
SP211 - Equations for SP211 Final Exam LT Brett “Rabbit” Williams, USN

The following equations may be useful for the SP211 Final Exam.

E N W   S

∆x ≡ x f − xi Displacement Defines displacement as the dif-
ference between final position
and initial position.

p. 21

vx,avg ≡
∆x
∆t

Average Velocity Defines average velocity of a
particle as the ratio of its dis-
placement to the time elapsed
during its motion.

p. 21

vx ≡ lim
∆t→0

∆x
∆t

=
dx
dt

Instantaneous Velocity Defines instantaneous velocity
of a particle as the time deriva-
tive of its position.

p. 24

ax,avg ≡
∆vx

∆t
Average Acceleration Defines average acceleration of a

particle as the ratio of its change
in its velocity to the time elapsed
during that change.

p. 28

ax ≡ lim
∆t→0

∆vx

∆t
=

dvx

dt
Instantaneous Acceleration Defines instantaneous accelera-

tion of a particle as the time
derivative of its velocity.

p. 28

vx f = vxi + axt Kinematics Gives velocity as a function of
time.

p. 33

x f = xi +
1
2

(
vxi + vx f

)
t Kinematics Gives position as a function of

time.
p. 33

x f = xi + vxit +
1
2

axt2 Kinematics Gives position as a function of
velocity and time.

p. 33

v2
x f = v2

xi + 2ax

(
x f − xi

)
Kinematics Gives velocity as a function of

position.
p. 34

A =
√

A2
x + A2

y Magnitude of Vector Identifies the magnitude of vec-
tor A.

p. 60
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θ = tan−1

(
Ay

Ax

)
Direction of Vector Identifies the direction of vector

A with respect to the positive x-
axis.

p. 60

∆r ≡ r f − ri Displacement (2-D) Defines displacement as the dif-
ference between final position
and initial position.

p. 72

vavg ≡
∆r
∆t

Average Velocity (2-D) Defines average velocity of a
particle as the ratio of its dis-
placement to the time elapsed
during its motion.

p. 72

v ≡ lim
∆t→0

∆r
∆t

=
dr
dt

Instantaneous Velocity (2-D) Defines instantaneous velocity
of a particle as the time deriva-
tive of its position.

p. 73

aavg ≡
∆v
∆t

Average Acceleration (2-D) Defines average acceleration of a
particle as the ratio of its change
in its velocity to the time elapsed
during that change.

p. 73

a ≡ lim
∆t→0

∆v
∆t

=
dv
dt

Instantaneous Acceleration
(2-D)

Defines instantaneous accelera-
tion of a particle as the time
derivative of its velocity.

p. 73

v f = vi + at Kinematics (2-D) Gives velocity as a function of
time.

p. 75

r f = ri + vit +
1
2

at2 Kinematics (2-D) Gives position as a function of
velocity and time.

p. 75

h =
v2

i sin2 θi

2g
Max Height of Projectile Relates the maximum height of

a projectile to its initial velocity
and angle of launch.

p. 78
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R =
v2

i sin 2θi

g
Range of Projectile Relates the range of a projectile

to its initial velocity and angle of
launch.

p. 79

ac =
v2

r
Centripetal Acceleration Defines the centripetal acceler-

ation of a particle moving in a
circular path as the ratio of the
body’s tangential velocity to ra-
dius of the path.

p. 85

T =
2πr

v
Period of Circular Motion Identifies the period of repeated

circular motion.
p. 85

∑
Fi = ma Newton’s Second Law Identifies a body’s mass as the

constant of proportionality be-
tween its acceleration and the
net external force acting on it.

p. 104

F12 = −F21 Newton’s Third Law States the principle of equal and
opposite forces.

p. 107

fs ≤ µsn Static Friction Establishes the relationship be-
tween the static frictional force
and the normal force.

p. 120

fk = µkn Kinetic Friction Establishes the relationship be-
tween the kinetic frictional force
and the normal force.

p. 120

∑
F = mac = m

v2

r
Newton’s Second Law for
Circular Motion

Places the relationship between
tangential velocity and cen-
tripetal acceleration in the con-
text of Newton’s Second Law.

p. 138

R = −bv Resistive Force (linear) Expresses a linear model for a
force resisting the motion of a
body through a fluid.

p. 148
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vT =
mg
b

Terminal Speed (linear) Identifies the terminal speed of
a body moving through a fluid
when the resistive force obeys a
linear model.

p. 149

R =
1
2

DρAv2 Resistive Force (quadratic) Expresses a quadratic model for
a force resisting the motion of a
body through a fluid.

p. 150

vT =

√
2mg
DρA

Terminal Speed (quadratic) Identifies the terminal speed of
a body moving through a fluid
when the resistive force obeys a
quadratic model.

p. 151

W ≡ F · ∆r = F∆r cosθ Work (constant force) Defines work done by a constant
force as the scalar product of the
force and the displacement of the
body accelerated by the force.

p. 165

W =

∫ r f

ri

F · dr Work (varying force) Defines work done by a vary-
ing force as that force integrated
over the displacement of the
body accelerated by the force.

p. 170

F = −kx Hooke’s Law Identifies the force exerted by a
spring stretched or compressed
by a distance x.

p. 171

K ≡
1
2

mv2 Definition of Kinetic Energy Relates the energy of a body to
its velocity.

p. 174

Wnet = K f − Ki = ∆K Work-Kinetic Energy Theo-
rem

Expresses the equivalence of the
work done on a system and its
change in kinetic energy.

p. 174

Ug ≡ mgy Gravitational Potential En-
ergy

Relates the gravitational poten-
tial energy of a body to its mass
and height above a zero-point.

p. 178
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Us ≡
1
2

kx2 Elastic Potential Energy Identifies the potential energy
stored in a spring stretched or
compressed by a distance x.

p. 180

∆U = −

∫ r f

ri

F · dr Potential Energy for Conser-
vative Forces

Identifies the potential energy
function for conservative forces.

p. 183

F = −
∂U
∂x

i −
∂U
∂y

j −
∂U
∂z

k Potential Energy for Conser-
vative Forces

Identifies the potential energy
function for conservative forces.

p. 184

Emech ≡ K + U Mechanical Energy Defines mechanical energy of a
system as the sum of its kinetic
and potential energies.

p. 199

K f + U f = K f + U f Conservation of Energy Expresses the conservation of
mechanical energy in a system
upon which no nonconservative
forces act.

p. 199

K f = Ki − fkd +
∑

Wother Work-Kinetic Energy Theo-
rem (with friction)

Adapts the Work-Kinetic Energy
Theorem for use with problems
involving kinetic friction.

p. 205

P ≡
dE
dt

=
dW
dt

= F · v Instantaneous Power Defines instantaneous power in
terms of: energy; work; force
and velocity.

p. 213

Pavg =
W
∆t

Average Power Defines average power in terms
of work done over time.

p. 214

p ≡ mv Momentum Defines momentum of a particle
as the product of its mass and
velocity.

p. 228
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∑
F =

dp
dt

Newton’s Second Law Identifies the forces acting on a
particle as equivalent to the time
rate of change of the particles
momentum.

p. 229

p1i + p2i = p1 f + p2 f Conservation of Linear Mo-
mentum

Expresses the unchanging total
linear momentum of an isolated
system of particles.

p. 229

I ≡
∫ t f

ti

∑
F dt Impulse Defines impulse of a force as its

time integral.
p. 232

∆p = I Impulse-Momentum Theo-
rem

Equates impulse of a force to the
change in momentum of the par-
ticle upon which the force acts.

p. 232

rCM =
1
M

∑
i

miri Center of Mass (system of
particles)

Identifies the center of mass of a
system of particles.

p. 246

rCM =
1
M

∫
r dm Center of Mass (extended

body)
Identifies the center of mass of
an extended body.

p. 246

∑
Fexternal = MaCM Newton’s Second Law (sys-

tem of particles)
Explicitly identifies the behavior
of the center of mass of a sys-
tem of particles under an exter-
nal force as governed by the laws
of motion.

p. 250

s = rθ Arc Length Relates circular arc length to ra-
dius and subtended angle.

p. 270

ω ≡ lim
∆t→0

∆θ
∆t

=
dθ
dt

Instantaneous Angular
Speed

Identifies instantaneous angular
speed as the time derivative of
angular position.

p. 270

α ≡ lim
∆t→0

∆ω
∆t

=
dω
dt

Instantaneous Angular Ac-
celeration

Identifies instantaneous angular
acceleration as the time deriva-
tive of angular speed.

p. 271
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ω f = ωi + αt Rotational Kinematics Gives angular speed as a func-
tion of time.

p. 272

θ f = θi +
1
2

(
ωi + ω f

)
t Rotational Kinematics Gives angular position as a func-

tion of time.
p. 272

ω2
f = ω2

i + 2α
(
θ f − θi

)
Rotational Kinematics Gives angular speed as a func-

tion of angular position.
p. 272

θ f = θi + ωit +
1
2
αt2 Rotational Kinematics Gives angular position as a func-

tion of angular speed and time.
p. 272

v = rω Tangential Speed Relates tangential speed to an-
gular speed.

p. 274

at = rα Tangential Acceleration Relates tangential acceleration to
angular acceleration.

p. 274

ac =
v2

r
= rω2 Centripetal Acceleration Relates centripetal acceleration

to angular speed.
p. 274

I ≡
∑

i

mir2
i Moment of Inertia (system of

particles)
Defines moment of inertia of a
system of particles as the sum of
the products of their masses and
the squares of their distances
from the axis of rotation of the
system.

p. 276

KR =
1
2

Iω2 Rotational Kinetic Energy Relates the energy of a rotating
system to the speed of its rota-
tion.

p. 276

I =

∫
r2 dm Moment of Inertia (rigid ob-

ject)
Defines the moment of inertia of
a rigid object about an axis of ro-
tation.

p. 278
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I = ICM + MD2 Parallel-Axis Theorem Relates the moment of inertia of
a rigid object about an axis of ro-
tation passing through its center
of mass to any parallel axis of ro-
tation a distance D away.

p. 281

τ ≡ r × F = rF sinφ = Fd Torque Defines torque as the vector
product of position of applica-
tion of force and the force itself.
Often its magnitude is the prod-
uct of the magnitude of applied
force and the moment arm d (the
distance from the point of appli-
cation to the axis of rotation).

p. 311

L ≡ r × p Angular Momentum Defines angular momentum of
a particle as the vector product
of the particle’s position with re-
spect to a center of rotation and
its linear momentum.

p. 315

∑
τ =

dL
dt

Newton’s Second Law (rota-
tional)

Identifies the sum of the torques
acting on a body (or system of
particles) as the time derivative
of the body’s (or system’s) angu-
lar momentum.

p. 315

L = Iω Angular Momentum (rigid
object)

Identifies the magnitude of the
angular momentum of a rotating
rigid object as the product of its
moment of inertia about the axis
of rotation and its speed of rota-
tion.

p. 318

∑
τexternal = Iα Newton’s Second Law (rota-

tional, scalar)
Identifies the moment of inertia
of a body as the constant of pro-
portionality between its angular
acceleration and the net external
torque acting on it.

p. 318
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Iiωi = I fω f Conservation of Angular
Momentum

Expresses the unchanging total
angular momentum of an iso-
lated system of particles.

p. 321

Fg = G
m1m2

r2 Law of Universal Gravitation Every particle in the universe at-
tracts every other particle with a
force that is directly proportional to
the product of their masses and in-
versely proportional to the square of
the distance between them.

p. 363

g =
GME

(RE + h)2 Variation of Gravitational
Acceleration with Altitude

Expresses the dependence of
gravitational acceleration expe-
rienced by an object in freefall
on its height above the Earth’s
surface.

p. 365

T2 =

(
4π2

GM

)
a3 Kepler’s Third Law The square of the orbital period of

any planet is proportional to the
cube of the semimajor axis of the el-
liptical orbit.

p. 369

U = −
Gm1m2

r
Gravitational Potential En-
ergy

Identifies the potential energy
function for universal gravita-
tion.

p. 374

E =
1
2

mv2
−

GMm
r

Total Energy of Orbital Sys-
tem

Identifies the (constant) total en-
ergy of a two-object orbital sys-
tem as the sum of the kinetic en-
ergy of the satellite and the grav-
itational potential energy of the
two-body system.

p. 375

E = −
GMm

2a
Energy for Elliptical Orbits Identifies the total energy of a

two-object orbital system for the
case of an elliptical orbit (a = r
for circular orbit).

p. 376
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vesc =

√
2GME

RE
Escape Speed Identifies the speed required to

“break free” from Earth’s gravi-
tational field.

p. 377

P ≡
F
A

Pressure Defines pressure as the ratio of
an applied force to its area of ap-
plication.

p. 390

P = P0 + ρgh Variation of Pressure With
Depth

Gives the pressure at any depth
in a fluid relative to a reference
pressure.

p. 392

B = ρfluidgV Buoyant Force Identifies the force suspending a
submerged object as the weight
of the fluid the object displaces.

p. 396

A1v1 = A2v2 Continuity Equation (fluids) Expresses the unchanging prod-
uct of area and speed for an ideal
fluid.

p. 400

P +
1
2
ρv2 + ρgy = constant Bernoulli’s Equation Expresses the unchanging sum

of pressure, kinetic energy den-
sity, and potential energy den-
sity for an ideal fluid.

p. 403

x(t) = A cos(ωt + φ) Simple Harmonic Motion Gives position as a function of
time for an object in simple har-
monic motion.

p. 420

ω = 2π f =
2π
T

=

√
k
m

Angular Frequency (H.O.) Identifies the angular frequency
of a particle in simple harmonic
motion.

p. 421

T =
2π
ω

= 2π

√
m
k

Period (H.O.) Expressions for the period of
simple harmonic motion.

p. 422

Sections 1121, 1123, 2141 & 2143 Page 10 of 13 Autumn 2009



SP211 - Equations for SP211 Final Exam LT Brett “Rabbit” Williams, USN

E N W   S

f =
1
T

=
1

2π

√
k
m

Frequency (H.O.) Expressions for the frequency of
simple harmonic motion.

p. 422

E =
1
2

mv2 +
1
2

kx2 =
1
2

kA2 Energy of Harmonic Oscilla-
tor

Identifies the total energy of a
harmonic oscillator as the sum of
its periodically varying kinetic
and potential energies. Also ex-
pressed in terms of amplitude.

p. 427

ω =

√
g
L

Angular Frequency (simple
pendulum)

Gives the angular frequency of a
simple pendulum in terms of its
length.

p. 432

T =
2π
ω

= 2π

√
L
g

Period (simple pendulum) Expressions for the period of a
simple pendulum.

p. 433

T = 2π

√
I

mgd
Period (physical pendulum) Gives the period of a physical

pendulum in terms of its mo-
ment of inertia about a pivot a
distance d from the pendulum’s
center of mass.

p. 434

x = Ae−bt/2m cos(ωt + φ) Damped Harmonic Oscilla-
tor

Equation of motion for an har-
monic oscillator damped by a re-
sistive force R = −bv.

p. 436

ω =

√
k
m
−

(
b

2m

)2

Angular Frequency (damped
H.O.)

Gives the angular frequency of
a damped harmonic oscillator
whose angular frequency is ω =
√

k/m when undamped.

p. 436

A =
F0/m√

(ω2 − ω2
0)2 −

(
bω
m

)2
Amplitude (driven H.O.) Gives the amplitude of an har-

monic oscillator driven by a
force F.

p. 437
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y(x, t) = A sin(kx − ωt) Wave Function (sinusoidal
wave)

Sinusoidal solution to the wave
equation that relates the trans-
verse displacement y of each
point along the wave to its lon-
gitudinal position x and time t.

p. 455

k ≡
2π
λ

Angular Wave Number Defines the angular wave num-
ber as inversely proportional to
wavelength.

p. 455

ω ≡
2π
T

= 2π f Angular Frequency (wave) Defines the angular frequency of
a wave.

p. 456

v =
ω
k

= λ f Speed of Propagation (wave) Identifies the speed of a wave in
terms of other wave quantities.

p. 456

v =

√
T
µ

Speed of Propagation (wave
on string)

Identifies the speed of a wave on
a string of linear mass density µ.

p. 458

P =
1
2
µω2A2v Power (wave) Gives the power of a wave prop-

agating through a medium with
linear mass density µ.

p. 464

∆P = ∆Pmax sin(kx − ωt) Pressure (sound wave) Gives variation in air pressure
due to a periodic sound wave.

p. 476

I ≡
P

A
=

1
2
ρv(ωsmax)2 Intensity (sound wave) Defines the intensity of a peri-

odic sound wave as the ratio of
its power to the area affected.

p. 478

β ≡ 10 log
( I

I0

)
Sound Level in Decibels Converts intensity units (W/m2)

to dB. I0 = 1.0 × 10−12 W/m2.
p. 480

f ′ = f
(v + vO

v − vS

)
Doppler Shift Gives the Doppler-shifted fre-

quency in terms of the speeds of
the source and observer.

p. 485
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sinθ =
v
vS

Mach Angle Identifies the angle the shock-
wavefront makes with the trajec-
tory of a sound source causing
the shock wave.

p. 488

y = (2A sin kx) cosωt Standing Wave A standing wave function rep-
resenting two identical waves
traveling in opposite directions.

p. 505

fn = n
v

2L
, n = 1, 2, 3, ... Natural Frequencies (both

ends antinodes)
Gives the natural frequencies of
a rod free at both ends or stand-
ing wave in a pipe open at both
ends.

p. 513

fn = n
v

4L
, n = 1, 3, 5, ... Natural Frequencies (one end

node, one antinode)
Gives the natural frequencies of
a rod fixed at one end or standing
wave in a pipe closed at one end.

p. 514

fbeat =
∣∣∣ f1 − f2

∣∣∣ Beat Frequency Identifies the frequency of
“beats” between two close
frequencies.

p. 518
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