(detA)(Ad

iN
i)ǫdaeΨae =

[
Ad

i

∂(detA)

∂Xbf
+ (detA)

∂

∂Xbf
Ad

i

]
N ifadeΨae

= N i
(
Ad

i δbf + (detA)(detA)−1δbdA
f
i

)
fdaeΨae = N i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae.(27)
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Moving on to the variational derivatives of the Gauss’ law constraint with
respect to the momentum variables,

δGa[θ
a]

δΨbf
= − δ

δΨbf
(detA)θafacgΨcg

= −(detA)θafacg
∂Ψcg

∂Ψbf
= −(detA)θafacgδ

b
cδ

f
g = −(detA)θafabf (28)

Moving on to the configuration variables, we have7

δGa[θ
a]

δXbf (x)
= − ∂

∂Xbf
(detA)θafaghΨgh = −δbfθafaghΨgh. (29)

For the Hamiltonian constraint we have

δH[N ]

δΨbf
=

∂

∂Ψbf

[
N(detA)

√
detΨ

(
Λ + trΨ−1

)]

N(detA)
[(

Λ + trΨ−1
)∂(detΨ)1/2

Ψbf
+

√
detΨ

∂

∂Ψbf

(
Λ + trΨ−1

)]

= N(detA)
√

detΨ
[1

2
(Ψ−1)bf

(
Λ + trΨ−1

)
.− (Ψ−1Ψ−1)bf

]
. (30)

Another way to depict this is by

δH[N ]

δΨbf
=

1

2
(Ψ−1)bfH[N ] −N(detA)

√
detΨ(Ψ−1Ψ−1)bf , (31)

which contains a part proportional to the constraint and a correction term.
Likewise, computing the variational derivative with respect to the configu-
ration variable, we have

δH[N ]

δXbf
=

∂

∂Xbf

[
N(detA)

√
detΨ

(
Λ + trΨ−1

)]

= δbfN
√

detΨ
(
Λ + trΨ−1

)
= δbf (detA)−1H[N ], (32)

The Hamilton’s equations of motion read, using (34), (27) and (29),

Ẋae =
δH

δΨae
= i

[1

2
(Ψ−1)aeH[N ] −N(detA)

√
detΨ(Ψ−1Ψ−1)ae

]

+(detA)Ad
iN

ifdbf − (detA)θafabf ;

Ψ̇ae = − δH

δXae
= −

[
iδae(detA)−1H[N ] −N i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae − δaeθ

dfdghΨgh

]
(33)

7A useful mnemonic device is that a diffeomorphism with parameter N i can be seen
as a gauge transformation with a field-dependent parameter Aa

iN
i.
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We will relegate a more detailed study of the equations (33) to the next
work, which will cover inflation in anisotropic minisuperspace.

3 Classical algebra of constraints

One indication of the degree of similarity or dissimilarity between the theo-
ries defined by (10) and (1) is the structure of the constraint algebra, which
we shall examine in the present section. A diffeomorphism in anisotropic
minisuperspace in Chang–Soo variables can be represented in a form resem-
bling an observable with a field-dependent parameter, as in

~H[ ~N ] = Ψ[ae][vae( ~N)] = (detA)N iAd
i ǫdaeΨ[ae]. (34)

Hence the spatial diffeomorphisms are generated by the antisymmetric part
of the conjugate momentum Ψae. The gauge transformations are given by

~G[~θ] = wae(~θ)Ψae = −(detA)θfffaeΨ[ae], (35)

which likewise are generated by the antisymmetric part of Ψae. We now
compute the Poisson brackets, given by

{A,B} =
∑

bf

( δA

δΨbf

δB

δXbf
− δB

δΨbf

δA

δXbf

)
. (36)

Starting with the commutator of two diffeomorphisms, we have

{ ~H[ ~M ], ~H[ ~N ]} =
∑

bf

[δ ~H[ ~M ]

δΨbf

δ ~H [ ~N ]

δXbf
− δ ~H [ ~N ]

δΨbf

δ ~H [ ~M ]

δXbf

]

=
(
(detA)Ag

jM
jfgbf

)(
N i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae

)

−
(
(detA)Ag

jN
jfgbf

)(
M iAg

i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae

)

= (detA)(M jN i −N jM i)Ag
i

(
Ad

i δbf +Af
i δbd

)
fgbffdaeΨae

(37)

where the first term of (37) vanishes due to contraction of δbf on fgbf due
to antisymmetry of the structure constants. Continuing along, we have

9



{ ~H [ ~M ], ~H [ ~N ]} = (detA)(M jN i −N jM i)Ag
jA

f
i δbdfgbffdaeΨae

= −(detA)(M jN i −N jM i)Ag
jA

f
i fgfdfdaeΨae

= (detA)2(M jN i −N jM i)ǫjik(A
−1)kdfdaeΨae

= (detA)2( ~N × ~M)k(A
−1)kdfdaeΨae (38)

on account of the antisymmetry in the structure constants, where we have
definined (M jN i −N jM i)ǫijk = ( ~N × ~M)k. Continuing on, we have

(detA)2( ~N × ~M)k(A
−1)kdfdaeΨae = (detA)2( ~N × ~M )k(A

−1)kgδgdfdaeΨae

= (detA)2( ~N × ~M)k(A
−1)kg(A

−1)igA
d
i fdaeΨae

= (detA)(A−1A−1)ki( ~N × ~M )k(detA))Ad
i fdaeΨae ≡ Ψae

[
Vae( ~N × ~M)

]
. (39)

The Poisson bracket of two diffeomorphisms can be seen as another dif-
feomorphism with field-dependent parameter (detA)(A−1A−1)ki( ~N × ~M)k,
where we have used the nondegeneracy requirement detA 6= 0.

Moving on to the Poisson bracket of two gauge transformations,

{~G[~θ], ~G[~λ]} =
∑

bf

[δ ~G[~θ]

δΨbf

δ ~G[~λ]

δXbf
− δ ~G[~λ]

δΨbf

δ ~G[~θ]

δXbf

]

=
(
−(detA)θafabf

)(
−δbfλefeghΨgh

)
−

(
−(detA)λafabf

)(
−δbfθefeghΨgh

)
= 0 − 0 = 0.(40)

Two gauge transformations strongly commute, due to annihilation of sym-
metric indices by the antisymmetric indices on the structure constants.

Let us now examine the effect of a gauge transformation and a diffeo-
morphism.

{ ~H[ ~N ], ~G[~θ]} =
∑

bf

[δ ~H [ ~N ]

δΨbf

δ ~G[~θ]

δXbf
− δ ~G[~θ]

δΨbf

δ ~H [ ~N ]

δXbf

]

=
(
(detA)N iAd

i fdbf

)(
−δbfθafaghΨgh

)

−
(
−(detA)θgfgbf

)(
N i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae

)
. (41)

The first and second terms on the right hand side of (41) vanish due to
antisymmetry of the structure constants, leaving just the last third term.
Proceeding along,

{ ~H [ ~N ], ~G[~θ]} = (detA)θgN iAf
i fgbfδbdfdaeΨae

= −(detA)θgfgfb(N
iAf

i )fbaeΨae = Ψ[ae]

[
W ae(~θ ∧ ( ~A · ~N)

]
. (42)
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Hence, the commutator of a gauge transformation with a diffeomorphism
can be seen as a gauge transformation with field-dependent parameter (~θ ∧
( ~N · ~A))b = fgfbθ

g(N iAf
i ), where we use the wedge notation to denote cross

products in SU(2)−.
We now compute the Poisson bracket of a spatial diffeomorphism and a

deformation normal to the spatial hypersurface Σ

{H[N ], ~H [ ~N ]} =
[δH[N ]

δΨbf

δ ~H [ ~N ]

δXbf
− δ ~H[ ~N ]

δΨbf

δH[N ]

δXbf

]

=
[1

2
(Ψ−1)bfH[N ] −N(detA)

√
detΨ(Ψ−1Ψ−1)bf

](
N iAd

i

(
δbffdae + δbdffae

)
Ψae

)

−((detA)Ad
iN

ifdbf )(δbf (detA)−1H[N ]).(43)

The third term on the right hand side of (43) vanishes due to antisymmetry
of the structure constants. Hence, proceeding along, we have

(1

2
(Ψ−1)bfH[N ] −N(detA)

√
detΨ(Ψ−1Ψ−1)bf

)
N i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae

−
(
(detA)Ad

iN
ifdbf

)(
δbf (detA)−1H[N ]

)
.(44)

The second term of (44) drops out due to contraction of δbf on fdbf , for
detA 6= 0. Hence we have

{H[N ], ~H [ ~N ]} =

(
1

2
(trΨ−1)(N iAd

i )H[N ] −N(detA)
√

detΨtr(ΨΨ)−1(N iAd
i )

+
1

2
(Ψ−1)dfH[N ](N iAf

i ) −N(detA)
√

detΨ(Ψ−1Ψ−1)df (N iAf
i )

)
fdaeΨae(45)

Making the definition

ηae =
√

detΨ(Ψ−1Ψ−1)ae (46)

along with the definition M
ae

= Mae + δaetrM for an arbitrary matrix M ,
we have

{H[N ], ~H [ ~N ]} = (N iAf
i )

[1

2

(
(Ψ−1)df + δdf trΨ−1

)
H[N ] −N(detA)(ηdf + δdfη)

]
fdaeΨae

= (N iAf
i )

[1

2
(Ψ−1)dfH[N ] −N(detA)ηdf

]
fdaeΨae(47)

where we have defined η = trηae. We recognize the result as a diffeomor-
phism with momentum dependent structure functions.
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{H[N ], ~H [ ~N ]} = N iAd
iN(detA)MdfffaeΨae = Ψ[ae][V ae(NN

i)] ∼ ~H[N ~H;M ],(48)

where the boldsymbol V ae signifies a diffeomorphism with momentum-dependent
structure functions. Here we have defined

M
df

=
1

2
(Ψ

−1
)df

√
detΨ

(
Λ + trΨ−1

)
− ηdf (49)

to signify a field-dependent parameter, containing momentum-dependent
structure functions.8

Moving on to the Poisson bracket between a normal deformation and a
gauge transformation, we have

{H[N ], ~G[~θ]} =
∑(δH[N ]

δΨbf

δGa[θ
a]

δXbf
− δGa[θ

a]

δΨbf

δH[N ]

δXbf

)

=
[1

2
(Ψ−1)bfH[N ] −N(detA)

√
detΨ(Ψ−1Ψ−1)bf

]
(−δbfθafaghΨgh)

−
(
−(detA)θafabf (−δbf (detA)H[N ])

(50)

The last term of (50) vanishes on account of the antisymmetry in the struc-
ture constants. Continuing on, we have that

{H[N ], ~G[~θ]} =
[1

2
(trΨ−1)H[N ] −N(detA)η

]
θafaghΨgh

= MNθafaghΨgh = Ψ[gh][W gh(N~θ)] ∼ ~G[N~θ;M ] (51)

where we have defined M = trM
df

. Hence the kinematic constraints trans-
form covariantly under the action of the Hamiltonian constraint, with mo-
mentum dependent structure functions.

Finally, we can move on to the Poisson bracket between two normal
evolutions. This is given by

{H[N ],H[M ]} =
∑( δH[N ]

δΨbf (x)

δH[M ]

δXbf (x)
− δH[M ]

δΨbf (x)

δH[N ]

δXbf (x)

)

=
(1

2
(Ψ−1)bfH[N ] −N(detA)

√
detΨ(Ψ−1Ψ−1)bf

)
(−δbf (detA)−1H[M ])

−
(1

2
(Ψ−1)bfH[M ] −M(detA)

√
detΨ(Ψ−1Ψ−1)bf

)
(−δbf (detA)−1H[N ]) = 0(52)

8One interpretation is that an ‘open’ algebra prohibits the group-theoretical imple-
mentation of the constraints, since one must determine in general a nonlinear action of
momenta on states in the Schrödinger representation when one quantizes the theory. How-
ever, restricted to a special class of states, it is possible to obtain a group action. Note
also that the presence of coordinates detA and Aa

i do not count as structure functions,
since they are part of the definition of the diffeomorphism and gauge generators.
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Hence, two Hamiltonian constraints in anisotropic minisuperspace strongly
commute.

3.1 Recapitulation

To summarize the results of this section, the classical constraint algebra in
the homogeneous sector of the Chang–Soo variables is given by9

{ ~H[ ~N ], ~H[ ~M ]} = {Ψ[ae][vae( ~N)],Ψ[bf ][vbf ( ~M)]} = Ψae

[
Vae( ~N × ~M)

]
;

{Ga[θ
a], Gb[λ

b]} = {Ψ[ae][wae(~θ)],Ψ[bf ][wbf (~λ)]} = 0;

{H[M ],H[N ]} = 0;

{ ~H [ ~N ], ~G[~θ]} = {Ψ[ae][vae( ~N)],Ψ[bf ][wbf (~θ)]} = Ψ[ae]

[
W ae(~θ ∧ ( ~A · ~N)

]

{H[N ], ~H [ ~N ]} = Ψ[ae][V ae(NN
i)] ∼ ~H[N ~H;M ];

{H[N ], ~G[~θ]} = Ψ[gh][W gh(N~θ)] ∼ ~G[N~θ;M ].(53)

There are two independent Abelian subalgebras within the algebraic struc-
ture (53), corresponding to gauge transformations and normal deformations.
The gauge transformations and spatial diffeomorphisms transform covari-
antly under the action of the Hamiltonian constraint, albeit with momen-
tum dependent structure functions. Let us dispay the constraint algebra in
Ashtekar variables in minisuperspace for comparison.10

{ ~H[ ~N ], ~H [ ~M ]} = Hk

[
N i∂kMi −M i∂kNi

]
∼ 0

{ ~H[N ], Ga[θ
a]} = Ga[N

i∂iθ
a] ∼ 0

{Ga[θ
a], Gb[λ

b]} = Ga

[
fa

bcθ
bλc

]
. (54)

The algebra of constraints in the Ashtekar variables, a semi-direct product
of SU(2) with spatial diffeomorphisms, is a Lie algebra. The inclusion of
the Hamiltoninan constraint enlarges the kinematic algebra into an open
algebra due to the structure functions[5],[6],[7]

{H(N ), ~H [ ~N ]} = H[N i∂iN
]
∼ 0

{H(N ), Ga(θ
a)} = 0[

H(N ),H(M )
]

= Hi[
(
N∂jM −M∂jN

)
H ij ] ∼ 0. (55)

9The notation is that bold text lowercase v and w respectively denote diffeomorphisms
and gauge transformations with single parameters while uppercase V and W denote com-
posite diffeomorphisms and gauge transformations. Boldsymbol V and W respectively
denote diffeomorphisms and gauge transformations with momentum dependent structure
functions.

10This is unlike in the Ashtekar variables where the structure functions appear from
commuting two Hamiltonian constraints.
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We have set all terms containing spatial gradients to zero to reduce the
algebra to the homogeneous sector. There is a big difference between the
structure of the algebra (53) and that of (54), (55). The diffeomorphisms do
not act trivially in the Chang–Soo variables whereas they do in the Ashtekar
variables, and the kinematic constraints transform covariantly under normal
deformations, whereas in the Ashtekar variables they are trivialized in min-
isuperspace.

These structural differences in the algebra implies an inherent difference
between the manifestation of general relativity in the Chang–Soo as com-
pared with the Ashtekar variables, even though the former was motivated
by a seemingly innocuous Ansatz σ̃i

a = ΨaeB
i
e. It will be convenient, for

visualization, to display the multiplication table for the minisuperspace al-
gebra. Any objects in bold denote the existence of momentum-dependent
structure functions. For the Ashtekar variables we have

PoissonAsh ∼




× ~G ~H H
~G ~G ~G 0
~H − ~G ~H H

H 0 −H ~H


 →




× ~G ~H H
~G ~G 0 0
~H 0 0 0
H 0 0 0




For the Chang–Soo and CDJ variables it is given by

PoissonSoo ∼




× ~G ~H H
~G 0 ~G ~G
~H − ~G 0 ~H

H −~G − ~H 0




The kinematic constraints form an ideal, with the gauge transformations
forming an ideal within that ideal. This should have some interesting effects
when one considers the representation theory of the algebra of constraints.
We relegate this investigation to future work.

3.2 Transformations on the configuration space

Let us now compute the action of the transformations generated by the
constraints on the phase space variables. We will start first with the config-
uration variables Xae.

X ′ae
[~θ] = e

~Φ[~θ]Xaee−
~Φ[~θ] =

∑

n

1

n!
Adn

(
~H[N ];Xae

)
(56)

we have, for the adjoint action of a general constraint on Xae,

14



Ad
(
ΦI [θ

I ];Xae(x)
)

=

∫

Σ
d3yθI(y)

[
ΦI(y),Xae(x)

]
(57)

with Adn(A;B) = [A,Adn−1(A;B)]. For constraints linear in momenta
such as the kinematic constraints, the general result for an infinitesimal
transformation

Ad
(
ΦI [θ

I ];Xae(x)
)

=

∫

Σ
d3yθbf(y)

δ

δXbf (y)
Xae(x)

=

∫

Σ
d3yθbf (y)δ(3)(x− y)δa

b δ
e
f = θae(x) (58)

is a translation of Xae in field space at the spatial point x. Hence a finite
transformation generated by the kinematic constraints should result in a
translation.11 We would like to obtain the interpretation for these trans-
formations in the homogeneous sector. Starting with diffeomorphisms, we
have

X ′ae
= e

~H [ ~N ]Xaee−
~H[ ~N ] =

∑

n

1

n!
N i1ǫi1j1k1B

j1
a1
Bk1

e1

∂

∂Xa1e1
N i2ǫi2j2k2B

j2
a2
Bk2

e2

∂

∂Xa2e2

. . . N in−1ǫin−1jn−1kn−1B
jn−1
an−1

Bkn−1
en−1

∂

∂Xan−1en−1
N inǫinjnknB

jn
an
Bkn

en

=
∑

n

1

n!

(
N i′ǫi′j′k′Bj′

a′B
k′

e′
∂

∂Xa′e′

)n
Xae = e

N i ∂

∂ηiXae(~η) = Xae(~η + ~N)(59)

The end result is a translation of Xae, seen as a function of the characteristic
directions ηi, by the amount N i in the functional space of fields. One might
wonder the manner in which diffeomorphisms would get implemented in the
homogeneous sector. Reducing the diffeomorphism vector fields into this
sector via the identifications

~H[ ~N ] = N iǫijkB
i
aB

j
e

δ

δXae
−→ (detA)N iAd

i fdae
∂

∂Xae
, (60)

we have the following transformation

Xae( ~N ) = Xae + (detA)N iAd
i fdae (61)

Hence, the antisymmetric part of Xae gets transformed, leaving the sym-
metric part untouched.

11The net effect is that the observables remain invariant under these transformations
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Moving on to gauge transformations, we have

X ′ae
= e

~G[~θ]Xaee−
~G[~θ] =

∑

n

1

n!
(df1g1

a1
θa1)

∂

∂Xf1g1
(df2g2

a2
θa2)

∂

∂Xf2g2

. . . (dfn−1gn−1
an−1

θan−1)
∂

∂Xfn−1gn−1
(dfngn

an
θan)

∂

∂Xfngn
Xae

=
∑

n

(
(df ′g′

a′ θa′

)
∂

∂Xf ′g′

)n
Xae = e

θa ∂
∂ζaXae(~ζ) = Xae(~ζ + ~θ) (62)

We see that the result of a gauge transformation is another translation in
field space on Xae. Making the identification in the homogeneous sector of

~G[~θ] = θadgh
a

δ

δXgh
−→ (detA)θafabf

∂

∂Xbf
, (63)

then we have the effect of a gauge transformation upon the Chang–Soo
variables of

Xfg(~θ) = Xfg −Xθafafg (64)

where we have defined X = trXae. As for the diffeomorphisms, there is a
nonlinear translation in the antisymmetric part of the Chang–Soo matrix
Xae. Hence, a diffeomorphism can be seen as a gauge transformation in the
opposite direction with a field-dependent parameter.

4 Quantum algebra of constraints

We now compute the quantum algebra of constraints to check for anomalies
in concert with [13]. First, we promote the classical Chang–Soo variables to
quantum operators (Xae,Ψae) → (X̂ae, Ψ̂ae) which act on a Hilbert space
of states

∣∣ψ
〉
. Since we are interested in the time evolution of the quantum

states, we must obtain the equal time commutators reduced to within the
homogeneous anisotropic sector. Hence, Poisson brackets (25) get promoted
directly to to equal-time commutators as in

[
X̂ae(T ), Ψ̂bf (T )

]
= ~Gδa

b δ
e
f , (65)

along with the trivial commutators

[
X̂ae(T ), X̂bf (T )

]
=

[
Ψ̂ae(T ), Ψ̂bf (T )

]
= 0 (66)
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for each time T . The classical constraints ΦI get promoted to quantum
operators Φ̂I which act on the state

∣∣ψ
〉

=
∣∣ψ(T )

〉
at the given time T .

Without committing yet to a specific form of the quantum state
∣∣ψ

〉
, let

us first compute the quantum algebra of observables corresponding to the
constraints.12

There are two types of observables that will concern us in this section.
First, there are observables corresponding to constraints linear in conjugate
momenta, which take on the form of linear functionals Ψ̂ae[F (X̂ae)], where
F is a function whose argument is the operator X̂ae. Then there are also
observables corresponding to constraints nonlinear in momenta, such as13

O[X,Ψ] =

N∑

k=0

O
bk+1fk+1...bNfN
a1e1...akek

Xa1e1 . . . XakekΨbk+1fk+1
. . .ΨbN kN

. (67)

Upon quantization we must decide on an operator-ordering for these func-
tionals. The preferred operator ordering is one for which the quantum and
the classical algebra of constraints are isomorphic to one another. Hence
(67) gets promoted to

O[X̂, Ψ̂] =
N∑

k=0

O
bk+1fk+1...bN fN
a1e1...akek

X̂a1e1 . . . X̂akekΨ̂bk+1fk+1
. . . Ψ̂bNkN

. (68)

Hence, we choose an ordering with all momenta to the right of the configu-
ration variables, and also demonstrate that the quantum constraint algebra
of constraints closes for this ordering.

We will make repeated use of the following operator identity involving
bosonic operators, strictly maintaining the ordering of the operators

[ÂB̂, ĈD̂] = Â[B̂, Ĉ]D̂ + [Â, Ĉ]B̂D̂ + ĈÂ[B̂, D̂] + Ĉ[Â, D̂]B̂. (69)

The kinematic constraints fall into the general form of functionals linear in
momenta, so we start with a pair of kinematic constraints with Fae = Fae(X)
and Gae = Gae(X) being functions solely of the configuration variables Xae

[
Ψ̂ae(F̂ae), Ψ̂bf (Ĝbf )

]
=

[
F̂aeΨ̂ae, Ĝbf Ψ̂bf

]

=
[
F̂ae

[
Ψ̂ae, Ĝbf

]
Ψ̂bf +

[
F̂ae, Ĝbf

]
Ψ̂aeΨ̂bf + Ĝbf F̂ae

[
Ψ̂ae, Ψ̂bf

]
+ Ĝbf

[
F̂ae, Ψ̂bf

]
Ψ̂ae

]
(70)

12There is value in being cognizant of the transformations of all states, physical or not,
by the constraints implemented at the quantum level.

13In the most general case, one needn’t be restricted to polynomial functions of the
basic variables.
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The middle two terms of (70) vanish due to trivial commutators between
like phase space variables, yielding

[
Ψ̂ae[F̂ae], Ψ̂bf [Ĝbf ]

]
= F̂ae

[
Ψ̂ae, Ĝbf

]
Ψ̂bf + Ĝbf

[
F̂ae, Ψ̂bf

]
Ψ̂ae

= F̂ae(x)
( ∂Ĝbf

∂Xae

)
Ψ̂bf − Ĝae

( ∂F̂bf

∂Xae

)
Ψ̂bf

=
(
F̂bf

∂Ĝae

∂Xbf
− Ĝbf

∂F̂ae

∂Xbf

)
Ψ̂ae = Vae({F̂ , Ĝ})Ψ̂ae. (71)

Observe that the operator ordering is still maintained with the momenta
to the right, hence the quantum algebra of observables linear in momenta
closes. Additionally, the quantum algebra for the chosen ordering is di-
rectly isomorphic to its Poisson-bracketed counterpart for the kinematic
constraints (53). This can be seen when one makes the identifications

F̂ae =
δ(Ψcg[Fcg])

δΨae
; Ĝbf =

δ(Ψcg[Gcg])

δΨbf
, (72)

whereupon the structure functions operators in (71) take on the interpreta-
tion of quantized Poisson brackets.

Moving on to the commutator of normal deformations with constraints
linear in momenta, we have

[
Ĥ[N ], Ψ̂ae[F̂ae(X)]

]
=

[
N(detÂ)

√
detΨ̂

(
Λ + trΨ̂−1

)
, F̂aeΨ̂ae

]

= N(detÂ)
[√

detΨ̂
(
Λ + trΨ̂−1

)
, F̂ae

]
Ψ̂ae +N [detÂ, F̂ae(X)]

√
detΨ̂

(
Λ + trΨ̂−1

)
Ψ̂ae

+NF̂ae(X)(detÂ)
[√

detΨ̂
(
Λ + trΨ̂−1

)
, Ψ̂ae

]
+NF̂ae(X)

[
detÂ, Ψ̂ae

]√
detΨ̂

(
Λ + trΨ̂−1

)]
(73)

The second and third terms on the right hand side of (73) vanish, due to
commutation between like phase space variables, leaving the first and the
last term. Continuing on with the derivation using the Liebniz rule, we get,
starting with the first term,

(detÂ)
[√

detΨ̂
(
Λ + trΨ̂−1

)
, F̂ae

]
Ψ̂ae

= (detÂ)
(√

detΨ
[
Λ + trΨ−1, F̂ae

]
+ [

√
detΨ, F̂ae]

(
Λ + trΨ̂−1

))
Ψ̂ae

(74)

Continuing on with the expansion, we get
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(detÂ)

(
−

√
detΨ̂δbf

(
(Ψ̂−1)bc[Ψ̂cd, F̂ae](Ψ̂

−1)df
)

+
1

2

√
detΨ̂(Ψ̂−1)cd[Ψ̂cd, F̂ae]

(
Λ + trΨ̂−1

))
Ψ̂ae

= (detÂ)
√

detΨ̂
(
−(Ψ̂−1)fc

( ∂F̂ae

∂Xcd

)
(Ψ̂−1)df

+
1

2
(Ψ̂−1)cd

( ∂F̂ae

∂Xcd

)(
Λ + trΨ̂−1

))
Ψ̂ae (75)

The momentum appears to the right in (75), therefore one could ascribe the
interpretation of a kinematic transformation with structure functions in the
quantum theory.

The fourth term of (73) yields

F̂ae[detÂ, Ψ̂ae]
√

detΨ̂
(
Λ + trΨ̂−1

)
= −F̂ae

∂(detÂ)

∂Xae

√
detΨ̂

(
Λ + trΨ̂−1

)

= −δaeF̂ae

√
detΨ̂

(
Λ + trΨ̂−1

)
= −trF̂

√
detΨ̂

(
Λ + trΨ̂−1

)
. (76)

This would be a Hamiltonian constraint operator if not for a missing factor
of detA. Hence let us perform an insertion of the identity operator Î =
(detÂ)−1(detÂ) between the first and the second term of the right hand
side of (76). Then we obtain

−trF̂
√

detΨ̂
(
Λ + trΨ̂−1

)

= −(trF̂ )(detÂ)−1(detÂ)
√

detΨ̂
(
Λ + trΨ̂−1

)
= −(trF̂ )(detÂ)−1Ĥ. (77)

Hence the operator (77) as long as the zero is not within the spectrum of
(detA)−1.14 Again, the momenta appear to the right with any structure
functions appearing to the left. Hence we obtain, using the results of (74)
and (77), that

[
Ĥ[N ], Ψ̂ae[F̂ae(X)]

]
= N

(
V̂ ae(∂F̂ ; Ψ̂−1)

)
Ψ̂ae − (trF̂ )(detÂ)−1Ĥ. (78)

where we have defined

V̂ ae(∂F̂ ; Ψ̂−1) = (detÂ)
√

detΨ̂
(
−(Ψ̂−1)fc

( ∂F̂ae

∂Xcd

)
(Ψ̂−1)df

+
1

2
(Ψ̂−1)cd

( ∂F̂ae

∂Xcd

)(
Λ + trΨ̂−1

)
. (79)

14This condition can be implemented at the level of the Hilbert space, by restricting
one’s self to configurations corresponding to a nondegenerate Ashtekar magnetic field.
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It remains to compute the commutator of two normal deformations. Hence

[
Ĥ[N ], Ĥ [M ]] =

[
N(detÂ)

√
detΨ̂

(
Λ + trΨ̂−1

)
,M(detÂ)

√
detΨ̂

(
Λ + trΨ̂−1

)]
= 0.(80)

This commutator vanishes due to the antisymmetric property of the com-
mutator.

So the quantum algebra of Dirac observables on an arbitrary state
∣∣ψ

〉

is given by

[
Ψ̂ae[F̂ae], Ψ̂bf [Ĝbf ]

]∣∣ψ
〉

= Vae({F̂ , Ĝ})Ψ̂ae

∣∣ψ
〉

[
Ĥ[N ], Ψ̂ae[F̂ae]

]∣∣ψ
〉

=
((
V̂ ae(∂F̂ ; Ψ̂−1)

)
Ψ̂ae + (trF̂ )(detÂ)−1Ĥ

)∣∣ψ
〉

[
Ĥ[N ], Ĥ [M ]

]∣∣ψ
〉

= 0 (81)

The algebra of quantum constraints closes in analogy to its classical counter-
part, therefore the quantum theory is Dirac consistent and free of anomalies.

The Heisenberg equations of motion for ther field operators are given by

˙̂
Xae = − i

~

[
X̂ae, Ĥ

]
;

˙̂
Ψae = − i

~

[
Ψ̂ae, Ĥ

]
. (82)

with general solution

X̂ae(T ) = Û(T, 0)X̂ae(0)Û−1(T, 0);

Ψ̂ae(, T ) = Û(T, 0)Ψ̂ae(0)Û
−1(T, 0) (83)

where Û(T, 0) = ei
R T

0
dtĤ(t) is the time evolution operator from an initial

spatial hypersurface Σ0 to a final spatial hypersurface ΣT , and where H =
~H[ ~N ] +Ga[θ

a] +H[N ].

4.1 Examination for anomalies

We have shown that the algebra of constraints closes at the quantum level.
Therefore, the quantum algebra of constraints is consistent in the sense
of Dirac. However, it is possible that the quantum algebra may close,
yet still be inconsistent with the classical algebra of the Poisson brackets.
If this were to be the case, then one should hope the quantum algebra
to be the more general. Let us examine the consistency of the algebra.
First, we know already that it is consistent with respect to the commuta-
tor of two Hamiltonian constraints for the operator ordering chosen. Hence
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{H[N ],H[M ]} =
[
~H[N ], ~H [M ]

]
= 0. Hence it remains to check the situa-

tion for the Gauss’ law and the diffeomorphism constraints. For the classical
theory we have that {~G[~θ], ~G[~λ]} = 0, or that two gauge transformations
commute. To check this in the quantum theory let us make use of the rep-
resentation of the constraints as differential operators in the Schrödinger
representation. Hence

[
~̂G[~θ], ~̂G[~λ]

]
=

(
−(detA)θdfdae

∂

∂Xae

)(
−(detA)λgfgbf

∂

∂Xbf

)

−
(
−(detA)λdfdae

∂

∂Xae

)(
−(detA)θgfgbf

∂

∂Xbf

)

= (detA)(θdλg − λdθg)fdaefgbf

( ∂

∂Xae
(detA)

∂

∂Xbf

)

2(detA)θ[dλg]fdaefgbfδae
∂

∂Xbf
= 0 (84)

on account of the antisymmetry of the structure constants. So the Poisson
brackets are consistent with the commutators with respect to the Gauss’ law
constraint.

Next, we examine the consistency of the commutator between a diffeo-
moephism and a gauge transformation. This is given by

[
~̂G[~θ], ~̂H[ ~N ]

]
=

(
−(detA)θdffae

∂

∂Xae

)(
(detA)N iAg

i fgbf
∂

∂Xbf

)

−
(
(detA)N iAd

i fdae
∂

∂Xae

)(
−(detA)θgfgbf

∂

∂Xbf

)
. (85)

The contribution due to the derivatives acting on detA vanish since they
produce the isotropic matrix δae which is annihilated by the structure con-
stants. Hence there remain the terms involving the functional derivatives
acting on the Ashtekar connection. This is given by the first term of (85),
as in

−(detA)2θdN ifdaefgbf
∂

∂Xae
Ag

i

∂

∂Xbf
= −(detA)2θdN ifdaefgbf (detA)−1δagA

e
i

∂

∂Xbf

= (detA)θd(N iAe
i )fdegfgbf

∂

∂Xbf
= (detA)~θ × ( ~N · A)bf Ψ̂bf (86)

which is a diffeomorphism, as obtained via Poisson brackets. The now arises
a problem when we evaluate the commutator of two diffeomorphisms. This
is given by

[ ˆ~H[~N ],
ˆ~H[ ~M ]

]
=

(
(detA)N iAd

i ǫdae
∂

∂Xae

)(
(detA)MkAg

kǫgbf
∂

∂Xbf

)

−
(
(detA)M iAd

i ǫdae
∂

∂Xae

)(
(detA)NkAg

kǫgbf
∂

∂Xbf

)

(87)
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Likewise, all terms in (87) with derivatives acting on detA become annihi-
lated, leaving behind the following expression

(detA)2(N iMk −M iNk)ǫdaeǫgbfA
d
i (detA)−1

( ∂

∂Xae
Ag

k

∂

∂Xbf

)

= (detA)(N iMk −M iNk)ǫdaeǫabfA
d
iA

e
k

∂

∂Xbf

= (detA)
[
(N iAd

i )(M
kAe

k) − (M iAd
i )(N

kAd
k)

]
ǫdaeǫabf

∂

∂Xbf

= V bf
(
( ~N ·A) × ( ~M ·A)

)
Ψ̂bf . (88)

The conclusion of this section is that the quantum and classical algebra of
constraints are mutually consistent.

5 Hilbert space of states

We now arrive at the main deliverable of this paper, namely to establish the
requisite structure to perform quantum mechanics of gravity in the Chang–
Soo variables starting with anisotropic minisuperspace. It is hoped that the
results of this section should address most objections to the existence of a
Hilbert space for quantum gravity for the pure Kodama state ΨKod and its
relatives. We perform this arrangement for anisotropic minisuperspace in
the present work, reserving the full theory for a subsequent paper.

5.1 Structure of the kinematic Hilbert space

Define a linear vector space γ over the field of complex numbers C so that
∀ λ ≡ λae ∈ (3, C) ∈ γ we have that λae = αae + iβae, for some αae, βae ∈
(3, R). Hence λae forms a 3 by 3 matrix of complex numerical constants.
The complex conjugate of λ is given by λ∗ ∈ γ with λ∗ae = αae − iβae. We
will make use of two prototype vectors λ, ζ ∈ γ in what follows, such that

λae = αae + iβae; ζae = α′
ae + iβ′ae ∀a, e (89)

Next, endow γ with the structure of an inner product space with inner
product π(γ ⊗ γ) → C, given by

〈
λ
∣∣ζ

〉
=

∑

a,e

λ∗aeζae = λ∗ · ζ. (90)

Hence in components we have that

22



〈
λ
∣∣ζ

〉
= (α− iβ) · (α′ + iβ′) = α · α′ + β · β′ + i(α · β′ − β · α′). (91)

Next, define a vector space ΓC over the field of functions15 such that
for any Z ≡ Zae ∈ ΓC , we have that Zae = Xae + iY ae for all a, e. Hence
Zae ∈ GL(3, C[f ]).

Define a linear functional or a map Ψ from γ⊗ΓC → ψKin, where ψKin

will ultimately play the role of the kinematic Hilbert space HKin, by

Ψγ(Z) =
〈
Z

∣∣Ψγ

〉
= eλ(Z), (92)

where we have defined

λ(Z) =
∑

a,e

λaeZ
ae = λ · Z. (93)

In terms of the constituents, (93) is given by

λ(Z) = (α+ iβ) · (X + iY ) = α(X) − β(Y ) + i(β(X) + α(Y )

∼ α ·X − β · Y + i(β ·X + α · Y )). (94)

The second line of (94) is an abuse of notation made pure for convenience,
but should be understood from the context. Hence we can now make the
following identification of

Ψλ(Z) =
〈
X,Y

∣∣Ψλ

〉
= Ψλ(X,Y ). (95)

5.2 Formulation of a norm on the space γ

Lemma(1): The first claim is that the inner product π induces a norm on
γ, given by

πγ(λ) = ‖λ‖ =
√〈

λ
∣∣λ

〉
=

√
λ∗ · λ =

√
α · α+ β · β (96)

It is clear that the norm as defined in (96) is positive definite, since α and
β are real. We must now prove that (96) satisfies the requirements for the
definition of a norm.

15As distinguished from the field of numerical constants. We will denote the field of
holomorphic functions by C[f ].
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(i) Prove πγ(cλ) = |c|πγ(λ) for all λ ∈ γ and c ∈ C. This automatically
follows from

πγ(cλ) =
√

(cλ)∗ · (cλ) = (c∗c)1/2
√
λ∗ · λ = |c|πγ(λ). (97)

(ii) Next, we must prove that the norm π satisfies the Minkowski inequality.
Hence, prove that πγ(λ+ ζ) ≤ πγ(λ)+πγ(ζ), for all λ, ζ ∈ γ. Let us proceed
by comparing the squares of the inequality. Define the square of left hand
side of the inequality by l, given by

l =
∣∣πγ(λ+ ζ)

∣∣2 =
〈
λ+ ζ

∣∣λ+ ζ
〉

= (λ∗ + ζ∗) · (λ+ ζ)

= λ∗ · λ+ λ∗ · ζ + ζ∗ · λ+ ζ∗ · ζ
|λ|2 + |ζ|2 + λ∗ · ζ + ζ∗ · λ. (98)

The last two terms in (98) are given by

λ∗ · ζ + ζ∗ · λ = (α− iβ) · (α′ + iβ′) + (α′ − iβ′) · (α+ iβ) = 2(α · α′ + β · β′).(99)

Hence we have that

l = |λ|2 + |ζ|2 + 2(α · α′ + β · β′). (100)

Define the square of the right hand side of the Minkowski inequality by r,
given by r = (|πγ(λ)| + |πγ(ζ)|)2. Then we have that

r =
∣∣∣
√〈

λ
∣∣λ

〉
+

√〈
ζ
∣∣ζ

〉∣∣∣
2
=

〈
λ
∣∣λ

〉
+

〈
ζ
∣∣ζ

〉
+ 2

√〈
λ
∣∣λ

〉√〈
ζ
∣∣ζ

〉

= |λ|2 + |ζ|2 + 2
√
α · α+ β · β

√
α′ · α′ + β′ · β′. (101)

Next, we construct the inequality through the quantity (r− l)/2. Using the
results of (100) and (101), we have

r − l

2
=

√
α · α+ β · β

√
α′ · α′ + β′ · β′ − (α · α′ + β · β′) = ||λ||||ζ|| −Re{λ∗ · ζ}.(102)

But Re{λ∗ · ζ} ≤ ‖λ · ζ‖, since the real part of any complex number cannot
exceed the the norm, and by the Caucy–Scwharz inequality we have that
‖λ · ζ‖ ≤ ‖λ‖‖ζ‖. Hence it follows that ‖λ‖‖ζ‖‖−Re{λ∗ · ζ} ≥ 0. Therefore√
r − l ≥ 0, which leads to

πγ(λ) + πγ(ζ) ≥ πγ(λ+ ζ) (103)
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as desired.
(iii) The last item to prove is positivity, namely that πγ(λ) = 0 iff λ = 0.
This automatically follows, since

|πγ(λ)|2 = α · α+ β · β ≥ 0. (104)

Since λ, β ∈ R9 are real, the inner product π is positive definite. Therefore,
πγ(λ) = 0 iff αae = βa = 0, ∀a, e, or that λ = 0.

We have sucessfully defined a norm on the complex vector space of
complex-valued three by three matrices. Hence we are part of the way to-
ward our goal of constructing a kinematic Hilbert space for quantum gravity
in Chang–Soo variables. Next, we must formulate the resulting Hilbert space
structure induced on the space of states ψ

5.3 Formulation of a norm on the space ψ

We will now show how the inner product π(γ ⊗ γ) → C given by
〈
λ
∣∣ζ

〉

induces an inner product Π(ψKin ⊗ ψKin) → C, given by
〈
ψλ

∣∣ψζ

〉
with

respect to the Gaussian measure Dµ(Z) = Dµ(X,Y ), given by

Dµ(Z) = ν−9
∏

a,e

δZ e−ν−1|Z|2 = ν−9
∏

a,e

δXδY e−ν−1(X·X+Y ·Y ). (105)

We will show three things. First, that the inner product Π is finite iff the
inner product π is finite.16 Secondly, the inner product Π(ψKin ⊗ ψKin)
induces a norm ΠΓ(Ψλ) given by

ΠΓ(Ψλ) =
〈
Ψλ

∣∣Ψλ

〉
= eν<λ|λ>. (106)

The norm (106) is clearly positive definite.
First, for the inner product we have that

〈
Ψλ

∣∣Ψζ

〉
= ν−9

∫
Dµ(Z)

〈
Ψλ

∣∣Z
〉〈
Z

∣∣Ψζ

〉

=

∫
ν−9

∫
Dµ(X,Y )

〈
Ψλ

∣∣X,Y
〉〈
X,Y

∣∣Ψζ

〉
. (107)

Proceeding from (107), we have

16Another way to state this is that a necessary and sufficient condition for Π to be
square integrable is for π to be square summable.
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〈
Ψλ

∣∣Ψζ

〉
= ν−9

∫
DXDY e−ν−1(X·X+Y ·Y )Ψ∗

λ(X,Y )Ψζ(X,Y ), (108)

where we have made the identifications

Ψ∗
λ(X,Y ) = eα·X−β·Y −i(β·X+α·Y ); Ψζ(X,Y ) = eα

′·X−β′·Y +i(β′·X+α′·Y )

(109)

and we have made use of the definitions

X ·X + Y · Y =
∑

a,e

XaeXae + Y aeY ae. (110)

Hence, the inner product on ψKin, continuing from (108) is given by

〈
Ψλ

∣∣Ψζ

〉
=

(
ν−9/2

∫
DXe−ν−1(X·X+r·X)

)(
ν−9/2

∫
DY e−ν−1(Y ·Y +r·Y )

)

= e
ν
4
(r·r+s·s) = exp

[ν
4

(
|πγ(r)|2 + |πγ(s)|2

)]
,(111)

where we have made the definitions r ≡ rae = αae +α′
ae + i(−βae +β′ae) and

s ≡ sae = −(βae + β′ae) + i(−αae + α′
ae). The following holds

1

4
(r · r + s · s) = α · α′ + β · β′ + i(α · β′ − α′ · β) = λ∗ · ζ =

〈
λ
∣∣ζ

〉
. (112)

The end result is that

〈
Ψλ

∣∣Ψζ

〉
= eν<λ|ζ> = eνλ∗·ζ . (113)

Hence the inner product Π(ψKin ⊗ ψKin) → C is induced by the inner
product π(γ ⊗ γ) → C.

It now remains to prove that ψKin is a normed linear space with norm
derived form the inner product Π. If so, then the norm would be given by

Π(Ψλ) =
√〈

Ψλ

∣∣Ψλ

〉
=

√
|Ψλ|2 = e

ν
2
|λ|2. (114)

We must now prove that (114) satisfies the requirements of a norm.
(i) Prove Π(cΨλ) = |c|Π(Ψλ) for all c ∈ C and all Ψλ ∈ ΨKin. Hence we
have that
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‖cΨλ‖ = (c∗c)1/2‖Ψλ‖, (115)

which follows directly from the linearity of the integral defining the inner
product. Next, we must verify that the Minkowski inequality is satisfied.
(ii) Prove Π(Ψλ + Ψζ) ≤ Π(Ψλ) + Π(Ψζ). First we define the right and left
hand sides of the inequality by r = Π(Ψλ) + Π(Ψζ) and l = Π(Ψλ + Ψζ),
where

Π(Ψλ) = e
ν
2
|λ|2; Π(Ψζ) = e

ν
2
|ζ|2. (116)

Hence we have that

r = e
ν
2
|λ|2 + e

ν
2
|ζ|2 (117)

and l is given by

l =
√〈

Ψλ + Ψζ

∣∣Ψλ + Ψζ

〉

=
√〈

Ψλ

∣∣Ψλ

〉
+

〈
Ψζ

∣∣Ψζ

〉
+

〈
Ψλ

∣∣Ψζ

〉
+

〈
Ψλ

∣∣Ψζ

〉

=
√
eν|λ|2 + eν|ζ|2 + eνλ∗·ζ + eνζ∗·λ. (118)

To examine the Minkowski inequality, let us form the difference r2− l2. This
is given by

r2 − l2 = eν|λ|
2
+ eν|ζ|

2
+ 2e

ν
2
(|λ|2+|ζ|2) −

(
eν|λ|

2
+ eν|ζ|

2
+ eνλ∗·ζ + eνζ∗·λ

)

= 2e
ν
2
(|λ|2+|ζ|2) −

(
eνλ∗·ζ + eνζ∗·λ

)
.(119)

To proceed, we recall the definitions λ = α+iβ, λ∗ = α−iβ and ζ = α′+iβ′

and ζ∗ = α′ − iβ′. The following identities are in place

ζ∗ · λ = α′ · α+ β′ · β + i(α′ · β − β′ · α); λ∗ · ζ = α · α′ + β · β′ − i(α′ · β − β′ · α),(120)

as well as the identities

|λ|2 = α · α+ β · β; |ζ|2 = α′ · α′ + β′ · β′. (121)

Hence we have for first term on the right hand side of (119) that
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e
ν
2
(|λ|2+|ζ|2) = e

ν
2
(α·α+α′·α′+β·β+β′·β′) (122)

and for the second term on the right hand side of (119) that

eνλ∗·ζ + eνζ∗·λ = eν(α′·α+β′·β)eiν(α′·β−β′·α) + eν(α·α′+β·β′)e−i(α′·β−β′·α)

= 2eν(α·α′+β·β′)cos[ν(α′ · β − β′ · α)] ≤ 2eν(α·α′+β·β′), (123)

where we have used that cosθ ≤ 1 for θ ∈ R, and it is the case that the
argument of the cosine function in the last line of (123) is real. Since we
have put both sides of the Minkowski inequality on the same footing, in
terms of exponentials, we can now prove the inequality. Define two 18-
vectors with components a = (α, β) and b = (α′, β′). Then the Minkowski
inequality reduces to

r2 − l2

2
≥ e

ν
2
(|a|2+|b|2) − eνa·b. (124)

Since a = (αae, βae) and b = (α′
ae, β

′
ae) are real, then |a − b|2 ≥ 0 implies

that |a|2 + |b|2 ≥ 2a · b. Hence comparing the arguments of the exponentials
in (124) the result follows. Thus

Π(Ψλ + Ψζ) ≤ Π(Ψλ) + Π(Ψζ) (125)

There is one last obstacle to the claim of a Hilbert space, which is the
completion of the inner product space in the given norm, namely positivity.
(iii) Prove that Π(Ψλ) = 0 iff Ψλ = 0. This is problematic in that Π(Ψλ) =

e
ν
2
|λ|2 ≥ 1, on account of |λ|2 ≥ 0. Hence there currently does not exist a

state ψKin which can play the role of the zero vector.17 The only way to
meet this requirement is to append the zero vector by hand to ψ, completing
the space. Hence, ψKin → HKin such that HKin = (ψKin; 0) such that
ψ ∈ L2(C[f ];Dµ.

17The zero vector is necessary in order for our Hilbert space to contain physical states
annihilated by the constraints. The physical Hilbert space must be invariant under the
constraints in order for it to be possible to map states in the kernel of the constraints into
the zero vector.
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5.4 Kinematical Hilbert space and a resolution of the prob-

lem of time

The usual method of quantization in the loop representation is to first define
a kinematical Hilbert space HKin, an appropriate space of quantum states
forming an irreducible representation of the algebra of quantum observables
at the level prior to implementation of the constraints, with corresponding
Haar measure. Our view in this work is that HKin might be unnecessarily
big, and therefore it is not necessary to have a Hilbert space structure on
this whole space in order to have a complete and consistent quantum theory.
Though HKin may provide a stepping stone which provides useful insights,
one should be utlimately interested in the space of physical states

∣∣ψPhys

〉
∈

Ker{Φ̂}, those states which are strongly annihilated by all of the quantum
constraints as in

Φ̂I

∣∣ψPhys

〉
= 0. (126)

Additionally, one should be able to construct a sufficiently large set of states∣∣ψ
〉
∈ HPhys to enable verification of the semiclassical limit of the theory.

As implied by (81), any arbitrary state
∣∣ψ

〉
can serve as a representation

of the algebra in Chang–Soo variables due to the manifest closure of the
algebra. Hence we can define the kinematic Hilbert space by

∣∣ψ
〉
∈ HKin

subject to normalizability. We are now free to deduce the physical states∣∣ψPhys

〉
as elements of HPhys ∈HKin.

In determining the Hilbert space structure it will be convenient to work
in the functional Schrödinger representation. By choosing a complete set of
states

∣∣X
〉

of the configuration variables at a given time T , one may define
a projection operator on to configuration basis eigenstates for each time T ,
with corresponding orthogonality and completeness relations

∏

,a,e

∫

Γ
δµ(X)

∣∣X(T )
〉〈
X(T )

∣∣ = I(T );
〈
X(T )

∣∣X ′(T )
〉

=
∏

a,t

δ
(
X(T ) −X ′(T )

)
(127)

which allows any arbitrary state
∣∣ψ

〉
∈ HKin to be expanded in this basis

at a given time T 18

∣∣ψ
〉

=
∏

a,e

∫

Γ
δX(T )

∣∣X(T )
〉〈
X(T )

∣∣ψ
〉
. (128)

18The states are decomposed with respect to a fixed time T , due to the fact that the
relationship amongst the operators has been defined only for equal times via the equal-
time commutation relations. Additionally, the projection operator onto a complete set of
states I = I(T ) should be explicitly independent of time.
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One claim of the present paper is that the decomposition (128) solves the
problem of time in quantum gravity, at least in minisuperspace. This is
because the state

∣∣ψ
〉

is an abstract entity until projected onto a complete
basis. By defining Ψ(T ) =

〈
X(T )

∣∣ψ
〉

we can associate a wavefunction to
any desired time.

The elementary quantum operators in the Schrödinger representation
forming a representation of the equal-time commutation relations (65) can be
realized by multiplication and functional differentiation of the wavefunction
Ψ(T ) at a given time T , as in19

X̂ae(T )ψ[X] = Xae(T )ψ[X]; Ψ̂ae(T )ψ = ~G
δ

δXae(T )
ψ[X] (129)

where we have taken ψ[X] =
〈
X

∣∣ψ
〉
.

5.5 Normalizability of the wavefunctions

As regards the measure on the physical Hilbert spaceHPhys, we will see that
for pure gravity for Lorentzian signature it will be convenient to use a Gaus-
sian measure in order to obtain square-integrable wavefunctions, whereas for
Euclidean signature one additionally has the option of the Lebesgue mea-
sure for delta-function normalizable wavefunctions. This implies the Hilbert
space structure for each point x ∈ Σ in the Lorentzian case ofH = L2(C, dµ),
with a resolution of the identity as in the Bargmann representation20

∏

a,e

∫

Γ
δX(T )exp

[
− 1

2ν

∑

a,e

X
ae

(T )Xae(T )
]∣∣X(T )

〉〈
X(T )

∣∣ = I. (130)

To illustrate, let us construct an auxilliary Hilbert space made up of
linear funtionals of the Chang–Soo variables. Hence define the wavefunction

Ψλ(X) = exp
[∑

a,e

λaeX
ae

]
(131)

where the λae ∈ γ are not dynamical variables, but simply a three by three
matrix of labels. For Euclidean signature, an orthogonal basis of states can

19We will sometimes omit the time label on the wavefunction ψ(X). It is then implied
that the Chang–Soo variables Xae play the role of a clock with respect to which the
wavefunction evolves.

20Here ν is a numerical constant of mass dimension [ν] = −6, necessary to make the
argument of the exponential dimensionless.
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be chosen by restricting the variables Xae to be real [ ]. One can see this by
inserting a complete set of states at the chosen time into the inner product of
two wavefunctions labeled by matrices λ ≡ λae and ζ ≡ ζae. Hence, chosing
the Lebesgue measure with the replacements λ → iλ and ζ → iζ, we have
that

〈
ζ
∣∣λ

〉
Eucl.

=
∏

a,e

∫

Γ
δXae

〈
ζ
∣∣X(T )

〉〈
X(T )

∣∣λ
〉

=
∏

a,e

∫

Γ
δXaeΨ∗

ζ(X)Ψλ(X)

=

∫
DXeiX·(λ−ζ) =

∏

a,e

δ(λae(T ) − ζae(T )) = δζλ ∀T(132)

Hence the states labelled by two matrices in GL(3, R) are orthogonal if any
of the corresponding matrix elements are not the same.

For both Euclidean and Lorentzian signatures, a Hilbert space of coher-
ent states can be built. This is necessary in order to obtain square integrable
wavefunctions in the Lorentzian case. To illustrate take the Hilbert space
consisting of holomorphic functions of Z ∈ Γ′ with ψλ[Z] = eZ(λ), where
now both Zae and λae are complex-valued. Z ∈ Γ′ are elements of the com-
plex vector space Γ′ and λ ∈ Γ

′
is in its dual. Then we can define the inner

product

λ · Z =
∑

ae

λ∗aeZ
ae. (133)

We will see how this complex inner product on Γ′ induces an inner product on
the space of states

∣∣ψ
〉
. First, we must decompose λ and Z into their real and

their imaginary parts as in λae = αae+iβae and Zae(T ) = Xae(T )+iY ae(T ).
This can be interpreted in the representation as the decompositon

〈
Z

∣∣λ
〉

= exp
[∑

a,e

αaeX
ae − βaeY

ae + i(βaeX
ae + αaeY

ae)
]

= eλ·Z (134)

Now we can evaluate the inner product between two states labelled by λ =
αi + iβi and ζ = αj + iβj in the measure Dµ(Z,Z).21 Hence

〈
λ
∣∣ζ

〉
= ν−9

∫
dZe−

1
ν
|Z|2

〈
λ
∣∣Z

〉〈
Z

∣∣ζ
〉

= ν−9

∫
dXdY e−

1
ν
(X2+Y 2)e(αi+αj+i(βi−βj))·Xe−βi−βj+i(αi−αj))·Y

= exp
[
ν(αi · αj + βi · βj −

i

2
(αi · βj − αj · βi))

]
= eνλ·ζ . (135)

21Here i ∼a,e, j ∼a, e is a shorthand notation to label both the components of the vector
and also to identify them as distinct vectors.
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We see that in order for the inner product of two wavefunctions to be finite,
then the real and the imaginary parts must form a square-summable series,
which is the case since we are dealing with a finite dimensional space Γ

′
.22

Hence, the inner product on the space Γ
′

induces a corresponding inner
product on the space of states

∣∣ψ
〉
. Written out fully, this is given by

〈
λ
∣∣ζ

〉
Lor.

= exp
[
ν

∑

a,e

λ∗aeζae

]
. (136)

No further reference to the Chang–Soo variables exists and we have obtained
a well-defined Hilbert space with normalizable wavefunctions.

5.6 Expectation values and observables

Now that we have defined a Hilbert space, we must next give a prescrip-
tion for calculating matrix elements of observables. Hence, we have for an
observable O = O[Z,Z] that

〈
λ
∣∣O

∣∣ζ
〉

=

∫
Dµ(Z,Z)

〈
λ
∣∣Z(T )

〉〈
Z(T )

∣∣Ô
∣∣ζ

〉

=

∫
Dµ(Z,Z)Ψ∗

λ(Z)
[
Ô[Z,Z ]Ψζ(Z)

]
(137)

The crucial observation is to exploit the techniques of generating functionals.
Hence multiplication by Z under the integral (137) corresponds to differen-
tiation with respect to λ, and likewise multiplication by Z corresponds to
differentiation with respect to ζ. Hence we have that

〈
λ
∣∣Zae

∣∣ζ
〉

=
∂

∂ζae
eνλ∗·ζ = νλ∗ae

〈
λ
∣∣ζ

〉
;

〈
λ
∣∣Zae∣∣ζ

〉
=

∂

∂λae

eνλ∗·ζ = νζae

〈
λ
∣∣ζ

〉
;

(138)

The procedure (138) then generalizes to functions of the Chang–Soo vari-
ables. Hence

〈
λ
∣∣O[Z,Z]

∣∣ζ
〉

= O[νζ, νλ]eνλ∗·ζ (139)

22This automatically excludes configurations with infinte values for (λ, ζ)
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The observables acquire the dimensionful constant ν.23

Note also, when taking expectation values of derivatives,

〈
λ
∣∣ ∂

∂Zae

∣∣ζ
〉

=

∫
dZdZe−ν−1|Z|2eλ(Z) ∂

∂Zae
eζ(Z)

= ζae

∫
dZdZe−ν−1|Z|2eλ(Z)eζ(Z) = ζae

〈
λ
∣∣ζ

〉
∀a, e. (140)

Hence, as one would expect in the Bargmann representation [ ], we have

Zae ∼ ν
∂

∂Zae
(141)

Another feature which one can exploit is to obtain the expectation value
of the reciprocal of operators.24 Using the result for holomorphic functions
that

1

z
=

∫ 0

−∞
dsesz ≡ (∂/∂s)−1ssz, (142)

we have the relations

〈
λ
∣∣ 1

Zae

∣∣ζ
〉

=

∫ 0

−∞
dζaee

νλ·ζ =
1

νλ∗ae

∀a, e. (143)

It is hoped that the present section has addressed [12], which attempts
to define an inner product of the Kodama state in the loop representation,
at least in anisotropic minisuperspace. Defining the state on a loop γ by

Ψγ [A] = ΨKod[A]Tγ [A], (144)

where A ∼ Aa
i is the Ashtekar connection defined by Aa

i = Γa
i − iKa

i , where
Γ and K are respectively the three dimensional spin connection and the

extrinsic curvature of a spatial slice Σ, and Tγ [A] = e
R

γ
A is the holonomy

of the Ashtekar connection, one attempts to compute the inner product of
two states via the prescription

23The mass dimension of the constant ν is [ν] = 6 in order to make the argument of
the exponential defining the measure dimensionless. Its value can further be fixed based
upon parameters from quantum gravity.

24This procedure applies only to scalars and is well defined only when the scalar is
nonzero.
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〈
Ψ′

∣∣Ψ
〉

=

∫ ∏(
(dΓa

i )(dK
a
i )δ[Im

∫
Y (Γ,K)]

exp
[
ICS [Y ] −

∫

Σ
ǫijkKa

i Dj [Γ]Kc
i

]
T ′

γ [Γ,K]∆[A = Γ + iK]Tγ [Γ,K], (145)

In the prescription that we haveoutlined in the present work we have pro-
vided a possible resolution, at least in the homogeneous sector, by using in
essence a kind of coherent basis for the states. The analogy is that the states
in the Chang–Soo variables can be labelled by the matrix λ ≡ λae, which
as we will see consists of five independent elements in minisuperspace upon
solution of the constraints. The matrix λae is the analogue of the loop la-
bel γ, except it has a well-defined semiclassical interpretation which we will
amplify in a separate work.25 Since the states are holomorphic functions
of the Chang–Soo variables, then the inner product between two states is
well defined in the Bargmann representation, whether for Lorentzian or for
Euclidean signature. Hence in the language of [12] taking Z = X + iY ,

〈
Ψγ

∣∣Ψη

〉
=

∫
Dµ(X,Y )Ψ∗

γ(X,Y )Ψη(X,Y ) = eνγ∗·η (146)

which is well-defined. Also, observables are explicitly well-defined

〈
Ψγ

∣∣O(X̂, Ŷ )
∣∣Ψη

〉
=

[
O(∂/∂a, ∂/∂b)ea·b

]∣∣∣∣
a=η+γ, b=η−γ

= O(η − γ, η + γ)eγ
∗·η(147)

This as well applies for reciprocals of operators.
One last question concerns the existence of self-adjoint bounded opera-

tors on the Hilbert space. It is clear, due to the properties of the Bargmann
representation and as shown, that Zae and Z

ae
constitute such operators in

the Gaussian measure. Since the constraints annihilhate the physical states
ΨPhys by definition and as we will show in the next section, then the quan-
tum constraints are by default strongly self-adjoint. Now that we have put
in place the requisite Hilbert space structure, we will now demosntrate the
relevance of the Hilbert space we have introduced to quantum gravity in the
Chang–Soo variables.

25Suffice it to say that the inverse of the matrix λae directly correlates to the anti self-
dual part of the Weyl curvature tensor, which is related to the Petrov classification of the
spacetime which can also be labelled by various invariants of the CDJ matrix.
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6 Solution to the quantum constraints and associ-

ation with the physical Hilbert space

We will now correlate a set of normalizable wavefunctions solving the quan-
tum constraints in Chang–Soo variables to the Hilbert space just established,
starting from the most general form of a trial wavefunction Ψ ∈ ψKin at a
given time T

Ψ[X] = exp
[∫

Γ
Ψae[X]δXae

]
, (148)

where Ψae, at the level prior to implementation of the constraints, can have
the most general functional dependence on the Chang–Soo variables Xae.
We will often suppress the time label T in what follows in order to avoid
cluttering up the notation. Through explicitly satisfying the constraints,
we must then narrow down the specific functional dependence of the matrix
elements λae upon the configuration variables Xae.

Starting with the quantized diffeomorphism constraint we have

ĤiΨ = ǫijkB
j
aB

k
e Ψ̂aeΨ = 0. (149)

Expanding (149) on the wavefunction (148), we obtain

~GǫijkB
j
aB

k
e

∂

∂X [ae]
Ψ = ((detA)Af

i ǫfaeΨ[ae])Ψ = 0 (150)

Since the detA 6= 0, then the antisymmetric part of the semiclassical eigen-
value must vanish. Hence Ψ[ae] = 0, or the matrix Ψae = Ψ(ae) must be
symmetric. This reduces the solution space from GL(3, C) to C6, with six
independent components.26

Ψ̂[ae]Ψ = ~G
δ

δX [ae]
Ψ. (151)

From (151) one concludes that the diffeomorphism invariant state
∣∣ψDiff

〉

does not contain any dependence upon the antisymmetric part of the Chang–
Soo variables X [ae], which can now be considered as unphysical.

The Gauss’ law constraint is given by

ĜaΨ = (detA)fadeΨ̂deΨ = (detA)fadeΨdeΨ = 0. (152)

26Note that this is the same condition that would have arisen from solving the constraints
at the classical level. Hence, there is a semiclassical-quantum correspondence.
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Again, since detA 6= 0, the Gauss’ law constraint also implies that the anti-
symmetric part of the CDJ matrix vanishes in minisuperspace. We already
know this from the diffeomorphism constraint, therefore the Gauss’ law con-
straint in anisotropic minisuperspace is redundant and does not result in a
reduction of the degrees of freedom of Ψae.

27

A complex symmetric matrix can generally be diagonalized by a com-
plex orthogonal transformation [15] parametrized by three complex angles
(θ1, θ2, θ3) such that Oab(~θ) = eiθ·T , where T is the set of generators for the
group. Hence one can under fairly general circumstances write down the
following relation28

Ψac = Oae(~θ)e
f
ebO

−1
bc (~θ)λf (153)

which parametrizes the matrix Ψae by the diagonal matrix of its eigenvalues
λf = Diag(λ1, λ2, λ3) and a complex orthogonal rotation matrix Oae. Let us
now solve the quantum Hamiltonian constraint, exploiting this observation.
Classically, the Hamiltonian constraint involves just the invariants of the
matrix Ψae and is given by

H = (detA)
√

detΨ
(
Λ + trΨ−1

)
= 0, (154)

where we have made use of the invariance of the trace under the complex
orthogonal transformations.29 This produces a solution for λ3 as a function
of λ1 and λ2.

It requires some care to interpret the quantization of the reciprocal of
the eigenvalues ~λ in (154). At the classical level for a nondegenerate Bi

a, a
nontrivial solution exists by dividing through by detA to obtain

√
λ1λ2λ3

(
Λ +

1

λ1
+

1

λ2
+

1

λ3

)
= 0. (155)

To obtain the wavefunctional it helps to put the Hamiltonian constraint into
a form for which the quantum version can be solved directly. Since we have
eliminated any dependence upon the configuration variables, we can rescale
the constraint by an arbitrary function of momenta without incurring any
operator ordering ambiguities upon quantization.30 Rescaling by

√
detΨ,

we have classically that

27In the full theory, the Gauss’ law constraint does result in a genuine reduction due to
the spatial gradients, a nonlocal effect which we show in a separate work in progress.

28We have ecluded cases for which three independent eigenvectors do not exist in this
work. Such ‘degenerate’ cases must be treated separately.

29This excludes the degenerate configurations, for which the CDJ matrix is in general
not diagonalizable. Such cases must be treated separately.

30This is because we have chosen an operator ordering in the algebra of quantum con-
straints with the momenta to the right of the coordinates.
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Λdetλ+ V arλ = Λλ1λ2λ3 + λ1λ2 + λ2λ3 + λ3λ1 = 0 (156)

Equation (156) suggests a more efficient quantization from the level of the
phase space using just the eigenvalues ~λ of the symmetric part of the CDJ
matrix Ψ(ae) along with its conjugate configuration variables X(ae) as dy-
namical variables. The commutation relations (65) can then be replaced, by
an appropriate rotation of variables, by

[
X̂a(T ), Ψ̂e(T )

]
= ~βGδa

e ;
[
X̂a(T ), X̂e(T )

]
=

[
Ψ̂a(T ), Ψ̂e(T )

]
= 0. (157)

Going through the analogous procedure in the Schrödinger representa-
tion of the physical variables ~λ, the quantum Hamiltonian constraint would
read

ĤΨ = ~
2G2

[
~GΛ

δ3

δX1δX2δX3
+

δ2

δX1δX2
+

δ2

δX2δX3
+

δ2

δX3δX1

]
Ψ = 0.(158)

There exists a subspace of (148) solving (158) free of ordering ambiguities,
consistent with numerically constant Ψae.

31 Hence, the matrix λae serves as
the label for a linear functional of Xae, and is free of functional dependence
upon the dynamical variables Xae. We can now form a solution at time
T by evaluating the starting action (24) on the solution to the constraints
Φ̂α ∼ Ĥi ∼ Ĝa ∼ Ĥ ∼ 0.

ψPhys = βei(~G)−1ISoo = βexp
[
(~G)−1

∫ T

0
dtΨaeẊ

ae
]∣∣∣∣

Φ̂α=0

(159)

where β is a normalization constant for the state. But the initial value
constraints must be satisfied consistently with the equations of motion. The
classical equations of motion for the CDJ matrix Ψae are given by (33)

Ψ̇ae = − δH

δXae
= −

[
iδae(detA)−1H[N ] −N i

(
Ad

i δbf +Af
i δbd

)
fdaeΨae − δaeθ

dfdghΨgh

]
(160)

which under the condition of a nondegenerate magnetic field detA 6= 0
is completely a linear combination of constraints. Therefore each term

31Incidentally, the general solution of the classical equations of motion consistent with
the constraints is that Ψae = λ(ae) = const. ∀a, e as we will show below. Due to the
semiclassical-quantum correspondence, the classical solution evaluated on the starting
action should produce a semiclassical wavefunction that also equals the quantum state [8].
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on the right hand side of (160) vanishes on account of the Hamiltonian,
diffeomorphism and Gauss’ law constraints respectively, which implies for
vacuum GR in anisotropic minisuperspace that Ψ̇ae = 0 ∀a, e. Hence
Ψae = λ(ae) = const. foralla, e. Consistency with the Hamiltonian con-
straint reduces λae to a five dimensional complex vector space.

The wavefunction (162) then reduces to

ψPhys = βexp
[
(~G)−1

∫ T

0
dtλ(ae)Ẋ

ae
]∣∣∣∣

λae=const. ∀a,e

. (161)

Since λae are a set of numerical constants, we can factor them out of the
time integral in (162) thus leaving the integral of Ẋae which is a total time
derivative. Hence,

ψPhys(T ) = βexp
[∫ T

0
dtλ(ae)Ẋ

ae
]∣∣∣∣

λae=const. ∀a,e

= βexp
[
(~G)−1λae

∫ T

0
dtẊae

]

= βexp
[
(~G)−1λae(X

ae(T ) −Xae(T0))
]

= ψPhys(T0)e
(~G)−1λ·X(T )(162)

where we have defined ΨPhys(T0) = βe−(~G)−1λ·X(T0) as the wavefunction
at some initial time T0, for some normalization constant β which depends
on the matrix elements λae. Hence the wavefunction is defined at the final
time irrespectively of how the field Xae evolved to that time.32 Equation
(162) represents a Hilbert space labelled by five arbitrary constants. Two
constants correspond to two of the eigenvalues of the CDJ matrix in λ1, λ2,
with λ3 determined by (156). The remaining three constants reside in the
SO(3, C) angles used to diagonalize the CDJ matrix. If one regards these
angles as being unphysical, then one can write the state as

ψλ1,λ2
[X] =

〈
X

∣∣λ1, λ2

〉
∼ e(~G)−1X·λ (163)

which is a normalizable set of states labelled by two arbitrary constants
corresponding to two freely specifiable eigenvalues of Ψae. Hence we have
constructed a Hilbert space. As for the pure Kodama state ΨKod, this
forms an element of (163) where the three eigenvalues are equal as in λ1 =
λ2 = λ3 = − 6

Λ . Since (163) is normalizable in the measure introduced
in the previous section, then the pure Kodama state ΨKod in anisotropic
minisuperspace is also normalizable with respect to the same measure.

32This is our interpretation of the analogue of the noboundary proposal [16] for the
Chang–Soo variables in anistropic minisuperspace, and the addressal of the problem of
time in quantum gravity, a result we hope to extend to the full theory in a subsequent
paper.
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7 Final Hilbert space arguments

The normalization factor β can now be found to within an arbitrary phase
factor by requiring that the wavefunctions be normalized in Lorentzian sig-
nature with respect to the measure defined in the previous section. Hence

∣∣Ψλ|2 = |β|2exp
[
−2(~G)−1Re{λ ·X0}

]
eνλ∗·λ = 1 (164)

where we have defined X0 = X(T0) and where we have used the shorthand
notation λ ≡ (λ1, λ2) to denote the labels for the state. Equation (164)
leads to the condition

β = β(λ) = eiαexp
[
(~G)−1Re{λ ·X0}

]
e−

ν
2
λ∗·λ, (165)

where α is an arbitrary real number depicting the arbitrariness of the phase,
whereupon β has acquired the label of the state. We can finally write the
wavefunction solving the constraints in the form

ψλ[X] = eiαexp
[
(~G)−1Re{λ ·X0}

]
e−

ν
2
λ∗·λexp

[
(~G)−1(λ ·X − λ ·X0)

]
.(166)

Using λ · X0 = Re[λ · X0] + iIm[λ · X0], we can then make the choice
α = (~G)−1Im[λ ·X0 to get rid of the arbitrary phase.33

Using these considerations, the Hilbert space of states is then given by

ψλ[X] = e−
ν
2
λ∗·λe(~G)−1λ·X . (167)

We have suppressed the time label T , which is understood to be implicit in
(167).

7.1 Arguments from geometric quantization and the semiclassical-

quantum correspondence

The form of the wavefunctions forming the physical states can also be seen
from arguments on geometric quantization. At the classical level prior to
implementation of the quantum constraints the phase space for the Chang–
Soo/CDJ variables is 18 dimensional. The symplectic two form Ω on the
phase space at this level is given by

33One could alternatively use this phase to label the state by its initial value at t = 0 in
the projective representation of the state, and then place all wavefunctions at t = 0 into
the same equivalence class of states. In this way one circumvents the need to define the
initial state of the universe.
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Ω = (~G)−1
∑

a,e

δΨae ∧ δXae = (~G)−1
∑

a,e

δ(ΨaeδX
ae). (168)

For the class of states within the Hilbert space ψλ ∈ ψPhys, the symplectic
two form Ω vanishes. This is due to the fact that for these states, Ψae = λae

which are numerical constants. Since the exterior derivative of a numerical
constant is zero, then the symplectic two form evaluated on the solution to
the constraints consistent with the initial value problem is given by

Ω

∣∣∣∣
φ̂α=0

= (~G)−1
∑

a,e

δλae ∧ δXae = 0 ∀λae (169)

where we have used δλae = 0. By the Poincare Lemma, a closed two form is
locally exact. Hence Ω = 0, implies that Ω = δθ for some one form θ. The
one form can be found from (168) using

Ω = 0 = (~G)−1
∑

a,e

δ(λaeδX
ae) = δθλ. (170)

The one form θ = θλ has then acquired the label of the states, as in

θλ = (~G)−1
∑

a,e

λaeδX
ae. (171)

The wavefunction of the universe for the states within our Hilbert space is
then given by the integral of this one form over the space Xae, as in

Ψλ[X] ∝ e(~G)−1
R

θλ ∝ eλ·X (172)

to within the normalization factor, for each λ.
We have just shown that the canonical quantization procedure is consis-

tent with geometric quantization for the class of states within our Hilbert
space ψλ ∈ ψPhys, which implies an equivalence between these procedures.
While restriction of the states to within the physical Hilbert space HPhys is
a sufficient condition for this equivalence, the question arises as to whether it
is necessary. An examination of (168) indicates that for any Ψae = Fae[X

bf ],
where the CDJ matrix can contain arbitrary functional dependence on the
Chang–Soo potentials, that Ω can be made to vanish. This can be seen from
the manipulations

Ω =
∑

a,e

δΨae ∧ δXae =
∑

a,e

∑

b,f

(∂Fae[X]

∂Xbf

)
δXbf ∧ δXae (173)
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For the choice Fae[X] = ∂I/∂Xae, for some arbitrary scalar function I =
I[X] of Xae, we have that

Ω =
∑

a,e

δΨae ∧ δXae =
∑

a,e

∑

b,f

( ∂2I[X]

∂Xae∂Xbf

)
δXbf ∧ δXae = 0, (174)

Due to contraction of symmetric indices from the second partial derivative
with antisymmetric indices from the two forms. Furthermore, by restriction
Xae = X(ae) to symmetric indices, the functions Fae = F(ae)[X] can be
chosen to satisfy the classical Hamiltonian constraint via the restriction

V arF + ΛdetF = 0. (175)

The functions F would lead to wavefunctions of the form ΦF = e(~G)−1I ,
where I is an arbitrary function of Xae.

One possibility for exclusion might be the criterion of normalizability.
However, the wavefunctions Φ would be normalizable in the measure Dµ(X)
since for any two functions F ≡ Fae[X] and G ≡ Gae[X], the inner product
would be given by

〈
ΦF

∣∣ΦG

〉
=

∫
DXe−

1
ν
|X|2Φ∗

F [X]ΦG[X]

= ΦF [∂/∂λ]Φ[∂/∂λ∗]eνλ∗·λ

∣∣∣∣
λ=λ∗=0

= ΦF [νλ∗]ΦG[νλ], (176)

where we have made use of the generating functional techniques of the pre-
vious sections. Hence the requirement of square integrability would still be
met as long as the wavefunctions Φ are themselves finite, since

∣∣ΦF

∣∣2 = ΦF [νλ∗]ΦF [νλ] <∞. (177)

Certainly, this requirement can be met by a fairly general class of appro-
priates choices of the function I[X]. So then the question resurfaces, since
there exists a more general set of normalizable wavefunctions ΦF [X] satis-
fying the classical version of the constraints, as to why one should restrict
oneself to wavefunctions for which Fae = λae = const.. Hence, why label
the states by five arbitrary constants as opposed to five arbitrary functions
of X?

The answer resides in the observation that while the states ψλ satisfy the
semiclassical-quantum correspondence (SQC), the states ΦF do not. This
can be seen by consideration of the quantum version of the constraints. The
action of the momentum operator on the states ΦF would be given by
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Ψ̂aeΦF = ~G
∂

∂Xae
e(~G)−1I = Fae[X]ΦF . (178)

For Fae = F(ae), the kinematic constraints are already satisfied due to being
linear in momenta. Hence for the diffeomorphism constraint,

ĤiΦF [X] = (~G)(detA)Ad
i ǫdae

∂

∂Xae
ΦF = (detA)Ad

i ǫdaeFaeΦF = 0 (179)

which for nondegenerate curvatures detA 6= 0, requires that Fae be symmet-
ric in the indices a, e. Likewise, the Gauss’ law constraint would produce
the same condition, being linear in momenta.

However, for the quantum Hamiltonian constraint we have, upon rescal-
ing

ĤΦF = (~G)2(detA)
√

detΨ̂ǫabcǫefg

[
~GΛ

∂3

∂Xae∂Xbf∂Xcg
+ δcg

∂2

∂Xae∂Xbf

]
ΦF

= (detA)
√

detΨ̂
(
q0(X) + (~G)q1(X) + (~G)2q2(X)

)
ΦF = 0(180)

for some coefficeints q0, q1 and q2 which we do not display here. The term
q0 is the semiclassical term, which is the same as would be for the classical
implementation of the Hamiltonian constraint for all wavefunctions. The
terms q1 and q2 are quantum terms which would result from the action of
the derivatives on Fae[X]. For the states ψλ these terms would be zero
since Fae = λae would be numerical constants. Hence, without any further
restrictions on q1 and q2, the wavefunctions ΦF would satisfy the quantum
constraints not of general relativity in Chang–Soo variables, but rather of a
different theory.34

To provide a further argument for the necessity of states residing in the
Hilbert space that we have constructed, note that the states ψλ which sat-
isfy the SQC are also consistent with the solution to the classical equations
of motion, Ψ̇ae = 0 ∀a, e as we have shown. This requires that λae be nu-
merical constants in anisotropic minisuperspace. This is not the case for the
functions Fae = Fae[X(T )], since these functions contain time dependence
through the time dependence of the Chang–Soo variables Xae=Xae(T ).
Therefore, it is the conclusion of this subsection that a consistent quantum
theory must be consistent with the quantum constraints. Since this condi-
tion, as we have just argued for ψλ, requires a consistency of the state with

34Since we are interested in quantizing general relativity, we must therefore reject the
states ΦF , restricting to the states ψλ. Note that Φf [X] can still statisfy the classical
version of the constraints q0 = 0 without satisfying the quantum version. However, ψλ

satisfy both the classical and the quantum versions, hence are consistent with the SQC.
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the classical equations of motion, it then follows that the SQC is a strong
condition limiting the allowable class of physical states to those forming a
consistent quantum theory.35

7.2 Arguments from path integral quantization

We now illustrate the manner by which the wavefunction solving the quan-
tum constraints can arise from the path integration procedure. This should
establish its equivalence to the canonical and geometric approaches under a
special restriction.36 We will show that in order for this equivalence to ex-
ist, the path integral must implement the solution to the constraints, which
would in turn holographically project the wavefunction to the final time T .

The transition amplitude from an initial time T0 to a final time T is
given by

〈
X,T ;X0, T0

〉
=

∫
DXeS[X] (181)

where S[X] is the starting action on configuration space. To illustrate the
holographic effect, let us take the path integral (181) ‘off-shell’ into its phase
space representation.37

〈
X,T ;X0, 0

〉
=

∫
DX

∫
DΨ

∫
Dθe

R T
0 dt(ΨẊ−iΦ(θ)). (182)

Here, X refer to the 9-complex dimensional space of Chang–Soo variables
Xae and Ψ the 9-complex dimensional space of CDJ matrix elements Ψae

at the level prior to implementation of the constraints. We have incorpo-
rated the constraints into a row vector Φ ∼ (Ga,Hi,H) contracted into
the corresponding column vector formed by the Lagrange multipliers θ ∼
(θa, N i, N).38 Performing the path integral over the Lagrange multipliers
we obtain, assuming a Euclidean signature,

35While we have shown this for anisotropic minisuperspace, we will extend it to the full
theory in a subsequent paper. The implication is that the solution to the constraints should
as well be tantamount to the Cauchy problem for general relativity. We will then test the
hypothesis, in subsequent work, that this latter implication is a natural consequence of
the SQC in the full theory.

36This is the restriction to Euclidean signature spacetimes, which allow the constraints
to be implemented by delta functions upon path integration over the auxilliary variables.

37Hence, the configuration space path integral can be seen as a continuation of the steps
of the path integral originating from the full phase space.

38The factor of i in (182) is put in so that the constraints can be implemented by
delta functions. Note that this fixes the signature of the spacetime in order to place the
Hamiltonian constraint on the same footing as the kinematic constraints.
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〈
X,T ;X0, T0

〉
=

∫
DX

(∫
DΨe

R T
0 dtΨ·Ẋ

)(∫
Dθe−i

R T
0 dtΦ(θ)

)

=

∫
DX

(∫
DΨe

R T

0
dtΨ·Ẋ

)
δ(Φ) (183)

The delta functions arise due to the implementation of the constraints in
for Euclidean signatures. For the class of states Ψ ∈ ψPhys, the path inte-
gral implements both the classical and the quantum form of the constraints
identically.39

Next, the path integration over the momenta must be carried out in
order to substitute the solution to the constraints into the remainder of the
path integral. Let us start with the constraints linear in momenta. For
these constraints the following contribution must be performed due to the
antisymmetric elements.

∫
dΨ[12]dΨ[23]dΨ[31]δ(Ψ[12])δ(Ψ[23])δ(Ψ[31])e

R T
0 dtΨ[ae]Ẋ

[ae]
= 1. (184)

Upon implementation of the diffeomorphism constraint we are reduced from
an eighteen to a twelve dimensional phase space containing symmetric CDJ
matrix elements. Since the Gauss’ law constraint is redundant, there remains
just the Hamiltonian constraint, which is a single condition relating six CDJ
matrix elements. Let us pick one of them Ψ33 without loss of generality. The
Hamiltonian constraint should then implement

Ψ33 = Ψ33

(
Ψ(12),Ψ(23),Ψ(31),Ψ(11),Ψ(22)

)
∼ Ψ33(Ψ

′
(ae)), (185)

where Ψ′ signifies the symmetric elements not including Ψ33. So five CDJ
matrix elements should be freely specifiable.40

δ
(
Λ + trΨ−1

)
(186)

We would like for the path integral to capture the fact that there is a five-
fold infinity of solutions to the Hamiltonian constraint. The corresponding
delta function at the level prior to integrating over Ψ33 appears in the form

5∏

A=1

∫
dΨAδ(ΨA − λA)δ

(∏

ζA

(λA − ζA)
)
e

R T
0 dtΨAẊA(t). (187)

39This signifies a semiclassical-quantum correpsondence for these states.
40According to the classical equations of motion for minisuperspace, these elements

should all be numerical constants.
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Equation (187) requires some explanation. We are performing a path inte-
gral over the five dimensional space of symmetric CDJ matrix elements not
including Ψ33. The rightmost delta function states that there are an infinite
number of possible values that these elements λA can take on for each A, and
each possibility contributes to the path integral by making the argument of
the delta function vanish.41 The leftmost delta function then equates the
particular value being considered to the CDJ matrix element. If one views
λA as a vector in 5 dimensional complex space, then each possible vector
constitutes a solution to the Hamiltonian constraint. We will be using the
infinite dimensional analogue of the identity

δ(f(x)) =
∑

r

δ(x− r)

f ′(r)
, (188)

where r are the roots of the function f(x). Hence we have the relation

δ
(∏

ζA

(λA − ζA)
)

=
∑

ζA

δ(λA − ζA)

Z(ζA)
(189)

for each A, where we have defined

Z(ζA) =
∏

m6=ζA

(ΨA −m) (190)

which is formally infinite. The procedure is then to perform the above
steps (189) and (190) for a given A and then take the product over all A.
Performing the path integral, we then obtain a wavefunction Ψ(~λ) labelled
by the five arbitrary CDJ matrix elements as in

Ψ(~λ) =

5∏

A=1

(∑

ζa

δ(λA − ζA)

Z(ζA)

)
exp

[∫ T

0
dtλA(XA(T ) −XA(0))

]
(191)

where we have performed the following steps

∫ T

0
dtλAẊ

A(t) = λA

∫ T

0
dtẊA = λAX

A

∣∣∣∣
T

0

. (192)

A given λ is selected for each term in the sum. Since the λA are numerical
constants, they can be factored out of the integral upon implementation of

41Another way to view this is as a polynomial on infinite degree whose roots are the
real numbers.
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the delta function by integrating dΨA. The result is the integral of a total
time derivative which leads to a boundary term independent of the history
between those times.

Next remains the integral over Ψ33. This must be performed for each ~λ.
Hence we have

∫
βdΨ33δ(Ψ33 −H(~λ))Ψ(~λ)e

R T

0
dtΨ33Ẋ33

= Ψ(~λ)ef(~λ)(X33(T )−X33(0)). (193)

Hence, the path integral representation has thus far led to

ψλ =
∑

~ζ

β(~ζ)δ[ζ − λ]eζ·X (194)

where we have defined λ33 = f(~λ). All normalization factors are contained
in β, and ζ ranges over the entire range of values that λ can take on.

We still have one more integration to complete, namely over the configu-
ration varialbes X(t) for < 0t < T . Since the wavefunction (195) is defined
at the final time T , which is a boundary term, then (195) is immune to this
integration. Hence we have

∫
DXΨ(~λ)ψλ = ψλ

∫
DX = (V olX)ψλ. (195)

Here, V olX is the volume of the nine complex-dimensional space of Chang–
Soo variable configurations with is an infinite numerical constant.42 Hence
the end result is that

〈
X,T ;X0, T0

〉
=

∫
DXeS[X] = (V olX)

∑

~ζ

β(~ζ)δ[ζ − λ]eζ·X . (196)

Equation (196) encapsulates the collection of all possible values of λae, which
are picked out by the path integral for Euclidean signatures. Hence this
establishes the equivalence of the path integration procedure, for Euclidean
signature, to the geometric and the canonical procedures.

42This infinity is not an issue since it is common to all states and will cancel out in
relative probabilities and in the computation of observables.
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8 Conclusion

The main results of the present paper are as follows. We have introduced a
new approach to general relativity in terms of a new set of dynamical vari-
ables first introduced by CDJ and Chang–Soo. Our implementation of the
variables as full dynamical variables signifies a departure from the convential
implementation, which uses the CDJ matrix as an auxilliary variable. Re-
garded as fundamental dynamical variables, the Chang–Soo/CDJ variables
exhibit a different algebraic structure with respect to the classical and the
quantum constraints relative to the Ashtekar variables. These differences
have pointed to a difference in the fundamental structure of the two theo-
ries already at the level of minisuperspace, which we expect will carry over
into the full theory.

We have shown that the classical and the quantum algebra of constraints
in Chang–Soo variables in anisotropic minisuperspace is consistent in accor-
dance with the Dirac procedure. Additionally, we have constructed a Hilbert
space of states for our model by utilizing a Gaussian measure for Lorentzian
signature, with the option of a Lebesgue measure in Euclidean signature
spacetime. The result is a set of normalizable coherent-like states labelled
by two free parameters which solve the quantum constraints.43 These par-
ticular states satisfy the semiclassical-quantum correspondence (SQC) intro-
duced in [8] in that they simultaneously solve the classical and the quantum
initial value constraints in congruity with the equations of motion. Addi-
tionally, our states address the problem of time in quantum gravity, at least
in the anisotropic minisuperspace sector, in that they automatically ‘evolve’
to the desired time as a result of the SQC.

The pure Kodama ΨKod state clearly belongs to this aforementioned class
of states. Therefore we claim as another result of this paper that any issues
or objections raised about the state regarding normalizability and existence
within a well-defined Hilbert space, at least for anisotropic minisuperspace,
have been resolved: a result we hope to extend to the full theory in addi-
tional works in this series. Additionally, we have extended the arguments of
[8] to incorporate a wider class of states, at least for anisotropic minisuper-
space, and have provided arguments of the equivalence of the canonical and
geometric approaches to quantization for these states. We additionally have
provided an argument for equivalence to the path integration approach for
Euclidean signature spacetime.

Future directions along this line of research using the Chang–Soo cari-
ables include and are not limited to the following: (i) The addressal of any
outstanding issues regarding the Kodama states and their generalizations
(ii) An in-depth analysis of general relativity in these variables both includ-
ing the classical and the quantum theories, (iii) Solution to the initital value

43Five free parameters if one includes the SO(3, C) angles diagonalizing the CDJ matrix.

47



constraints problem of general relativity and the search for and construction
of new classes of solutions. (iv) Extension of the algorithm for the construc-
tion of the generalized Kodama states to incorporate more general solutions
to GR, and ultimates (v) the construction of a consistent and finite quan-
tum theory. The next immediate work will examine the classical equations
of motion in anisotropic minisuperspace and their effect on inflation, as well
as some phenomenological investigations [17].
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